146 research outputs found

    High Diversity of the Saliva Microbiome in Batwa Pygmies

    Get PDF
    We describe the saliva microbiome diversity in Batwa Pygmies, a former hunter-gatherer group from Uganda, using next-generation sequencing of partial 16S rRNA sequences. Microbial community diversity in the Batwa is significantly higher than in agricultural groups from Sierra Leone and the Democratic Republic of Congo. We found 40 microbial genera in the Batwa, which have previously not been described in the human oral cavity. The distinctive composition of the salvia microbiome of the Batwa may have been influenced by their recent different lifestyle and diet

    Improved Resolution Haplogroup G Phylogeny in the Y Chromosome, Revealed by a Set of Newly Characterized SNPs

    Get PDF
    Background: Y-SNP haplogroup G (hgG), defined by Y-SNP marker M201, is relatively uncommon in the United States general population, with only 8 additional sub-markers characterized. Many of the previously described eight sub-markers are either very rare (2–4%) or do not distinguish between major populations within this hg. In fact, prior to the current study, only 2 % of our reference Caucasian population belonged to hgG and all of these individuals were in sub-haplogroup G2a, defined by P15. Additional Y-SNPs are needed in order to differentiate between individuals within this haplogroup. Principal Findings: In this work we have investigated whether we could differentiate between a population of 63 hgG individuals using previously uncharacterized Y-SNPs. We have designed assays to test these individuals using all known hgG SNPs (n = 9) and an additional 16 unreported/undefined Y-SNPS. Using a combination of DNA sequence and genetic genealogy databases, we have uncovered a total of 15 new hgG SNPs that had been previously reported but not phylogenetically characterized. Ten of the new Y-SNPs are phylogenetically equivalent to M201, one is equivalent to P15 and, interestingly, four create new, separate haplogroups. Three of the latter are more common than many of the previously defined Y-SNPs. Y-STR data from these individuals show that DYS385*12 is present in (70%) of G2a3b1-U13 individuals while only 4 % of non-G2a3b1-U13 individuals posses the DYS385*12 allele. Conclusions: This study uncovered several previously undefined Y-SNPs by using data from several database sources. Th

    Analysis of Y chromosome STR haplotypes in the European part of Russia reveals high diversities but non-significant genetic distances between populations

    Get PDF
    A total of 17 Y-specific STR loci were studied in 12 districts of the European part of Russia aiming to ascertain the amount of substructure required for the construction of a representative regional database. All groups exhibited high haplotype diversities but low inter-population variance as measured by an analysis of molecular variance. However, when Western Russia is taken as a whole, the genetic distances to the neighbouring populations were significant. Whereas gradual change in the Y chromosome pool exists between Russia and the Slavic-speaking populations to the West, remarkable discontinuities were observed with neighbouring populations in the East, North and South

    Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians

    Get PDF
    Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct population

    KIR gene content diversity in four Iranian populations

    Get PDF
    Killer cell immunoglobulin-like receptors (KIR) regulate natural killer cell response against infection and malignancy. KIR genes are variable in the number and type, thereby discriminating individuals and populations. Herein, we analyzed the KIR gene content diversity in four native populations of Iran. The KIR genomic diversity was comparable between Bakhtiari and Persian and displayed a balance of A and B KIR haplotypes, a trend reported in Caucasian and African populations. The KIR gene content profiles of Arab and Azeri were comparable and displayed a preponderance of B haplotypes, a scenario reported in the natives of America, India, and Australia. A majority of the B haplotype carriers of Azeri and Arab had a centromeric gene-cluster (KIR2DS2-2DL2-2DS3-2DL5). Remarkably, this cluster was totally absent from the American natives but occurred at highest frequencies in the natives of India and Australia in combination with another gene cluster at the telomeric region (KIR3DS1-2DL5-2DS5-2DS1). Therefore, despite having similar frequencies of B haplotypes, the occurrence of B haplotype-specific KIR genes, such as 2DL2, 2DL5, 3DS1, 2DS1, 2DS2, 2DS3, and 2DS5 in Azeri and Arab were substantially different from the natives of America, India, and Australia. In conclusion, each Iranian population exhibits distinct KIR gene content diversity, and the Indo-European KIR genetic signatures of the Iranians concur with geographic proximity, linguistic affinity, and human migrations

    DER PARTISANENSPUR DURCH VORGEBIRGE NACHGEHEND

    Get PDF
    Autor opisuje razvoj partizanskog pokreta (od kraja 1941. i početka 1942. do siječnja 1945.) i borbene akcije partizanskih jedinica koje su poduzele tijekom Drugoga svjetskog rata u Podgorju.Ende 1941 und Anfang 1942 viele fortschrittliche Bewohner des Senjer Gebirges — von Jurjevo bis Karlobag — wurden die Mitarbeiter der Volksbefreiungsbewegung. Ende 1942 und Anfang 1943 wurde die Partisanenabteilung errichtet. Sie gab einen grossen Beitrag zum Aufstand und zum Volksbefreiuneskrieg auf dem Gebiet des Kroatischen Kustenlandes. Eine Reihe von Kampfleistungen wurde von den Kämpfern aus dieser Abteilung ausgefuhrt, die Mitarbeit des Volkes wurde ausgebreitet und die italienische Kapitulation wurde bereit erwartet. Diese Abteilung gewann grosse Verdienste bei der italienischen Kapitulation auf den Inseln Rab und Pag. Dort half sie den geformten Kampfgruppen in der Abrüstung des Feindes. Auf diesem ganze befreiten Gebiet wurde die Volksbehörde herrgestellt, aber Anfang 1944 drangen in Senj und in das Vorgebirge starke deutsche Kräfte ein, und Senj wurde wieder okkupiert. Das erneuerte Terror verursachte eine Unsicherheit bei dem Volk. Die einheimischen Aktivisten stellten mit Hilfe des See- und Küstensektors (POS) eine andere Militäreinheit — eine neue Abteilung her. Sie stellte sich dem Feinde gegeniiber und gewann — dank dem Waffenkampf — das Zutrauen des Volkes

    Human Occupancy as a Source of Indoor Airborne Bacteria

    Get PDF
    Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM10 and PM2.5 size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM10. On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments

    Sex-Specific Genetic Structure and Social Organization in Central Asia: Insights from a Multi-Locus Study

    Get PDF
    In the last two decades, mitochondrial DNA (mtDNA) and the non-recombining portion of the Y chromosome (NRY) have been extensively used in order to measure the maternally and paternally inherited genetic structure of human populations, and to infer sex-specific demography and history. Most studies converge towards the notion that among populations, women are genetically less structured than men. This has been mainly explained by a higher migration rate of women, due to patrilocality, a tendency for men to stay in their birthplace while women move to their husband's house. Yet, since population differentiation depends upon the product of the effective number of individuals within each deme and the migration rate among demes, differences in male and female effective numbers and sex-biased dispersal have confounding effects on the comparison of genetic structure as measured by uniparentally inherited markers. In this study, we develop a new multi-locus approach to analyze jointly autosomal and X-linked markers in order to aid the understanding of sex-specific contributions to population differentiation. We show that in patrilineal herder groups of Central Asia, in contrast to bilineal agriculturalists, the effective number of women is higher than that of men. We interpret this result, which could not be obtained by the analysis of mtDNA and NRY alone, as the consequence of the social organization of patrilineal populations, in which genetically related men (but not women) tend to cluster together. This study suggests that differences in sex-specific migration rates may not be the only cause of contrasting male and female differentiation in humans, and that differences in effective numbers do matter

    Mitochondrial haplogroup N1a phylogeography, with implication to the origin of European farmers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tracing the genetic origin of central European farmer N1a lineages can provide a unique opportunity to assess the patterns of the farming technology spread into central Europe in the human prehistory. Here, we have chosen twelve N1a samples from modern populations which are most similar with the farmer N1a types and performed the complete mitochondrial DNA genome sequencing analysis. To assess the genetic and phylogeographic relationship, we performed a detailed survey of modern published N1a types from Eurasian and African populations.</p> <p>Results</p> <p>The geographic origin and expansion of farmer lineages related N1a subclades have been deduced from combined analysis of 19 complete sequences with 166 N1a haplotypes. The phylogeographic analysis revealed that the central European farmer lineages have originated from different sources: from eastern Europe, local central Europe, and from the Near East via southern Europe.</p> <p>Conclusions</p> <p>The results obtained emphasize that the arrival of central European farmer lineages did not occur via a single demic diffusion event from the Near East at the onset of the Neolithic spread of agriculture into Europe. Indeed these results indicate that the Neolithic transition process was more complex in central Europe and possibly the farmer N1a lineages were a result of a 'leapfrog' colonization process.</p

    Analyses of the Microbial Diversity across the Human Microbiome

    Get PDF
    Analysis of human body microbial diversity is fundamental to understanding community structure, biology and ecology. The National Institutes of Health Human Microbiome Project (HMP) has provided an unprecedented opportunity to examine microbial diversity within and across body habitats and individuals through pyrosequencing-based profiling of 16 S rRNA gene sequences (16 S) from habits of the oral, skin, distal gut, and vaginal body regions from over 200 healthy individuals enabling the application of statistical techniques. In this study, two approaches were applied to elucidate the nature and extent of human microbiome diversity. First, bootstrap and parametric curve fitting techniques were evaluated to estimate the maximum number of unique taxa, Smax, and taxa discovery rate for habitats across individuals. Next, our results demonstrated that the variation of diversity within low abundant taxa across habitats and individuals was not sufficiently quantified with standard ecological diversity indices. This impact from low abundant taxa motivated us to introduce a novel rank-based diversity measure, the Tail statistic, (“τ”), based on the standard deviation of the rank abundance curve if made symmetric by reflection around the most abundant taxon. Due to τ’s greater sensitivity to low abundant taxa, its application to diversity estimation of taxonomic units using taxonomic dependent and independent methods revealed a greater range of values recovered between individuals versus body habitats, and different patterns of diversity within habitats. The greatest range of τ values within and across individuals was found in stool, which also exhibited the most undiscovered taxa. Oral and skin habitats revealed variable diversity patterns, while vaginal habitats were consistently the least diverse. Collectively, these results demonstrate the importance, and motivate the introduction, of several visualization and analysis methods tuned specifically for next-generation sequence data, further revealing that low abundant taxa serve as an important reservoir of genetic diversity in the human microbiome
    corecore