174 research outputs found

    Efficient synthesis of fluorescent rosamines: multifunctional platforms for cellular imaging

    Get PDF
    Substituted rosamines are efficiently prepared through a new organometallic addition to an imine-substituted xanthone as a novel primary amine equivalent. The synthesis reduces the number of synthetic steps to the targeted rosamines, for convenient and facile access to potential libraries of rosamine dyes. The prepared rosamine derivatives represent unique multifunctional platforms that possess radiolabeling capability and fluorescence. Rosamines have (i) useful non-specific binding properties in mammalian cells and plant root hair, and (ii) positive uptake or binding properties in microbial systems

    Epsin 1 Undergoes Nucleocytosolic Shuttling and Its Eps15 Interactor Nh2-Terminal Homology (Enth) Domain, Structurally Similar to Armadillo and Heat Repeats, Interacts with the Transcription Factor Promyelocytic Leukemia Zn2+ Finger Protein (Plzf)

    Get PDF
    Epsin (Eps15 interactor) is a cytosolic protein involved in clathrin-mediated endocytosis via its direct interactions with clathrin, the clathrin adaptor AP-2, and Eps15. The NH2-terminal portion of epsin contains a phylogenetically conserved module of unknown function, known as the ENTH domain (epsin NH2-terminal homology domain). We have now solved the crystal structure of rat epsin 1 ENTH domain to 1.8 Å resolution. This domain is structurally similar to armadillo and Heat repeats of β-catenin and karyopherin-β, respectively. We have also identified and characterized the interaction of epsin 1, via the ENTH domain, with the transcription factor promyelocytic leukemia Zn2+ finger protein (PLZF). Leptomycin B, an antifungal antibiotic, which inhibits the Crm1- dependent nuclear export pathway, induces an accumulation of epsin 1 in the nucleus. These findings suggest that epsin 1 may function in a signaling pathway connecting the endocytic machinery to the regulation of nuclear function

    An EST-Enriched Comparative Map of \u3cem\u3eBrassica oleracea\u3c/em\u3e and \u3cem\u3eArabidopsis thaliana\u3c/em\u3e

    Get PDF
    A detailed comparative map of Brassica oleracea and Arabidopsis thaliana has been established based largely on mapping of Arabidopsis ESTs in two Arabidopsis and four Brassica populations. Based on conservative criteria for inferring synteny, “one to one correspondence” between Brassica and Arabidopsis chromosomes accounted for 57% of comparative loci. Based on 186 corresponding loci detected in B. oleracea and A. thaliana, at least 19 chromosome structural rearrangements differentiate B. oleracea and A. thaliana orthologs. Chromosomal duplication in the B. oleracea genome was strongly suggested by parallel arrangements of duplicated loci on different chromosomes, which accounted for 41% of loci mapped in Brassica. Based on 367 loci mapped, at least 22 chromosomal rearrangements differentiate B. oleracea homologs from one another. Triplication of some Brassica chromatin and duplication of some Arabidopsis chromatin were suggested by data that could not be accounted for by the one-to-one and duplication models, respectively. Twenty-seven probes detected three or more loci in Brassica, which represent 25.3% of the 367 loci mapped in Brassica. Thirty-one probes detected two or more loci in Arabidopsis, which represent 23.7% of the 262 loci mapped in Arabidopsis. Application of an EST-based, cross-species genomic framework to isolation of alleles conferring phenotypes unique to Brassica, as well as the challenges and opportunities in extrapolating genetic information from Arabidopsis to Brassica and to more distantly related crops, are discussed

    On the biomedicalization of alcoholism

    Get PDF
    The shift in the prevailing view of alcoholism from a moral paradigm towards a biomedical paradigm is often characterized as a form of biomedicalization. We will examine and critique three reasons offered for the claim that viewing alcoholism as a disease is morally problematic. The first is that the new conceptualization of alcoholism as a chronic brain disease will lead to individualization, e.g., a too narrow focus on the individual person, excluding cultural and social dimensions of alcoholism. The second claim is that biomedicalization will lead to stigmatization and discrimination for both alcoholics and people who are at risk of becoming alcoholics. The third claim is that as a result of the biomedical point of view, the autonomy and responsibility of alcoholics and possibly even persons at risk may be unjustly restricted. Our conclusion is that the claims against the biomedical conceptualization of alcoholism as a chronic brain disease are neither specific nor convincing. Not only do some of these concerns also apply to the traditional moral model; above that they are not strong enough to justify the rejection of the new biomedical model altogether. The focus in the scientific and public debate should not be on some massive “biomedicalization objection” but on the various concerns underlying what is framed in terms of the biomedicalization of alcoholism

    Racial Differences in Clinical Outcomes From Metastatic Breast Cancer: A Pooled Analysis of CALGB 9342 and 9840—Cancer and Leukemia Group B

    Get PDF
    African American women are more likely to be diagnosed with metastatic breast cancer at the time of presentation than whites, and have shorter survival once diagnosed. This study examines racial differences in clinical outcomes in the setting of two large cooperative group randomized clinical trials

    Diffusion of Myosin V on Microtubules: A Fine-Tuned Interaction for Which E-Hooks Are Dispensable

    Get PDF
    Organelle transport in eukaryotes employs both microtubule and actin tracks to deliver cargo effectively to their destinations, but the question of how the two systems cooperate is still largely unanswered. Recently, in vitro studies revealed that the actin-based processive motor myosin V also binds to, and diffuses along microtubules. This biophysical trick enables cells to exploit both tracks for the same transport process without switching motors. The detailed mechanisms underlying this behavior remain to be solved. By means of single molecule Total Internal Reflection Microscopy (TIRFM), we show here that electrostatic tethering between the positively charged loop 2 and the negatively charged C-terminal E-hooks of microtubules is dispensable. Furthermore, our data indicate that in addition to charge-charge interactions, other interaction forces such as non-ionic attraction might account for myosin V diffusion. These findings provide evidence for a novel way of myosin tethering to microtubules that does not interfere with other E-hook-dependent processes

    Speed/Accuracy Trade-Off between the Habitual and the Goal-Directed Processes

    Get PDF
    Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we propose a normative model for arbitration between the two processes that makes an approximately optimal balance between search-time and accuracy in decision making. Behaviourally, the model can explain experimental evidence on behavioural sensitivity to outcome at the early stages of learning, but insensitivity at the later stages. It also explains that when two choices with equal incentive values are available concurrently, the behaviour remains outcome-sensitive, even after extensive training. Moreover, the model can explain choice reaction time variations during the course of learning, as well as the experimental observation that as the number of choices increases, the reaction time also increases. Neurobiologically, by assuming that phasic and tonic activities of midbrain dopamine neurons carry the reward prediction error and the average reward signals used by the model, respectively, the model predicts that whereas phasic dopamine indirectly affects behaviour through reinforcing stimulus-response associations, tonic dopamine can directly affect behaviour through manipulating the competition between the habitual and the goal-directed systems and thus, affect reaction time
    corecore