37 research outputs found
Climate tolerances and trait choices shape continental patterns of urban tree biodiversity
Aim: We propose and test a climate tolerance and trait choice hypothesis of urban macroecological variation in which strong filtering associated with low winter temperatures restricts urban biodiversity while weak filtering associated with warmer temperatures and irrigation allows dispersal of species from a global source pool, thereby increasing urban biodiversity. Location: Twenty cities across the USA and Canada. Methods: We examined variation in tree community taxonomic diversity, origins and production of an aesthetic ecosystem service trait in a cross-section of urban field surveys. We correlated urban tree community composition indicators with a key climate restriction, namely mean minimum winter temperature, and evaluated alternative possible drivers: precipitation, summer maximum temperature, population size and the percentage of adults with a college education. Results: Species accumulation curves differed substantially among cities, with observed richness varying from 22 to 122 species. Similarities in tree communities decreased exponentially with increases in climatic differences. Ordination of tree communities showed strong separation among cities with component axes correlated with minimum winter temperature and annual precipitation. Variation among urban tree communities in richness, origins and the provisioning of an aesthetic ecosystem service were all correlated with minimum winter temperature. Main conclusions: The urban climate tolerance and trait choice hypothesis provides a coherent mechanism to explain the large variation among urban tree communities resulting from an interacting environment, species and human decisions. Reconciling the feedbacks between human decision making and biophysical limitations provides a foundation for an urban ecological theory that can better understand and predict the dynamics of other linked biotic communities, associated ecosystem dynamics and resulting services provided to urban residents
Water Availability Is the Main Climate Driver of Neotropical Tree Growth
• Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. • About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. • The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm.d–1) was slightly above the mean value of the growth (0.026 mm.d–1). • Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest
The response of tropical rainforests to drought : lessons from recent research and future prospects
Key message: we review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. - Context: tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex.- Aims: herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. - Results: this review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. - Conclusion: the numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance
Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality
Accurate parameterization of rooting depth is difficult but important for capturing the spatio-temporal dynamics of carbon, water and energy cycles in tropical forests. In this study, we adopted a new approach to constrain rooting depth in terrestrial ecosystem models over the Amazon using satellite data [moderate resolution imaging spectroradiometer (MODIS) enhanced vegetation index (EVI)] and Biome-BGC terrestrial ecosystem model. We simulated seasonal variations in gross primary production (GPP) using different rooting depths (1, 3, 5, and 10m) at point and spatial scales to investigate how rooting depth affects modeled seasonal GPP variations and to determine which rooting depth simulates GPP consistent with satellite-based observations. First, we confirmed that rooting depth strongly controls modeled GPP seasonal variations and that only deep rooting systems can successfully track flux-based GPP seasonality at the Tapajos km67 flux site. Second, spatial analysis showed that the model can reproduce the seasonal variations in satellite-based EVI seasonality, however, with required rooting depths strongly dependent on precipitation and the dry season length. For example, a shallow rooting depth (1-3m) is sufficient in regions with a short dry season (e.g. 0-2 months), and deeper roots are required in regions with a longer dry season (e.g. 3-5 and 5-10m for the regions with 3-4 and 5-6 months dry season, respectively). Our analysis suggests that setting of proper rooting depths is important to simulating GPP seasonality in tropical forests, and the use of satellite data can help to constrain the spatial variability of rooting depth. © 2006 Blackwell Publishing Ltd
Recommended from our members
A novel correction for biases in forest eddy covariance carbon balance
Systematic biases in eddy covariance measurements of net ecosystem-atmosphere carbon dioxide exchange (NEE) are ubiquitous in forests when turbulence is low at night. We propose an alternative to the conventional bias correction, the friction velocity (u*) filter, by hypothesizing that these biases have two separate, concurrent causes: (1) a subcanopy CO2 storage pool that eludes typical storage measurements, creating a turbulence-dependent bias, and (2) advective divergence loss of CO2, creating a turbulence-independent bias. We correct for (1) using a simple parametric model of missing storage (MS). Prior experiments have inferred (2) directly from atmospheric measurements (DRAINO). For sites at which DRAINO experiments have not been performed or are infeasible, we estimate (2) empirically using a PAR-extrapolated advective respiration loss (PEARL) approach. We compare u* filter estimates of advection and NEE to MS-PEARL estimates at one temperate forest and two tropical forest sites. We find that for tropical forests, u* filters can produce a range of extreme NEE estimates, from long-term forest carbon emission to sequestration, that diverge from independent assessments and are not physically sustainable. Our MS model eliminates the dependence of nighttime NEE on u*, consistent with findings from DRAINO studies that nighttime advective losses of CO2 are often not dependent on the strength of turbulence. Our PEARL estimates of mean advective loss agree with available DRAINO measurements. The MS-PEARL correction to long-term NEE produces better agreement with forest inventories at all three sites. Moreover, the correction retains all nighttime eddy covariance data and is therefore more widely applicable than the u* filter approach, which rejects substantial nighttime data—up to 93% at one of the tropical sites. The full MS-PEARL NEE correction is therefore an equally defensible and more practical alternative to the u* filter, but leads to different conclusions about the resulting carbon balance. Our results therefore highlight the need to investigate which approach's underlying hypotheses are more physically realistic