30 research outputs found

    On-Orbit Propulsion OMS/RCS

    Get PDF
    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented

    Analysis of fluid/mechanical systems using EASY5

    Get PDF
    This paper illustrates how the use of a general analysis package can simplify modeling and analyzing fluid/mechanical systems. One such package is EASY5, a Boeing Computer Services product. The basic transmission line equations for modeling piped fluid systems are presented, as well as methods of incorporating these equations into the EASY5 environment. The paper describes how this analysis tool has been used to model several fluid subsystems of the Space Shuttle Orbiter

    Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Get PDF
    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants

    Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    Get PDF
    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system

    100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles

    Get PDF
    The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass

    Characterization of a Pressure-Fed LOX/LCH4 Reaction Control System Under Simulated Altitude and Thermal Vacuum Conditions

    Get PDF
    A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated

    Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    Get PDF
    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow

    Lunar lander and return propulsion system trade study

    Get PDF
    This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles

    Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Get PDF
    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft

    Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions

    Get PDF
    A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments
    corecore