https://ntrs.nasa.gov/search.jsp?R=19940012023 2020-06-16T20:13:09+00:00Z

٠,

.

11120 191561 202P

NASA Technical Paper 3388

August 1993

Lunar Lander and Return Propulsion System Trade Study

N94-16496

(NASA-TP-3388) LUNAR LANDER AND RETURN PROPULSION SYSTEM TRADE STUDY (NASA) 202 p

Unclas

н1/20 0191561

۰ . .

NASA Technical Paper 3388

1993

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Program Lunar Lander and Return Propulsion System Trade Study

Eric Hurlbert, Trade Study Lead Space Transportation Segment Team

Lyndon B. Johnson Space Center Houston, Texas

ACKNOWLEDGMENT

The authors wish to thank the numerous industry and NASA organizations for their indispensable help in the conduct of this trade study. The discussion and information obtained were vital to the completion of this project, even though it is recognized that a consensus on the results was not possible. When the future yields a desire to land on the Moon and return, it is hoped this trade study will be beneficial and that the participants, industry, and NASA will provide the same level of spirited involvement.

PACE

.

ABSTRACT

A trade study was initiated at NASA/Johnson Space Center in May of 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and returnstage transportation system concept. The reference FLO transportation vehicle, which emphasizes the use of existing technology and hardware, consists of a pump-fed liquid oxygen/liquid hydrogen lander stage driven by four modified Pratt & Whitney RL10A-3-3A engines, and a pressure-fed monomethyl hydrazine/nitrogen tetroxide (MMH/N2O4) return stage propelled by three modified Aerojet AJ10-118 engines. Thirteen alternative configurations to this reference design were developed in the trade study to explore the impacts of various combinations of return stage propellants, using either pressure- or pump-fed propulsion systems and various staging options.

Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half vehicle configuration staging options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Chlorine pentafluoride, a dense, highly reactive oxidizer, was combined with hydrazine in a two-stage configuration to evaluate the performance potential of this pressure-fed Earth-storable propellant. Finally, configurations using an integrated modular cryogenic engine were developed to assess the potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic propulsion system designs.

The selection process chosen to evaluate the effectiveness of the various propulsion system designs is the Analytic Hierarchy Process (AHP). AHP is a structured approach for handling complex problems with interrelated study criteria and subjective priorities.

The trade study showed that a pressure-fed MMH/N₂O₄ return stage and RL10-based lander stage is the best option for a 1999 launch. The return stage should be optimized by using a higher performance single M20/N₂O₄ engine (M20: 80% N₂H₄, 20% MMH) to simplify the baseline system, if 1993 advanced development funds become available. If startup funds for a 1999 launch do not become available soon, the recommendation is to stay with the baseline propulsion system to meet the launch goal. Should the 1999 launch slip to a later date, then advanced engines should be further explored using chlorine pentafluoride or cryogenic integrated modular engines for different mission stages.

Although the results of this trade study are tailored to the FLO requirements, the trade study design data, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.

PAGE _____ MEETTOUNUN BLANK

•

CONTENTS

Sectio	n and a second se	Page
1.0	INTRODUCTION AND PURPOSE OF TRADE STUDY	1
2.0	OVERVIEW OF PROPULSION SYSTEM TRADE STUDY	3
2.1	Heavy-Lift Launch Vehicle Cost Impact	4
3.0	FLOW DESIGN REQUIREMENTS	7
4.0	DOWN SELECTION OF TRADE OPTIONS	9
4.1	Elimination of Metallized Propellants	9
4.2	Elimination of Fluorinated Oxygen and Oxygen Difluoride Oxidizers	10
4.3	Elimination of All but LO ₂ /LH ₂ and ClF ₅ /N ₂ H ₄ From the Lander Stage Main Propulsion System	
4.4	Elimination of Solid and Hybrid Propulsion Systems	10
4.5	Elimination of Nuclear Propulsion System	11
4.6	Inclusion of Advanced Engines	11
4.7	Downselection Results	12 12
5.0	PROPULSION SYSTEM DESIGN	
5.1	Performance Models	15
5.2	Design Descriptions	17
5.2.1	Trade 1 System Description - N2O4/MMH Pressure-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage	21
5.2.2	Trade 2 System Description - LO2/N2H4 Pressure-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage	21
5.2.3	Trade 3 System Description - ClF5/N2H4 Pressure-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage	23
5.2.4	Trade 4 System Description - N2O4/M20 Pressure-Fed High Efficiency Single Engine Return Stage and LO2/LH2 Pump-Fed Lander Stage	26
5.2.5	Trade 5 System Description - LO2/CH4 Pressure-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage	27
5.2.6	Trade 6 System Description - N2O4/MMH Pump-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage	29
5.2.7	Trade 7 System Description - LO ₂ /CH ₄ Pump-Fed Return Stage and LO ₂ /LH ₂ Pump-Fed Lander Stage	30
5.2.8	Trade 8 System Description - LO2/LH2 Pump-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage	31 32

PRECEDING PAGE BLANK NOT FILMED

CONTENTS (Continued)

Section		Page
Jeenon		34
5. 2.9	Trade 9 System Description - LO2/LH2 Pump-Fed Single-Stage Vehicle	
5.2.10	Trade 10 System Description - LO2/LH2 Pump-Fed Stage-and-a-Half Vehicle	35
5.2.11	Trade 11 System Description - CIF5/N2H4 Pressure-Fed Return and Lander Stages	36
5.2.12	Trade 12 System Description - Optimized IME LO2/LH2 Return and Lander Stages	37
5.2.13	Trade 13 System Description - LO2/LH2 Pressure-Fed Return and Pump-Fed Lander Stages	40
5.2.14	Trade 14 System Description - IME LO2/LH2 Pump-Fed	41
5.3	Vehicle Configuration Layouts	42
5.3.1	Crew Vehicle Configurations	42
5.3.2	Cargo Vehicle Configurations	44
6.0	LUNAR LANDER PROPULSION SELECTION CRITERIA AND EVALUATION METHODOLOGY	49 50
6.1	Selection Criteria Definitions	50
6.1.1	Level 1 Criteria	50
6.1.1.1	DDT&E Cost	
6.1.1.2	Recurring Cost	51
6.1.1.3	DDT&E Schedule	
6.1.1.4	Operational Schedule	52
6.1.1.5	Performance	52
6.1.1.6	Programmatic Risk	52
6.1.1.7	Mission Risk	. 53
6.1.2	Lower Level Criteria: Quantifiable Data and Ratings	. 53
6.1.2.	Launch Supportability	. 54
6.1.2.2	2 Flight Operability	
6.1.2.	3 Vehicle Design Issues	. 57
6.1.2.	4 Complexity	. 61
6.1.2 .	5 Vehicle Metrics	63
6.1.2.	6 Hardware Readiness	
6.1.2.	7 Evolution	70
6.1.3	Summary of Design Criteria Evaluation Data	

CONTENTS (Continued)

Section		Page
6.2	Trade Study Selection Process	70
6.2.1	The Pairwise Comparison Matrix	70 70
6.2.2	Deriving Criteria Weights Using Pairwise Comparisons	70 71
6.2.3	Calculating the Trade Study Rankings	71
6.2.4	Sensitivity Analysis	72
7.0	TRADE STUDY RESULTS	73
7.1	Pairwise Comparison Matrices and Derived Criteria Weights	73
7.1.1	Level One Weighting	73
7.1.2	Level Two Weighting	74
7.1.2.1	Subcriteria With Respect to DDT&E Cost	75
7.1.2.2	Subcriteria With Respect to RECURRING COST	76
7.1.2.3	Subcriteria with Respect to DDT&E SCHEDULE	70 77
7.1.2.4	Subcriteria with Respect to OPERATIONS SCHEDULE	78
7.1.2.5	Subcriteria with Respect to PERFORMANCE	79
7.1.2.6	Subcriteria with Respect to PROGRAMMATIC RISK	80
7.1.2.7	Subcriteria with Respect to MISSION RISK	81
7.1.3	Cumulative Weights of Level-Two Subcriteria with Respect to Goal	81
7.2	Analytical Trade Study Results	82
7.2.1	Trade Alternative Rankings and Discussion	84
7.2.2	Trade Rankings Sensitivity Analysis	86
7.2.2.1	Selecting the Set of Trades for Sensitivity Analysis	86
7.2.2.2	Sensitivity Analysis of Selected Trades	87
7.2.2.3	Sensitivity Analysis Conclusions	92
8.0	RECOMMENDATIONS	9 3
8.1	Best Option	93
8.2	Recommended Advanced Technology Development	93
8.3	Trade Study Flexibility to FLO Program Changes	93
Appendi	x A. Detailed FLO Vehicle Design Data	
	B. Performance Model Code and Detailed Results	
	C. Launch Operability Index	
	D. Analytical Heirarchy Weights and Comparison Matrices	

TABLES

Table		Page
3-I.	FLO Delta-V Requirements	7
4- Ⅰ.	Propulsion System Trade Options	9
4-∏.	FLO Propulsion System Trade Space	13
5-I.	Summary of Design Parameters	16
5-II.	4-Day Outbound Trip	18
5-III.	45-Day Lunar Stay	19
5-IV.	Universal Trade Inputs For Sizing Model	20
6-I.	Vehicle Design Issues Trade Rating Summary	57
6-II.	Component Complexity Factor	59
6-III.	Hardware Readiness Summary	67
6-IV.	Evolution Summary	69
7-I.	Design Data Summary	83

FIGURES

Figure	2	Page
1-1.	FLO mission profile	1
2-1 .	Iterative FLO trade process to include HLLV costs	3
2-2.	NLS derived HLLV cost versus TLI mass	4
2-3.	Saturn V derived HLLV cost versus TLI mass	5
5-1.	Component key	17
5-2.	MMH/N2O4 return stage	22
5-3.	Lander stage, LH2/LO2 propulsion system	23
5-4.	LOX/N2H4 pressure-fed return stage	23 24
5-5.	LO ₂ /LH ₂ lander stage for single-engine return stage	24 25
5-6.	ClF5/N2H4 pressure-fed return stage	25 26
5-7.	N2O4/M20 pressure-fed high-efficiency single-engine return stage	
5-8.	LO ₂ /CH ₄ pressure-fed return stage	28 20
5-9.	N2O4/MMH pump-fed return stage	29 30
5-10.	LO ₂ /CH ₄ pump-fed return stage	
5-11.	LO2/LH2 pump-fed return stage	32 33
5-12.	LO2/LH2 pump-fed single-stage vehicle	
5-13.	LO2/LH2 pump-fed stage-and-a-half vehicle	34 26
5-14.	ClF5/N2H4 pressure-fed lander stage	36 27
5-15.	Optimized IME LO ₂ /LH ₂ return stage	37
5-16.	Optimized IME LO2/LH2 lander stages	38 20
5-17.	LO ₂ /LH ₂ pressure-fed return	39 40
5-18.	IME LO2/LH2 pump-fed stage-and-a-half vehicle	
5-19.	Scale drawing of vehicles	41
5-20.	Habitat lander for LO ₂ /LH ₂ vehicles	45 46
5-21.	Habitat lander using ClF5/N2H4 propulsion	46 47

•

FIGURES (Continued)

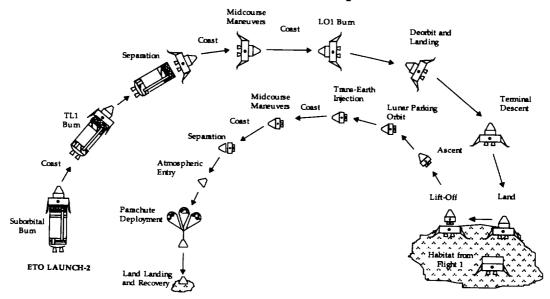
		Page
Figure		49
6-1.	FLO propulsion trade study criteria hierarchy	49 50
6-2.	Trade study process	54
6-3.	I OI trade rating summary	55
6-4.	Flight operability trade ratings summary	55 61
6-5.	Complexity Trade Ratings Summary	62
6-6.	Post-TLI mass summary	63
6-7.	V-loss cummary	64
6-8.	LIP _ (TRI) × (TRD) NASA technology readiness levels	
6-9.	Pairwise comparison matrix (example: first level criteria)	70
7-1.	First level pairwise comparison matrix and derived weights	73/74
7-1. 7-2.	the second to DDT&E cost	75
/- <u>L</u> .	and derived criteria weights	75
7-3.	Comparison matrix with respect to <i>recurring cost</i> and derived criteria weights	76
7-4.	Pairwise comparison matrix with respect to DDT&E schedule and derived criteria weights	79
7-5.	Pairwise comparison matrix with respect to operations schedule and derived criteria weights	78
7-6.	Pairwise comparison matrix with respect to <i>performance</i> and derived criteria weights	
7-7.	Pairwise comparison matrix with respect to programmatic risk and derived criteria weights	
7 - 8.	Pairwise comparison matrix with respect to <i>mission risk</i> and derived criteria weights	
7-9 .	Second-level criteria cumulative weights	. 82
7-10.	Trade study rankings (total possible score of 1.0)	. 01
7-11.	Sensitivity of rankings to DDT&E cost.	, 00
7-12.	Someitivity of rankings to recurring cost	00
7-12.	Sensitivity of rankings to DDT&E schedule.	07
7-13.	Sensitivity of rankings to operational schedule	90
7-15.	Sensitivity of rankings to performance.	90
7-16	Sensitivity of rankings to program risk	91
7-17	the second s	91

ACRONYMS AND ABBREVIATIONS

AHP	analytic hierarchy process
C/D	development and manufacturing phase
CAD	computer-aided design
cg	center of gravity
CH4	methane, a fuel
CIS	Commonwealth of Independent States
ClF ₅	chlorine pentafluoride, an oxidizer
DDT&E	design, development, test, and evaluation
ΔV	Delta-V, the vehicle velocity change produced from a propulsive maneuver
EMA	electro-mechanical actuator
EP	Propulsion and Power Division
ET	Systems Engineering Division
ExPO	Exploration Program Office
FITH	fire-in-the-hole
FLO	first lunar outpost
FLOX	fluorinated oxygen, an oxidizer
ft	feet
GSE	ground support equipment
HLLV	heavy-lift launch vehicle
HR	hardware readiness
IME	integrated modular engine
Isp	specific impulse
ISRV	in situ resource utilization
JSC	Johnson Space Center
kg	kilogram(s)
KSC	Kennedy Space Center
lbf	pounds force
lbm	pounds mass
LeRC	Lewis Research Center
LH ₂	liquid hydrogen, a fuel
LO2	liquid oxygen, an oxidizer
LOI	lunar orbit insertion
LOI	launch operability index
m	meter(s)
M20	80% N ₂ H ₄ /20% MMH
MEOP	maximum expected operating pressure
MLI	multi-layer insulation

	monomethyl hydrazine, a fuel
MMH	
MS	mission success
mt	metric ton(s)
N2H4	hydrazine, a fuel
N2O4	nitrogen tetroxide, an oxidizer
NLS	national launch system
OF ₂	oxygen difluoride, an oxidizer
psi	pounds per square inch
RCS	reaction control system
SDI	Strategic Defense Initiative
ST	space transportation
ST Seg.	space transportation segment team
TCA	thrust chamber assemblies
TEI	trans-Earth injection
TLI	trans-lunar injection
TRD	technology readiness difficulty
TRL	technology readiness level
VAB	vertical assembly building

SECTION 1.0


INTRODUCTION AND PURPOSE OF TRADE STUDY

The primary purpose of this trade study was to develop and evaluate main propulsion system design alternatives to the first lunar outpost (FLO) lander and return stage reference concepts. The FLO mission scenario is shown conceptually in figure 1-1. The basic mission is to send a crew to the Moon to explore and to perform lunar experiments that will pave the way for permanent habitation of the Moon. The mission begins with the landing of a habitat module on the Moon and is followed by the landing of crew.

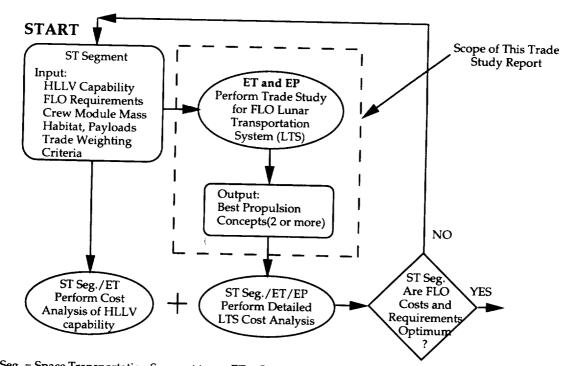
This trade study fits in with other trade studies that examined (1) alternate mission modes, such as lunar orbit rendezvous and direct, (2) alternate methods of habitat placement on the lunar surface, and (3) heavy-lift launch vehicle size.

The reference FLO vehicle, which emphasizes the use of existing technology and hardware, consists of a cryogenic, pump-fed lander stage driven by four modified Pratt & Whitney RL10 engines and a hypergolic, pressure-fed return stage propelled by three modified AJ10-118 engines. The 13 alternative vehicle configurations were developed to explore the impacts of various combinations of return-stage propellants, feed systems, staging options, and advanced engines on the cost, schedule, performance, and risk associated with the FLO transportation system.

The propulsion system schematics and design data from this study are also applicable to a wide range of other aerospace vehicle design projects. The analytical methods and information presented in the study provide the means to assess the relative merits of other propellant combinations and feed systems. Cost, schedule, and risk are evaluated by using criteria such as system supportability, operability, complexity, reliability, and hardware readiness level.

MISSION PROFILE (piloted)

Figure 1-1. FLO mission profile.


This page intentionally left blank.

SECTION 2.0

OVERVIEW OF PROPULSION SYSTEM TRADE STUDY

This trade study was initiated at NASA/Johnson Space Center (JSC) in May of 1992 to develop and evaluate main propulsion system alternatives to the reference, two-stage First Lunar Outpost transportation system concept. The FLO Propulsion System Trade Study team was chartered to perform the following tasks:

- Examine the reference FLO two-stage propulsion system in more detail.
- Examine broad propulsion system staging and propellant options for FLO to determine the most promising propulsion system concepts.
- Perform vehicle propulsion system level trades on FLO reference design and promising alternative propulsion system concepts, including their effect on heavy-lift launch vehicle (HLLV) costs (fig. 2-1).
- Recommend limited number of propulsion system concepts for future in-depth analysis.
- Recommend areas of interest requiring future technology development.

ST Seg. = Space Transportation Segment team ET = Systems Engineering EP = Propulsion and Power

Figure 2-1. Iterative FLO trade process to include HLLV costs.

During the trade study effort, two workshops were held with industry and other NASA organizations and centers. The workshops were used to facilitate the flow of information and design concepts between study team members and all interested parties. Results from these workshops, which influenced trade study efforts and results, are documented throughout this report.

2.1 Heavy-lift Launch Vehicle Cost Impact

The cost of the heavy-lift launch vehicle (HLLV) can be the major cost driver in human lunar and planetary missions. For the FLO mission, as currently defined, the HLLV costs were not significantly affected by lunar vehicle mass over the range of propulsion systems studied. A large HLLV capability was also viewed as necessary for future Mars missions. Following is an explanation of the level at which HLLV costs were considered.

An overall mission and launch vehicle trade was not within the scope of this trade study, as shown in figure 2-1. At the space transportation (ST) segment level, figure 2-1 shows how the launch vehicle costs could be iterated to achieve the optimum mission. The ST segment defines the FLO requirements and some target HLLV capability. The ST segment also defines the relative importance of cost, schedule, and risks. Iterations that involve changes to launch vehicle performance/capability, mission requirements, or trade study weighting criteria should be made at this point to achieve the optimum program.

At the lower level, the Systems Engineering Division (ET) and the Propulsion and Power Division (EP) performed trade studies based on ST segment input. At the second workshop with industry, the Exploration Program Office (ExPO) at JSC presented design, development, test, and evaluation (DDT & E) cost and total vehicle launch cost sensitivity calculations as a function of post trans-lunar injection (TLI) mass for both a National launch system (NLS)-derived HLLV and a Saturn V-derived HLLV. Graphs showing the relative DDT & E cost sensitivity to post TLI mass for both HLLV concepts are shown in figures 2-2 and 2-3. These figures show that the HLLV costs varies from 2 to 3% over the range 76 to 96 metric ton (mt) of payload mass, which is in the noise level.

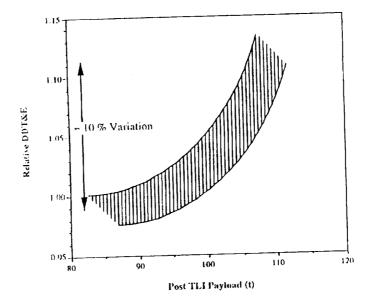


Figure 2-2. NLS derived HLLV cost versus TLI mass.

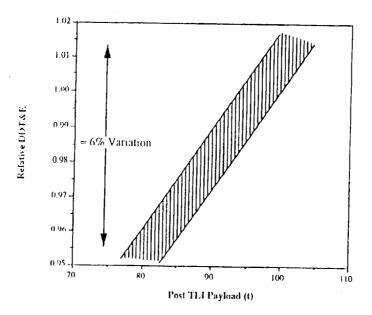


Figure 2-3. Saturn V derived HLLV cost versus TLI mass.

This page intentionally left blank.

SECTION 3.0

FLO DESIGN REQUIREMENTS

The goal of the FLO mission, as currently proposed, is to develop a space transportation system capable of delivering a habitat and a crew of four astronauts to the lunar surface for a 45-day mission (including 3 days contingency). The habitat and crew would be launched on two separate vehicles. Each vehicle would use as much common hardware as possible.

Following are the requirements, goals, and constraints, which were utilized in the trade study:

- Direct vehicle landing from lunar orbit with no lunar orbit rendezvous for crew return options.
- Mission abort capability to lunar orbit or Earth orbit at all times.
- As a minimum, zero fault tolerant lander propulsion, single fault tolerant return propulsion.
- Maximum hardware and design commonality between crew and cargo vehicles.
- Lunar surface crew duration of 45 days (3 days included for contingency)
- Crew vehicle design to include Apollo-type crew module with reaction control system (RCS) (7426 kg) with 5000 kg of cargo payload to lunar surface and 200 kg cargo payload returned from lunar surface to the Earth.
- Cargo vehicle design to include 32 mt payload (including habitat) to lunar surface.
- Post-trans-lunar injection (TLI) vehicle mass not to exceed 96 mt (TLI-stage adapter not included).
- Both crew and cargo vehicle designs must fit within launch vehicle shroud dimensions of approximately 10 m diameter and within vertical assembly building (VAB) height limitations of HLLV
- All hardware must meet development and manufacturing phase (C/D) start in 1995/96 timeframe and must support launch by end of 1999.
- Vehicle designs must meet FLO Delta-V requirements outlined in table 3-I.

LANDER VEHIC	CLE	ASCENT VEHICLE				
Propulsive Maneuver	Delta-V Req't (m/s)	Propulsive Maneuver	Delta-V Req't (m/s)			
Midcourse Correction Lunar Orbit Insertion (LOI) Deorbit, Descent, and Site Redesignation	30 852 1898	Lunar Ascent Trans Earth Injection (TEI) Midcourse Correction	1826 945 30			
Total	2780		2801			

Table 3-I. FLO Delta-V Requirements

This page intentionally left blank.

.

SECTION 4.0 DOWNSELECTION OF TRADE OPTIONS

One of the tasks chartered to the FLO Propulsion System Trade Study was to examine broad propulsion system staging and propellant options for FLO to determine the most promising propulsion system concepts for further analysis. The range of propulsion system trade options considered in the trade study are shown in table 4.1. These options were required to have past test or development experience and greater performance than N₂O₄ and MMH.

Stage Configuration	Propellant Feed	Oxidizer	Fuel	General Systems
Single Stage	Pressure Fed	Liquid Oxygen (LO ₂)	Liquid Hydrogen (LH2)	Metallized/Gel
Stage & 1/2	Pump Fed	Nitrogen Tetroxide (N ₂ O ₄)	Monomethyl Hydrazine (MMH)	Solid
Two Stage	• Expander	Fluorinated Oxygen (FLOX)	Methane (CH ₄)	Hybrid
	Gas Generator	Oxygen Difluoride (OF ₂)	Hydrazine (N ₂ H ₄)	Nuclear
	Staged Concepts	Chlorine Pentafluoride (ClF5)	M20 (80% N ₂ H ₄ / 20% MMH)	• Electric
			RP1	• Thermal

Table 4-I. Propulsion System Trade Options

4.1 Elimination of Metallized Propellants

In addition to normal liquid Earth-storable and cryogenic propellants, the study also considered metallized/gelled propellants. Even though studies have been performed on metallizing cryogenic propellants, only metallized gelled Earth-storable propellants were considered, because the density and Isp increases for metallizing hydrogen were not significant enough to overcome the anticipated development and design complexities. MMH and N2O4 were used as the representative metallized/ gelled propellant combination. It was originally believed that the increase in specific density of the metallized/gelled MMH/N2O4 would decrease the propellant volume and structural mass compared to the baseline liquid MMH/N2O4 ascent vehicle. The propellant volume and mass, however, actually increases for the metallized/gelled Earth-storable option. Although the metallized fuel density is higher, the shift in mixture ratio decreases the oxidizer requirements, the density of which is greater than both the liquid and gelled fuel, causing the overall increase in volume and mass. This factor, combined with the low technology readiness level, led to the elimination of this propellant option from the trade study.

PRECEDENCE PROJE PLANK MAY FRANKD

4.2 Elimination of Fluorinated Oxygen and Oxygen Difluoride Oxidizers

Fluorinated propellants, such as fluorinated oxygen (FLOX) and oxygen difluoride (OF₂) received attention in the 60s and 70s because of the high performance potential of these oxidizers with a wide variety of fuels. During this time, Pratt & Whitney performed tests on a version of the RL10 engine using FLOX and methane propellants. A consensus was reached at the first workshop meeting with industry that these oxidizers should not be pursued. The consensus was based on material compatibility safety concerns with these oxidizers and on the technology readiness of these oxidizers, which would not easily support the FLO transportation system development schedule.

Like FLOX and OF₂, chlorine pentafluoride (ClF₅) first received attention in the 60s and 70s. Some may argue that this oxidizer should also be eliminated from the trade study due to the same consensus reached for FLOX and OF₂. However, after discussions with industry and government personnel who have used ClF₅ in propulsion system tests, the material compatibility, safety, and technology readiness of ClF₅ can be more easily addressed. The U.S. Defense Department has successfully tested ClF₅ for more than 20 years, including recent development tests for an antiballistic missile defense interceptor using ClF₅ and hydrazine (N₂H₄) propellants. The Commonwealth of Independent States (CIS), formerly the Soviet Union, is believed to have produced large quantities of this oxidizer and to have a test facility compatible with ClF₅ propulsion systems.

4.3 Elimination of All but LO₂/LH₂ and ClF₅/N₂H₄ From the Lander Stage Main Propulsion System

In addition to the reference FLO pump-fed liquid oxygen (LO)₂/liquid hydrogen(LH)₂ lander main propulsion system, the trade study initially considered a wide variety of other propellant and feed system options. Performance models using the propellant combinations of LO₂/methane (CH₄), LO₂/N₂H₄, and MMH/N₂O₄, for the lander stage main propulsion system, resulted in vehicle TLI masses at or above the 96 mt vehicle mass limit for both pressure- and pump-fed propulsion system designs. These propellant combinations were thought to have some advantages over the reference FLO lander stage main propulsion system. The propellant combination of MMH/N₂O₄ was flown successfully on all the Apollo missions. Also, the problems of cryogenic storage for CH₄ and LO₂ are fewer than those associated with LH₂. Because of their performance limitations, however, these lander stage propellant combinations were eliminated from the trade study. It should be noted that if the FLO vehicle payload requirements are reduced or changed significantly, these propellant options should be reinvestigated. As was shown in the Apollo program, a pressure-fed storable propulsion system can be a viable lander propulsion system candidate.

A pressure-fed LO₂/LH₂ propulsion system was also considered. It was thought that pressure feeding these propellants would reduce complexity of the propulsion system and increase its reliability while maintaining the high-performance characteristics of an LO₂/LH₂ system, however the pressure-fed LO₂/LH₂ lander propulsion system option was eliminated for being too massive. The option was later added, however, as an alternative ascent propulsion system option to allow technology improvements and alternative pressurization systems to be addressed.

The only non-LO₂/LH₂ lander propulsion system option that was found to meet the FLO TLI vehicle mass requirements was the propellant combination of ClF₅/N₂H₄. Since the ClF₅/N₂H₄ pressure-fed propulsion system option was found to be more than satisfactory, a pump-fed option was not considered. It was believed that the increase in propulsion system complexity and decrease in reliability, compared to a pressure-fed system, would outweigh the performance gains achieved from a pump-fed system. Also, even though a stage-and-a-half design is feasible with ClF₅/N₂H₄, the high density/small volume of the propellants does not allow for any mass savings compared to a two-stage design.

4.4 Elimination of Solid and Hybrid Propulsion Systems

Even though solid propellants can provide good density impulse (density* specific impulse (Isp)), solid propellants were eliminated in the FLO propulsion system trade study. Numerous reasons were cited for its elimination, such as inadequate performance and lack of engine restart capability.

Hybrid propulsion systems that use solid fuels and liquid oxidizers overcome the lack of engine restart capability of solid motors while at the same time providing greater performance. However, preliminary analysis of a LO2/Polybutadiene (HTPB) hybrid propulsion system on the FLO crewed return vehicle indicated that it would exceed the post-TLI mass limit of 96.5 mt, as well as take up much more volume than the baseline FLO return vehicle. Since the overall performance of the hybrid design did not exceed that of the baseline FLO return vehicle design, it was eliminated from the trade study. Because hybrid propulsion systems can be extremely simple and safe, they should be reconsidered in future trade studies as the hardware readiness level of this propulsion system concept matures.

4.5 Elimination of Nuclear Propulsion Systems

Currently, two main classes of nuclear propulsion systems are receiving close attention: solid core nuclear thermal propulsion systems and nuclear electric propulsion systems. The first, solid core nuclear thermal propulsion systems, produce high performance (800 to 1000 sec of Isp) and thrust by heating hydrogen in a solid fueled reactor and expelling it through a nozzle. This type of system was tested extensively in the 60s and 70s in the U.S. Rover/Nuclear Engine for Rocket Vehicle Applications programs. Even though this kind of propulsion system can provide excellent performance, it was eliminated from the trade study since the radiation shielding requirements for the crew and the engine thrust-to-weight ratio would be prohibitive for a crew lander of this size class. The second class of systems, nuclear electric propulsion systems, can provide extremely high performance (1000s of sec of Isp) at relatively low thrust. The system works by powering small electro/magnetic thrusters with a small closed-loop nuclear power reactor. Even if a power source besides a nuclear reactor were used to support the electric thrusters in a propulsion system, the low thrust would require long transit and engine burn times. For this reason, and the low technology readiness of electric thrusters, nuclear electric propulsion was also eliminated from the trade study space.

4.6 Inclusion of Advanced Engines

All of the trade alternatives are selected to meet the key design criteria described in section 3.0, and none survived the downselection that did not meet the minimum requirements. Three of the thirteen trade alternatives to the baseline, however, pose considerable risk of not being able to meet the 1999 launch goal without an "Apollo type," well-funded development program. These three trades were added as a result of suggestions during the first and second FLO workshops with industry and the desire to identify the effects that advanced propulsion systems would have on the FLO propulsion system selections. The three alternative trades added to the study were (1) a two-stage cryogenic vehicle with integrated modular engines (IME), (2) a stage-and-a-half cryogenic vehicle with IME and (3) a two-stage vehicle with pressure-fed ClF5/N2H4 on both stages. These three are included in the trade study with considerable risk because funding is not expected to achieve the levels required to meet a 1999 launch.

The IME design philosophy uses redundant pumps, pressurizing multiple chambers with a highpressure manifold. The design philosophy increases performance, reduces complexity, and takes advantage of state-of-the-art manufacturing techniques. The IME design, however, is currently a paper engine with only limited breadboard testing experience, and concerns exist that could preclude its use. These concerns include startup transients, instability harmonics, redundant pump operations, low head pressure liquid pump development, and balanced high-pressure manifolds.

The CIF5/N2H4 propellant combination for FLO is believed to be more predictable than the IME design. It requires scaling from the current 1000 pounds force (lbf) thrust class to a 30,000 lbf thrust class. Development concerns primarily include scaling the engine to the higher thrust class, increasing the operating life of current designs from 10s to 100s of sec, providing a 5:1 throttling capability for the lander engines, and understanding Environmental Protection Agency (EPA) requirements for high thrust/long burn test facilities.

For alternative vehicle trade concepts incorporating advanced nonthrottling engines using ClF5/N2H4, LO2/N2H4 or LO2/CH4 propellants on the return stage only, the development risk is more acceptable than the three vehicle trade concepts described above. The acceptable risk attributed to these concepts is contingent upon a dedicated early development program and is minimized by requiring only the development of a non-throttling return-stage engine. These alternative concepts are less expensive than trying to develop two advanced engine stages where the lander stage requires throttling. Additionally, it is possible that if any design or funding difficulties are encountered during the advanced development phase, the baseline return stage possibly could be substituted with acceptable hardware impact and, perhaps, tolerable mission impact. In contrast, if early advanced development for the two-stage ClF5/N2H4 vehicle concept is not successful, replacing the propellant combination on both the lander and return stages would require significant hardware and mission design changes to meet a 1999 launch.

4.7 Downselection Results

At the conclusion of the downselection process, 13 promising alternative propulsion systems were identified for further analysis. The 13 alternative propulsion systems identified and the reference FLO concept are the nonshaded options shown in table 4-II. The Post TLI mass and technology numbers displayed in table 4-II were initial estimates for these trade options and may not conform with the

data summary numbers shown in table 7-I of section 7. Even though the numbers changed during the trade study, the post-TLI mass numbers generally increased as the trade progressed and the analysis became more detailed. Therefore, trade options eliminated at the conclusion of the downselection process due to exceeding the post-TLI mass limit were not reevaluated.

Prop Feed System	SINGLE LO2/LH2 PUMP	SINGLE LO2/CH4 PUMP	SINGLE LO ₂ /N ₂ H ₄	SINGLE LO2/RP1	SINGLE FLOX/* *	SINGLE OF2/* *	
POST TLI MASS TECHNOLOGY ENG FEED TANK	90 7 6 5	103 5 5 5 5	104 5 5	105 5 5	333	3	
	5		5	5	3	3	8
Stage Confide. Prop Feed System	Stage 1/2 LO2/LH2 Pump	Stage 1/2 LO2/CH4	Stage 1/2 LO2/N2H4	Stage 1/2 LO ₂ /RP1	Stage 1/2 FLOX/*	Stage 1/2 OF ₂ /*	
POST TLI MASS TECHNOLOGY ASCENT FEED ASCENT TANK LANDER ENG LANDER FEED LANDER TANK	78	96 5 5 6 5 5	97 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	98 5 5 5 5	3333	3333333	
LANDER TAINE	5	9			3	3	
Stage Confide. Ascent Prop Ascent Feed Lander Prop Lander Feed	TWO LO2/LH2 Pump LO2/LH2 Pump	TWO LO2/CH4 Pump LO2/LH2 Pump	TWO LO2/CH4 Pressure LO2/LH2 Pump	TWO LO2/N2H4 Pressure LO2/LH2 Pump	TWO LO2/RPI Pressure LO2/LH2 Pump	TWO NTO/MMH Pressure LO ₂ /LH ₂ Pump	
POST TLI MASS TECHNOLOGY	78	87	90	90	9 0	93	
ASCENT ENG ASCENT FEED ASCENT TANK LANDER ENG LANDER FEED LANDER TANK	7 6 5 7 7 7 7	5 5 7 7 7	5 5 7 7 7	5 5 7 7 7	5 5 7 7 7	9 7 7 7 7 7	
						i	L
Stage Confide. Ascent Prop Ascent Feed Lander Prop Lander Feed	TWO NTO/MMH Pump LO2/LH2 Pump	TWO CIF5/N2H4 Pressure LO2/LH2 Pump	TWO LO2/LH2 Pressure LO2/LH2 PUMP	TWO ClF5/N2H4 Pressure ClF5/N2H4 Pressure	TWO * * Pressure	TWO OF2/* OF2	TWO FLOX/* FLOX
POST TLI MASS	89	87	98	93	>96		
TECHNOLOGY ASCENT ENG ASCENT FEED ASCENT TANK LANDER ENG LANDER FEED LANDER TANK	5 7 7 7 7 7 7	5 5 5 7 7 7 7	5 5 5	555555555555555555555555555555555555555	555555	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3033393

Table 4-II. FLO Propulsion System Trade Space

*Indicates all options considered.

This page intentionally left blank.

SECTION 5.0

PROPULSION SYSTEM DESIGN

The third task chartered to the FLO Propulsion System Trade Study team was to perform vehicle propulsion system level trades on the FLO reference design and on all promising propulsion system concepts. Results from the propulsion system downselection process described in section 4 and information exchanged at the two workshops led to the identification of 13 promising alternative propulsion system concepts to the FLO reference design. Following are the 14 propulsion system options studied.

- 1. Baseline: Pressure-Fed NTO/MMH Return, Cryo Lander
- 2. Pressure-Fed LO2/N2H4 Return, Cryo Lander
- 3. Pressure-Fed ClF5/N2H4 Return, Cryo Lander
- 4. Pressure-Fed Optimized NTO/M20 Return, Cryo Lander
- 5. Pressure-Fed LO2/CH4 Return, Cryo Lander
- 6. Pump-Fed NTO/MMH Return, Cryo Lander
- Pump-Fed LO₂/CH₄ Return, Cryo Lander
- 8. Pump-Fed LO₂/LH₂ Return, Cryo Lander
- 9. Single-Stage LO₂/LH₂
- 10. Stage-1/2 LO₂/LH₂
- 11. ClF5/N2H4 in Both Stages
- 12. Two-Stage, Optimized IME LO2/LH2 for Both Stages
- 13. Pressure-Fed LO₂/LH₂ Return Stage, Baseline Lander Stage
- 14. Optimized IME Stage-1/2

The design methodology consisted of (1) creating schematics, (2) creating performance models, (3) determining the operational and parts complexity counts, and (4) assessing hardware readiness. Much of the information came from industry or other NASA centers. A summary of the design parameters is shown in table 5-1

A complete schematic, which meets fault-tolerance requirements, is the key to conducting a realistic trade study. Each schematic shows all components, from check valves to regulators to engine components, using the key shown in figure 5-1.

Engines are not treated as single components but, rather, as an assembly of components. For example, IMEs used this to advantage by integrating the engine components and feed system to reduce overall system complexity. Primary structure, tanks, and engine chambers were exempted from application of redundancy requirements, since structural failure is a low probability. The IME and single-engine-chamber designs take advantage of this requirement by treating the engine chamber as a pressure vessel or structure.

												_		
		TR-2	TR-3	TR-4	TR-5	TR-6	<u>TR-7</u>	<u>TR-8</u>	<u>TR-9</u>	<u>TR-10</u>	<u>TR-11</u>	<u>TR-12</u>	<u>TR-13</u>	<u>TR-14</u>
	<u>TR-1</u>	112	116-5											
RETURN STAGE					250	344	358	440	440	440	353	480	440	480
ISP (lb-sec)	320	348	353	331	350		3.5:1	6.0:1	6.0:1	6.0:1	2.5:1	6.0:1	6.0:1	6.0:1
MIXTURE RATIO	1.9:1	0.77:1	2.5:1	1.33:1	2.77:1	2.02:1	18900	15000	20800	16500	30000	10000	30000	15000
ENG. THRUST (lbf)	9750	30000	30000	30000	30000	15000		4	4	4	1	3	1	4
NO. ENGINES	3	1	1	1	1	4	4		1	1	2	2	3	1
NUM. OX TANKS	2	2	2	2	2	2	2			1	2	2	3	1
NUM. FU TANKS	2	2	2	2	2	2	2	4	101.4	87.4	91.2	70.9	95.3	67.9
VEH. MASS (mt)	96.5	94.3	87.2	94.2	100.9	92.6	92.4	93.5		43	10	35	44	32
RET. PROP. VOL.	16	16	10	15	24	14	20	45	68	43	10	00		
(m^3)							- 150	170	218	169	45	128	180	121
TOT. PROP. VOL.	155	151	135	150	168	147	152	179	210	102	-10			
(m^3)														
											<u> </u>			
LANDER STAGE	1					110	110	44 0	440	440	353	480	440	480
ISP (lb-sec)	440	440	440	440	440	440	440		6.0:1	6.0:1	2.5:1	6.0:1	6.0:1	6.0:1
MIXTURE RATIO	6.0:1	6.0:1	6.0:1	6.0:1	6.0:1	6.0:1	6.0:1	6.0:1		16500	30000	15000	16500	15000
ENG. THRUST (lbf)	16,500	16,500	16,500	16,500	16,500	16,500	16,500		20800		2	4	4	4
NO. ENGINES	4	4	4	4	4	4	4	4	4	4	5.0:1	5.0:1	5.0:1	5.0:1
THROTTLE RANGE	5.0:1	5.0:1	5.0:1	5.0:1	5.0:1	5.0:1	5.0:1	5.0:1	6.0:1	5.0:1		2	1	2
	2	1	1	1	1	2	2	2	2	2	3	_		6
NUM. OX TANKS		4	4	4	4	4	4	4	6	6	3	4	4	<u> </u>
NUM. FU. TANKS	6	<u> </u>	<u> </u>	<u> </u>										

Table 5-1. A summary of design parameters

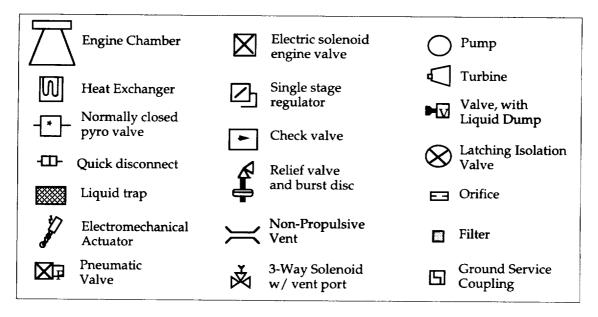


Figure 5-1. Component key.

A 4-engine configuration was selected for pump-fed engines on the return stage to meet redundancy requirements. If one engine were to show indications of impeding failure, the opposing engine would be shut down in parallel. This option was chosen over gimbaling the remaining engines should an engine fail. Preliminary analysis using the LO2/CH4 pump-fed ascent vehicle from Trade #7 showed that gimbaling the remaining three engines though the vehicle's center of gravity was not possible during all return flight phases if the engines conform to the baseline FLO ±8 gimbal angle limit. Lacking gimbal authority for all mission phases could have a significant impact on the vehicle's ACS size and requirements. Also, for pump-fed engines with no throttling capability, the roll angle induced by the failed engine could be excessive before gimbaling the remaining engines can compensate for the thrust imbalance. A 2-engine L02/CH4 pump-fed ascent vehicle was also analyzed to determine the impact of a single engine failure. For this case, gimbaling through the vehicle's center of gravity was physically impossible with the remaining engine. Since the 4-engine confirmation was not sufficient to cover an engine-out failure during all flight phases, a 3-engine configuration as not analyzed. Should a pump-fed ascent stage option be chosen fro future FLO vehicle consideration. a more detailed investigation should b e performed to determine the optimum number of main engine, ACS size, and the desired engine failure recovery method.

A description of the performance models used in the FLO vehicle trade study is presented in section 5.1, and the code for these models can be found in appendix B. A brief description of the FLO reference design and the 13 alternative concepts are presented in section 5.2; a complete, detailed description of each propulsion system examined can be found in appendix A. Configuration layouts for the FLO reference design and the 13 alternative concepts are presented in section 5.3.

5.1 Performance Models

A number of computer models were created during the FLO Propulsion System Trade Study to help establish FLO vehicle performance, mass, and size characteristics for each trade option considered. Models created for the trade study were the *crew* FLO Lander/Return Vehicle Sizing Model, the FLO

Habitat/Cargo Vehicle Sizing Model, and the Cryogenic Propellant Vent Timeline and Duration Models. Variations of the *crew* FLO Lander/Return Vehicle Sizing Model were generated for the single stage, stage-and-a-half, and two-stage vehicle options. Computer codes for the models can be found in appendix B.

The crew FLO Lander/Return Vehicle Sizing Model calculated the propellant and vehicle masses and volumes required for both the lander and return portions of the FLO mission. All of the variations of the model generated during the trade study utilized the same universal inputs and modeling assumptions except for engine mass when not applicable. Universal inputs are shown in table 5-IV.

Modeling assumptions used in the crew FLO Lander/Return Vehicle Sizing Model program are as follows:

- 1. Pressurization systems available in the model include helium systems with and without heat exchangers, autogenous hydrogen and oxygen pressurization, and cryogenically stored helium. Pressurant system mass is based on pressurant tank mass and total helium mass required. Autogenous pressurization system masses are included in overall propellant tank and mass calculations. Helium mass calculations are based on propellant volume, pressure, and temperature, as well as helium storage tank pressure and assuming isentropic expulsion. Since the time between stage propulsive maneuvers would allow for ullage/propellant temperature equalization, the ullage temperature of the propellant at 15 pounds per square inch (psi) or 300°R, whichever is lowest. This also accommodates the desire to start the engines with subcooled propellant.
- 2. Using the rocket equation, propellant consumed during propulsive maneuvers is calculated

$$e^{\left(\frac{\Delta V}{lsp*g}\right)} = \frac{mass_{initial}}{mass_{final}}$$

 Propellant boiloff calculations utilize information on heat rates and MLI configurations provided by the NASA Lewis Research Center. Boiloff is calculated based on a 4-day trajectory, table 5-II, and a 45-day lunar stay, table 5-III. Boiloff calculations are based on the following:

Propellant	Heat Flux Rate (Btu/hr*ft^2)	M	Foam	
		No. Layers	lbm/ft^2	lbm/ft^2
LO2	0.2	20	0.493	0.273
LH2	0.2	20	0.493	0.0

Гable 5-П	4-Day	Outbound	Trip
-----------	-------	----------	------

Table 5-III. 45-Day Lunar Stay

Propellant	Heat Flux Rate (Btu/hr*ft^2)			MLI	
	Lunar Day	Lunar Night	Ave.	No. Layers	lbm/ft^2
LO2	0.076	0.0042	0.0521	113	0.54
LH2	0.11	0.013	0.0777	88	0.48
LCH4	0.11	0.0	0.073	76	0.36

- 4. The total propellant residual and reserve mass is 3% of the propellant required to meet the vehicle Delta V specifications. The residual mass is 1%, and the reserve mass is 2%.
- 5. No cryogenic propellant dumping for pre-abort engine conditioning is assumed in propellant requirement calculations.
- 6. Stage structure requirement is based on a historical curve fit provided by JSC/ET, which calculates structural mass as a function of cylindrical surface area based on stage volume. The historical data includes hypergolic landers and cryogenic propellant launch vehicle stages. The equation used is

 $Mass_{structure} = 8.89*(Area_{surface})^{1.1506}$

Note: mass is in kilograms (kg) and area is in m^2 .

- 7. The landing gear mass is 3% of the total landed mass.
- 8. All propellant tanks use a safety factor of 1.5 from the designed maximum expected operating pressure (MEOP) to burst. The material of each tank is selected on a case-by-case basis and is based on propellant compatibility and lowest mass where compatibility provides a choice. Minimum gage thickness is used unless the tank is an overwrap tank where less than minimum thickness is available. For overwrap tanks, liners and wrap mass are calculated separately. Mass for tank mounts and bosses is assumed to be 20% of the tank shell mass. A 5% total volume for ullage is assumed in all propellant tank volume calculations.
- 9. Tank secondary structure and support mass is assumed to be 30% of the total tank mass with multi-layer insulation (MLI) (if required).
- 10. Growth factor for the vehicle dry mass is 20%.
- 11. Propulsive velocity (ΔV) required for propulsive maneuvers is constant for all trades. Even though true ΔV is a function of the vehicle thrust-to-weight ratio, there is a region where ΔV varies only slightly with respect to vehicle thrust-to-weight. All trades were required to be within this region. Delta Vs used are shown in table 3.I, FLO Delta V Requirements.

- 12. The required engine throttling ratio is calculated by dividing the descent stage total thrust by 80% of the vehicle landed mass times lunar gravity.
- 13. No degradation in Isp due to engine throttling is assumed. Propellant requirements are based on a constant Isp throughout the mission.

Descent Propulsion	Mass (kg)	Ascent Propulsion	Mass (kg)
System	(16)	System	
Prop. Feed System	294	Prop. Feed System	153
RCS	270	RCS	0
Protection	425	Protection	169
Power	154	Power	1,278
Non-Prop Fluids	1,050	Non-Prop Fluids	202
Avionics	105	Avionics	131
Environmental	0	Environmental	238
Engines (4 RL10)	873	Return Cargo	200
		Deliverable Cargo	5,000
For cargo Mission:		Crew Module	7,426
Habitat and Payload	32,000		

Table 5-IV. Universal Trade Inputs For Sizing Model

The FLO Habitat/Cargo Vehicle Sizing Model was created to determine which of the FLO vehicles, the crew vehicle or the cargo/habitat vehicle, had the greatest TLI mass. Also, the model calculated the TLI mass difference for the two vehicles. The FLO Habitat/Cargo Vehicle Sizing Model assumes that the descent stage for the Habitat/Cargo vehicle is the same as that calculated for the crew descent vehicle. The model is very simple and uses masses calculated in the crew FLO Descent/Return Vehicle Sizing Model. Masses used in the model that were calculated in the crew FLO vehicle sizing model are primary structural mass, landing gear mass, total propellant tank mass (including MLI and secondary structure), and pressurant system mass (including helium mass). The model also uses the descent propulsion system universal inputs shown in table 5-IV.

The FLO Habitat/Cargo Vehicle Sizing Model uses the rocket equation, with the inputs described above, to calculate the propellant required to deliver a 32-mt payload to the lunar surface, as well as the vehicle TLI mass. A propellant mass less than that specified for the crew vehicle suggests the stage propellant tanks are only partially filled. A propellant mass greater than that specified for the crew vehicle suggests that the habitat/cargo vehicle is the propellant mass driver of the two vehicles, and that the propellant tankage/vehicle structure needs to be resized to meet the propellant requirement of the cargo vehicle.

Two FORTRAN models were created during the trade study to help determine the number and duration of cryogenic tank venting operations required for the outbound trip and on the lunar surface. The first model, Cryogenic Propellant Vent Timeline, calculated the time between venting operations and the volume of ullage vented based on the heat leak into the tank. Since venting operations assumed venting from 50 psi down to 15 psi, an ullage mass difference could be calculated. Using the heat leak rate, the time required to vaporize a volume of liquid to produce the calculated mass difference can be determined. By tracking the ullage volume after each venting operations, the total number of vehicle venting operations can be discerned. The number of venting operations required for each trade option are included in the detailed vehicle descriptions in appendix A.

The second FORTRAN model, Cryogenic Propellant Vent Duration, was created to help determine the duration of each venting operation as a function of the venting system piping configuration. The amount of time each venting operation would require was of interest since the current FLO descent stage does not use a zero-g vent system. Therefore, a propulsive maneuver is required first to settle the liquid propellant and then to allow the gaseous ullage to vent. The duration of each venting operations during the coasts between the Earth and the Moon. The output of this model is currently not affecting the RCS propellant mass required but will be considered in more refined trade option definitions. The model output is being used to help determine whether a zero-g vent system should be baselined for all FLO cryogenic propulsion system options. Vent durations of between 4 and 8 sec are required for a 3 in. diameter, 2 ft-long vent pipe system.

5.2 Design Descriptions

5.2.1 Trade 1 System Description - N2O4/MMH Pressure-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage

This is the baseline propulsion system first conceptualized in the spring 1992 FLO study. The propulsion system was designed to utilize as much off-the-shelf hardware and as many flight-experienced systems as possible.

The return stage (fig. 5-2), employs three pressure-fed MMH/N_2O_4 Aerojet AJ10-118 engines. The feed system incorporates parallel redundant flow paths. There are no single-point mechanical failures in the propulsion system. Since the AJ10-118 engine is an ablative engine, no fuel purge system is required after engine shutdown.

There are two fuel and two oxidizer titanium tanks in the return-stage propulsion system design. The stage propellants are both Earth-storable, so no active venting is required during flight operations and lunar stay. Since three engines are used in the return-stage propulsion, the current vehicle configuration requires that part of the return engine nozzles protrude into the descent-stage structure. Concern for the possible negative effects from "fire in the hole" (FITH) has been identified as requiring future analysis and testing.

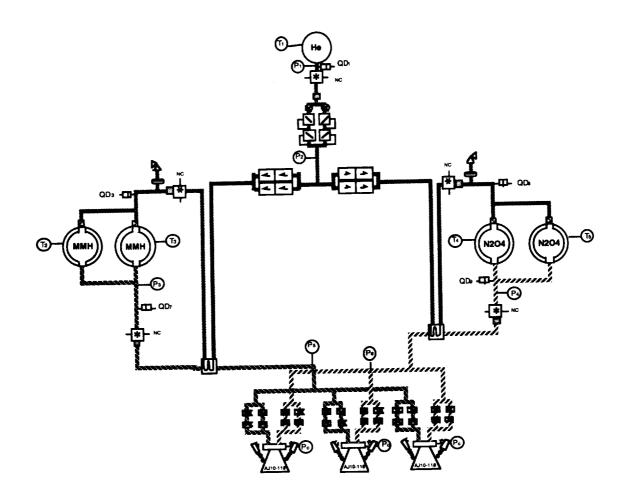


Figure 5-2. MMH/N2O4 return stage.

The descent stage (fig. 5-3) is a LH₂/LO₂ pump-fed system using RL10A-3-3A engines modified for 5:1 throttling. The throttling range of 5:1 was identified as a limit at which modifications to the engines were not as significant as those for throttling ranges greater than 5:1. Also, the 5:1 throttling range is adequate for the descent-stage hover requirements.

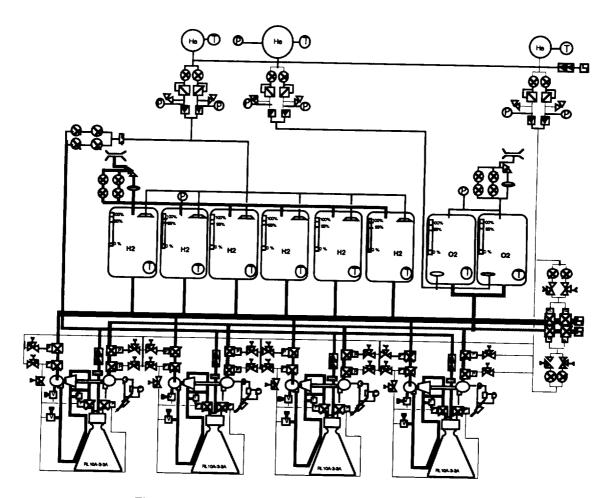


Figure 5-3. Lander stage, LH2/LO2 propulsion system.

5.2.2 Trade 2 System Description - LO₂/N₂H₄ Pressure-Fed Return Stage and LO₂/LH₂ Pump-Fed Lander Stage

The propulsion system in the return stage of this concept (fig. 5-4) uses a single pressure-fed engine combusting LO₂/N₂H₄ propellants. This propellant combination has several beneficial characteristics: (1) LO₂ and N₂H₄ are relatively easy to store on the lunar surface, (2) engine performance is higher than many other storable propellant combinations, (3) propellant density is relatively high, and (4) propellant experience is relatively high for each of the propellants.

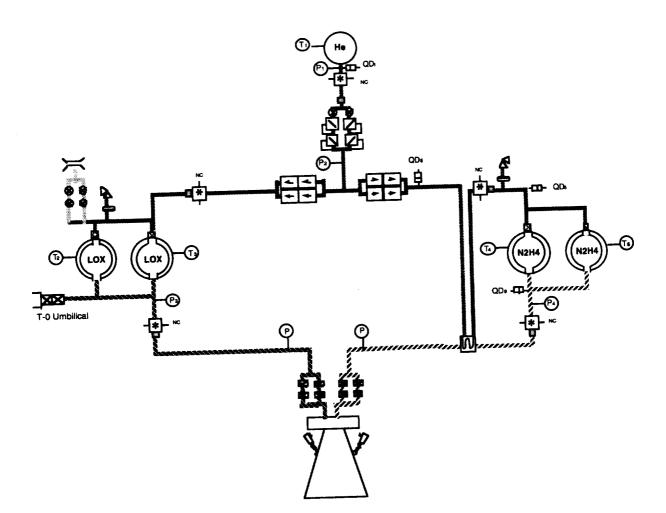


Figure 5-4. LO₂/N₂H₄ pressure-fed return stage.

The engine is sized from data provided by TRW for a LO₂/N₂H₄ engine. The engine chamber pressure is 125 psi, since quick-look trades indicate that higher chamber pressures would increase total stage weight due to the tank weight increase. The engine length is approximately 120 in., and the Isp is 348 sec. A return engine development program is required. It was believed that using a single return engine would provide an advantage over multiple engine configurations by allowing the engine to be recessed farther within the stage, thereby eliminating FITH concerns and reducing the component count of the propulsion system.

An active vent system is used in the return propulsion system design to maintain LO₂ tank pressures during transit and on the lunar surface. The LO₂ and the hydrazine tank are both graphite epoxy overwrapped aluminum-lined tanks. The nominal tank operating pressure for both propellants is 250 psi. The current return stage configuration uses two LO₂ tanks and two N₂H₄ tanks.

The lander stage (fig. 5-5) uses the same basic propulsion system as the baseline vehicle design, including engines and components. The exception is the lander-stage tanking configuration, which has been reconfigured to remove the hole in the middle, since the single return engine does not protrude significantly. Instead of the six LH₂ and two LO₂ tanks used in the baseline lander stage, this lander-stage option uses one large LO₂ tank surrounded by four LH₂ tanks.

This descent stage configuration of tanks has a significant advantage in that it allows cargo to be stored on the sides of the lander in areas where tanks do not occupy space, unlike the baseline design. This puts the cargo closer to the lunar surface for easier unloading.

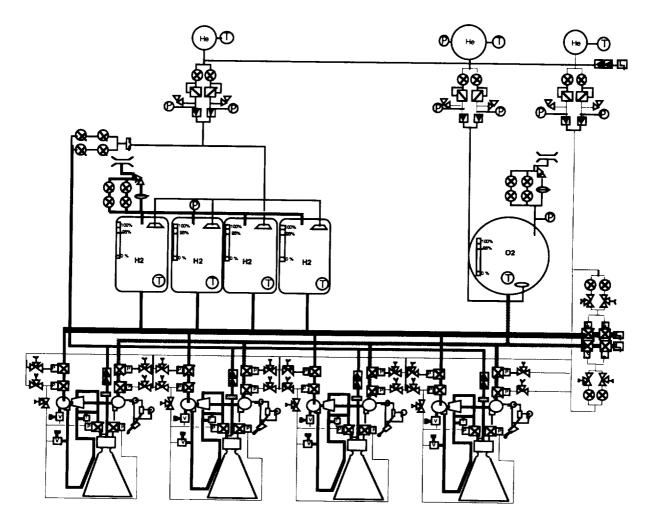


Figure 5-5. LO₂/LH₂ lander stage for single-engine return stage.

5.2.3 Trade 3 System Description - ClF5/N2H4 Pressure-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage.

The propulsion system for the return stage of this option (fig. 5-6) uses the hypergolic propellant combination of ClF5 and N₂H₄ in a single pressure-fed engine configuration. A single-engine concept was chosen for the same reasons outlined for the return stage in trade 2, section 5.2.2. This propellant combination was chosen because of its high packing efficiency and performance, combined with the hardware development base initiated through the U.S. Strategic Defense Initiative (SDI).



Figure 5-6. ClF5/N2H4 pressure-fed return stage.

The Isp of 353 sec is perhaps conservative, since the theoretical Isp is nearly 20 sec higher, but previous engines have been estimated in this performance range. The mixture ratio of 2.5 contributes to the high packing efficiency of this propellant combination, since CIF5 is extremely dense at 1793 kg/m³. The engine concept does not require a purge between burns, since the volume of the propellants is small between the engine valves and the vacuum of space, and sufficient time will elapse between firings to evacuate propellant residuals naturally. A return engine development program would be required to support this stage concept.

The redundant feed system incorporates conventional hardware on the N₂H₄ side, but there are no soft seals on the ClF5 side. Previous SDI experience has proved this to be an insignificant issue. SDI experience, however, has been limited to short life/low thrust propulsion system designs, and the inability to design with soft seals increases the difficulty associated with the ClF5 hardware readiness (HR) level. The CIS produces ClF5 in quantities that could support this program, and U.S. chemical companies have stated they will produce ClF5 only if the quantity per year justifies the production effort.

The return-stage propulsion system design has two fuel and two oxidizer tanks, both of which are constructed of graphite epoxy overwrapped aluminum. Aluminum is required, since titanium is not compatible with ClF5. The stage propellants are both Earth-storable, so no active venting is required during flight operations and lunar stay.

The lander stage is similar to the lander stage described in section 5.2.2, trade 2 and is shown in figure 5-5.

5.2.4 Trade 4 System Description - N2O4/M20 Pressure-Fed High Efficiency Single Engine Return Stage and LO2/LH2 Pump-Fed Lander Stage

A single new optimized N_2O_4/M_2O pressure-fed engine is used in this return propulsion system, in comparison to the reference FLO return stage concept, which uses three existing engines. A single-engine configuration, shown in figure 5-7, was chosen for the same reasons outlined in the previous single-engine return configuration options.

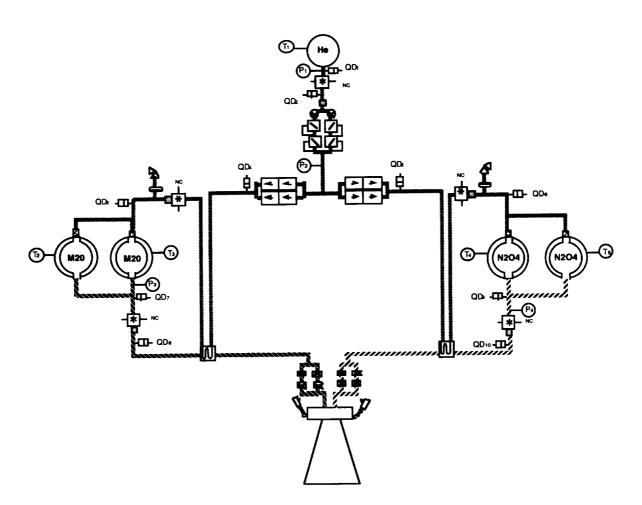


Figure 5-7. N2O4/M20 pressure-fed high-efficiency single-engine return stage.

Estimates show that a single N₂O₄/MMH engine operating at a chamber pressure of 200 psi with an area ratio of 250 would provide 330 sec of Isp. Unfortunately, this area ratio, at the 30,000 lbf thrust required for the stage, would require an unwieldy nozzle of more than 200 in. length and 140 in. diameter. To reduce the nozzle dimensions and maintain performance, the propellant combination was changed to N₂O₄/M20 (80% N₂H4 mixed with 20% MMH), which provided 5 more sec of Isp to trade with the optimal area ratio in the design. The higher performance allows a reduction in the nozzle length to 160 in. with an exit diameter of 115 in., while providing an engine Isp of 331 sec. Overall, this provides a reasonable 2.5-3.0 mt post-TLI mass savings over the baseline FLO configuration. A return-engine development program would be required to support this stage concept.

Although tailoring engine performance characteristics to an optimal vehicle design provides much more design flexibility than specifying existing hardware, the main benefit of this trade option over the reference FLO vehicle is the simplification obtained from building a propulsion system around one engine as opposed to three. In comparison to the reference FLO return stage, this configuration reduces the number of components in the propulsion system and allows the engine to be recessed farther into the return stage so that it does not protrude into the lander stage, thereby reducing any FITH concerns. The lander stage is similar to the lander stage described in section 5.2.2, trade 2.

5.2.5 Trade 5 System Description - LO₂/CH₄ Pressure-Fed Return Stage and LO₂/LH₂ Pump-Fed Lander Stage

The return stage propulsion (fig. 5-8) uses a single pressure-fed engine combusting LO_2/CH_4 propellants. Like LO_2/N_2H_4 , this propellant combination has several beneficial characteristics: (1) LO_2 and CH₄ are relatively easy to store on the lunar surface, (2) performance is higher than most storable, (3) CH₄ is inexpensive and relatively non-toxic, and (4) propellant experience is high for both propellants, however the density of CH₄ is relatively low.

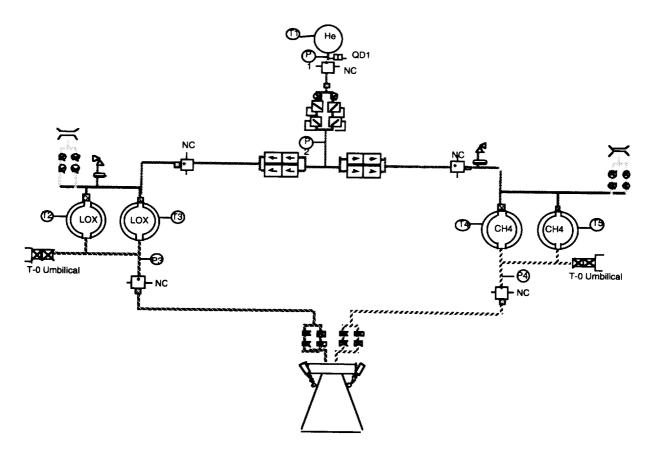


Figure 5-8. LO₂/CH₄ pressure-fed return stage.

The return engine was sized by using similarity to the LO_2/N_2H_4 30,000 lbf thrust ablative engine in Trade 2. The chamber pressure chosen is 125 psi. The engine length is approximately 120 in., and the Isp is 350 sec. A single-engine configuration was chosen for the same reasons outlined in previous single-engine return trade study options. An engine development program would be required.

An active vent system is utilized in this return propulsion system design to maintain LO₂ and CH₄ tank pressures during transit and on the lunar surface. Both the LO₂ and the CH₄ tanks are graphite epoxy overwrapped aluminum-lined tanks with a nominal operating pressure of 250 psi.

The lander stage is similar to the lander stage described in section 5.2.2, Trade 2.

5.2.6 Trade 6 System Description - N2O4/MMH Pump-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage

The two-stage, pump-fed, Earth-storable return stage vehicle concept (fig. 5-9) incorporates two MMH and two N2O4 tanks for return propellant storage and uses four advanced XLR-132 pump-fed engines. Each engine will have a regenerative oxidizer-cooled chamber and a fuel-rich gas generator to produce 15,000 lbf of thrust at 1500 psi chamber pressure. The engine is estimated to produce an Isp of approximately 344 sec. Currently, both Aerojet and Rocketdyne are testing XLR-132 flightweight prototype engines at 1500 psi chamber pressure and 3750 lbf thrust. A return-engine development program, based on existing XLR-132 work, would be required to support this stage concept.

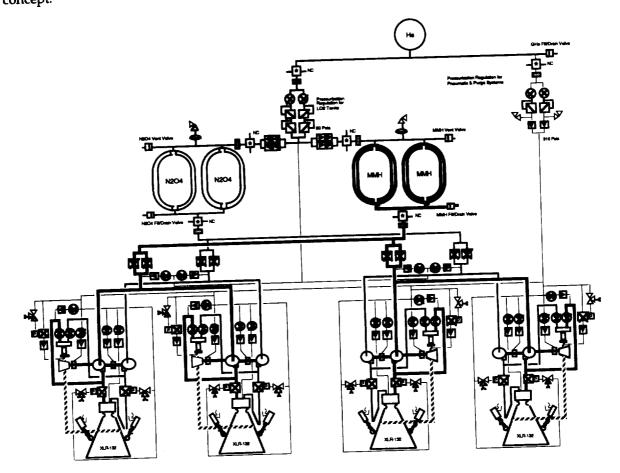


Figure 5-9. N2O4/MMH pump-fed return stage.

Since the current design for the XLR-132 contains nonredundant turbo machinery, four engines are used to meet the single fault-tolerant stage requirement. In the case of engine failure during return, the opposing engine is shut down. This failure-abort mode was chosen over gimbaling the remaining engines, since it is believed that gimbaling through the return stage cg would require rapid actuator responses and large gimbal angles. For this reason, the propellant feed system of the return stage is designed to isolate engine pairs. Since the engines are nonthrottling, twice the stage thrust is required should an engine failure occur using this failure abort-mode approach. Additional discussion on main engine redundancy is provided in section 5.0.

The return propulsion system requires purge, pressurization, and pneumatic subsystems. Because of this and the fact that pump-fed engines are used, this return-stage concept has greater than average complexity and mission operation counts. The pump-fed engine abort reaction time is greater than typical pressure-fed systems. Should the lander stage fail and return-stage separation is required, the abort reaction time would be no more than 2 sec maximum. Since the stage propellants are Earth-storable, no active venting is required during flight operations and lunar stay.

The lander stage utilizes the same basic propulsion system as the baseline vehicle design, including engines and components. The exception is the lander stage tanking configuration, which uses larger diameter tanks to reduce the number of LH₂ tanks required. Instead of the six LH₂ and the two LO₂ tanks used in the baseline lander stage, this lander stage option uses two LO₂ tanks and four LH₂ tanks with larger diameters. The single LO₂ tank configuration is not used since the multiple engines may protrude significantly into the lander stage.

5.2.7 Trade 7 System Description - LO₂/CH₄ Pump-Fed Return Stage and LO₂/LH₂ Pump-Fed Lander Stage

The two-stage, pump-fed, LO₂/CH₄ return stage vehicle option (fig. 5-10) incorporates two oxygen and two methane tanks for return propellant storage and uses four concept RL10M-1 pump-fed LO₂/CH₄ engines. Each engine produces 18,900 lbf of thrust and has a 2:1-step throttling capability. The RL10 derivative engine is estimated to produce an Isp of approximately 358 sec. Pratt & Whitney has run RL10 engines with LO₂/CH₄ propellants in the past; however, a new engine development program would be required to support this stage concept.

Since the current RL10 design contains nonredundant turbo machinery, four engines are required to meet the single fault-tolerant stage requirement. In the case of engine failure during return, the opposing engine is shut down. Since the engines are throttleable, each engine will nominally operate at 50% thrust, so in case of engine failure, the opposing engine is shut down, and the remaining two engines are throttled up to 100% thrust. Additional discussion on main engine redundancy is provided in section 5.0.

The return propulsion system requires both pressurization and pneumatic system regulation and management subsystems. Since the stage propellants are cryogenic, an active venting subsystem is required during flight operations and the lunar stay. Because of these subsystems, and the fact that pump-fed engines are used, this return-stage concept has greater than average complexity and mission operation counts. Since pump-fed engines are used, the abort reaction time, should the lander stage fail and return-stage separation is required, is greater than typical pressure-fed systems and is

approximately 2 sec maximum. Pre-abort chilldown of the engines may not be required to meet the abort reaction time listed.

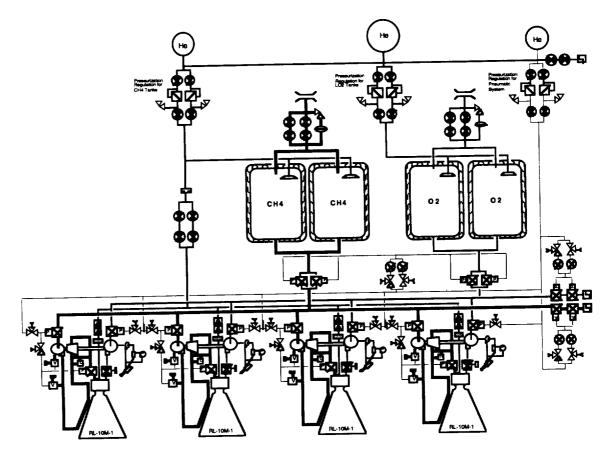


Figure 5-10. LO₂/CH₄ pump-fed return stage.

The lander stage is similar to the lander stage described in section 5.2.6, Trade #6.

5.2.8 Trade 8 System Description - LO2/LH2 Pump-Fed Return Stage and LO2/LH2 Pump-Fed Lander Stage

The two-stage, pump-fed, LO₂/LH₂ return-stage vehicle concept (fig. 5-11) incorporates one oxygen tank surrounded by four hydrogen tanks for return propellant storage and uses four modified RL10A-3-3A pump-fed engines. The return-stage engine is the same engine used on the lander stage except for slight modifications to the chilldown vent valves. Instead of allowing the liquid hydrogen to vent out to space, the normal procedure for RL10 chilldown, the vent exit is tied back into the propellant feed and pressurization system. Pumps have been added to the propulsion system to recirculate hydrogen through the engine during chilldown. The recirculation pumps maintain a high-quality fluid in the propellant feed system for a rapid abort capability. Poor quality liquid in the propellant feed system could cause up to an additional 1-sec delay for full 90% thrust startup.

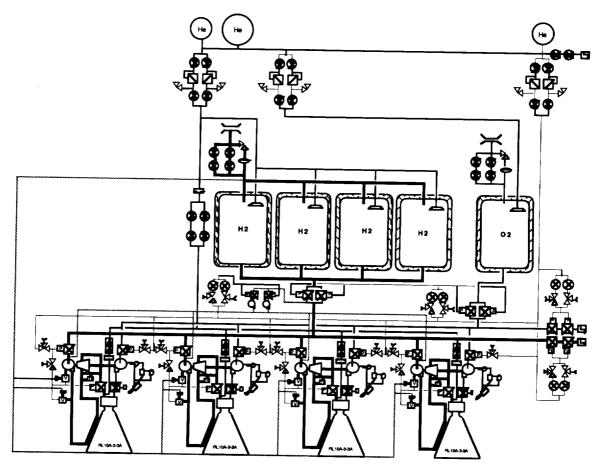


Figure 5-11. LO₂/LH₂ pump-fed return stage.

Since the current RL10 design contains nonredundant turbo machinery, four engines are required on the return stage to meet the single fault-tolerant return requirement. In the case of engine failure during return, the opposing engine is shut down. Since the engines are throttleable, each engine will nominally operate at 50% thrust, so in case of engine failure, opposing engines are shut down, and the remaining two engines are throttled up to 100% thrust. Additional discussion on main engine redundancy is provided in section 5.0.

The return propulsion system requires both pressurization and pneumatic system regulation and management subsystems. Since the stage propellants are cryogenic, an active venting subsystem is required during flight operations and lunar stay. Because of these subsystems, and the fact that pump-fed engines are used, this return-stage concept has greater than trade average complexity and mission operation counts. Since pump-fed engines are used, the abort reaction time, should the lander stage fail and return stage separation is required, is greater than typical pressure-fed systems and is no more than 2 sec maximum. Pre-abort chilldown of the engines is required to meet the abort reaction time listed.

The lander stage is similar to the lander stage described in section 5.2.6, Trade 6.

5.2.9 Trade 9 System Description - LO2/LH2 Pump-Fed Single-Stage Vehicle

The single stage LO₂/LH₂ pump-fed vehicle concept (fig. 5-12) incorporates six hydrogen and two oxygen tanks for lander propellant storage and incorporates one hydrogen and one oxygen tank for return propellant storage. The single-stage vehicle concept incorporates four modified Pratt & Whitney RL10A-4 engines, to be used for both return and lander propulsion. Each engine produces 20,800 lbf of thrust and provides a 6:1 throttling capability. The engines are estimated to produce an Isp of approximately 449 sec. Currently, non-throttling RL10A-4 engines are in production; however, an engine modification program would be required to support this stage concept.

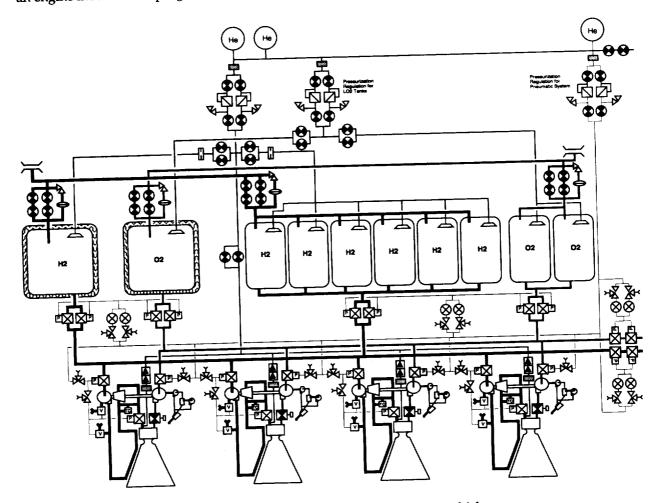


Figure 5-12. LO₂/LH₂ pump-fed single-stage vehicle.

Six hydrogen and two oxygen tanks for lander propellant storage, and one hydrogen and one oxygen tank for return propellant storage were chosen because of the structural mass equation used in the stage-sizing program. Other tank configurations were considered, including common propellant tanks for return and lander propellants; however, the packaging configuration chosen produced the lowest total vehicle mass. Since the structure mass equation is based on the surface area of the cylinder into which the stage design can fit, the 8-tank configuration produced a lower calculated structural mass than taller, less numerous tank configurations. The structural mass penalty for taller, less numerous tanks since the main propellant volume is subjected to only 4 days of boiloff conditions. Use of itemized structural mass calculations are required before a truly optimized tank configuration can be calculated for the single-stage vehicle concept.

The single-stage propulsion system requires both pressurization and pneumatic regulation and management subsystems. The return and lander propellants in the current tank configuration are isolated from each other with pneumatic valves. Since cryogenic propellants are used, an active vent subsystem is required for flight operations and lunar stay. Since a single propulsion system is used for both return and lander staging and the engines are throttleable, opposing engines are shut down and the remaining two engines are throttled up in the event of an engine failure.

Even though the single-stage vehicle design can provide lower overall system complexity and greater vehicle reusability compared to all other options, current technology does not allow for a vehicle design that meets the FLO 96 mt vehicle TLI mass limit. If the technology for a cryogenic integrated modular engine is developed, however, the single-stage vehicle design will again become a viable FLO candidate, as well as possibly providing a reusable system for long-term evolution capability.

5.2.10 Trade 10 System Description - LO2/LH2 Pump-Fed Stage-and-a-Half Vehicle

The stage-and-a-half design (fig. 5-13) is very similar to the single-stage vehicle concept described in section 5.2.9 except for the fact that the lander tanks and structure for the stage-and-a-half design are left behind on the lunar surface. The single-return LO₂ and LH₂ tanks and the four RL10 engines are incorporated into a common structure that separates from the lander tanks structure. Separation is accomplished with cryogenic and gas disconnects between the dropped lander tanks and the return propellant feed system. Engine throttling of 7:1 is required to meet the hover requirement for the stage-and-a-half vehicle.

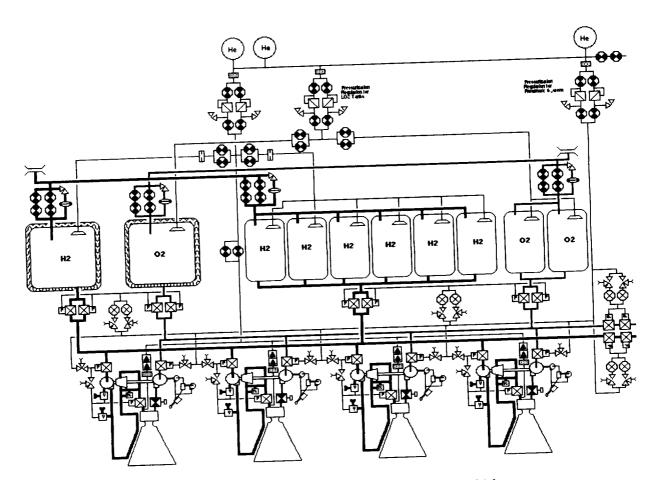


Figure 5-13. LO₂/LH₂ pump-fed stage-and-a-half vehicle.

5.2.11 Trade 11 System Description - ClF5/N2H4 Pressure-Fed Return and Lander Stages

The propulsion system in this return stage uses the same single 30,000 lbf pressure-fed engine described in section 5.2.3, Trade 3. As in Trade 3, the engine has an estimated Isp of 353 sec and runs at a propellant mixture ratio of 2.5. The return propulsion system consists of two ClF5 and two N₂H₄ propellant tanks constructed of graphite epoxy over wrapped aluminum.

The lander stage propulsion system (fig. 5-14) is very similar to the return stage propulsion system. Instead of a single engine, the lander stage uses two 30,000 lbf throttling CIF5/N2H4 engines to meet the lander thrust requirement. Propellant for the two engines in this stage are fed from three CIF5 and three N2H4 graphite epoxy overwrapped aluminum tanks. Features may need to be incorporated to allow the propellant tank pressurant to be vented in order to safe the propulsion system and prevent propellant leakage on the lunar surface after landing.

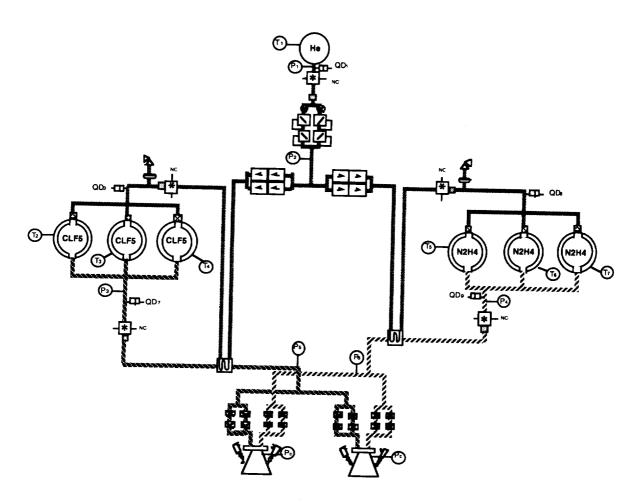


Figure 5-14. CIF5/N2H4 pressure-fed lander stage.

The ClF5/N₂H₄ lander and return-stage configuration would provide an approximate post-TLI mass savings of 5 mt over the reference FLO vehicle configuration, while providing a much simpler (and, therefore, more reliable) vehicle, since no cryogenic propellants or pump-fed engines are used in the system. Also, because of the high density of the propellants compared to LO_2/LH_2 , the lander-stage diameter needs only to be approximately 6 m in diameter instead of the 9.4 m diameter used by all other trade options in this study.

5.2.12 Trade 12 System Description - Optimized IME LO2/LH2 Return and Lander Stages

This stage propulsion system concept incorporates an IME cryogenic propellant design. A number of IME designs have been suggested, using various engine configurations and pump-fed engine operating cycles. For simplicity, only one design was used to examine the possible merits of an IME-propelled stage design, and the one chosen was based on data obtained from Rocketdyne. The return IME propulsion system design (fig. 5-15) incorporates redundant propellant pumps feeding a high-pressure manifold that connects three separate 10,000 lbf thrust engines' chambers. The LH₂ turbopump is run by an expander cycle, and the LO₂ turbopump is run by an oxygen preburner. Each engine incorporates redundant throttling valves to fulfill overall stage thrust throttling and

engine gimbaling requirements and eliminates the need for LO₂/LH₂ hydraulic or electro-mechanical actuator (EMA) gimbaling. Since the only moving parts on each engine are the throttling valves, and they are redundant, there is no engine-out failure mode requirement to meet the baseline single fault-tolerant return criteria.

The IME LO₂/LH₂ return stage propulsion system concept incorporates two oxygen and two hydrogen tanks for return propellant storage. Both the oxygen and hydrogen tanks are autogenously pressurized. This fact, combined with the use of low head pressure liquid pumps, eliminates the need for a helium pressurization system. Also, the IME design incorporates only EMA valves, eliminating the need for a hydraulic or pneumatic system. Like all other cryogenically propelled stages, an active vent subsystem is required during transit and on the lunar surface. Since the feed system and the engines are closely interrelated, a large-scale propulsion system (not only engine) development program would be required to support this stage concept.

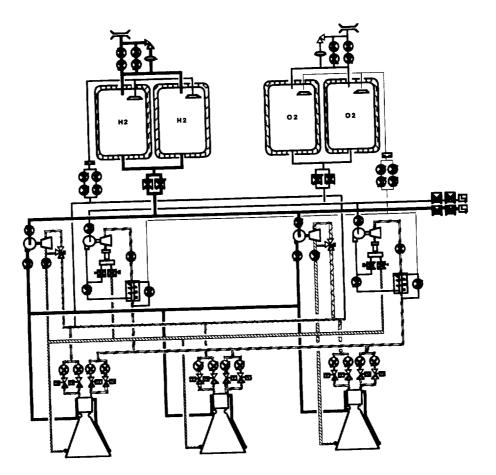


Figure 5-15. Optimized IME LO2/LH2 return stage.

The IME design, as specified, provides many advantages over conventional pump-fed cryogenic propulsion system designs. The IME design eliminates the need for helium pressurization, engine actuation, and pneumatic subsystems, thereby reducing complexity and increasing overall system reliability. However, since the state-of-the-art needs to be pushed for this design to be realistic, it most likely will not be ready for the 1999 FLO launch date.

The lander stage propulsion system (fig. 5-16) uses the same IME design propulsion system as that in the return stage, with only a few modifications. The lander stage requires four 15,000 lbf thrust engines chambers instead of the three 10,000 lbf thrust engine chambers used on the return stage. Also, four hydrogen and two oxygen propellant tanks are used to feed the uprated IME design.

Further analysis is required to determine IME chilldown requirements as well as abort reaction time capabilities.

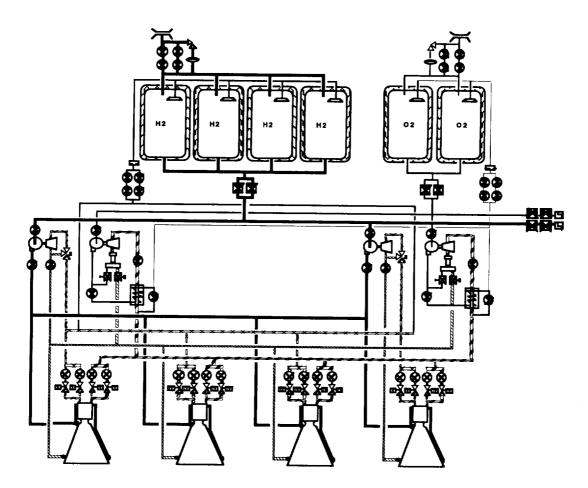


Figure 5-16. Optimized IME LO2/LH2 lander stages.

5.2.13 Trade 13 System Description - LO2/LH2 Pressure-Fed Return and Pump-Fed Lander Stages

The propulsion system for this return stage (fig. 5-17) uses a single 30,000 lbf pressure-fed LO₂/LH₂ engine developed specifically for this stage concept. The ablative engine concept is estimated to have an Isp of 440 sec at a chamber pressure of 125 psi. The return-stage propellant feed system incorporates three LH₂ tanks and three LO₂ tanks, with the helium pressurant cryogenically stored in tanks located within the LH₂ tanks. To pressurize the propellant tanks, the cold helium pressurant is released from the high pressure, cryogenically stored tank and is regulated to a lower pressure before running through a thrust chamber heat exchanger. The warmed helium is then allowed to pressurize the propellant tanks.

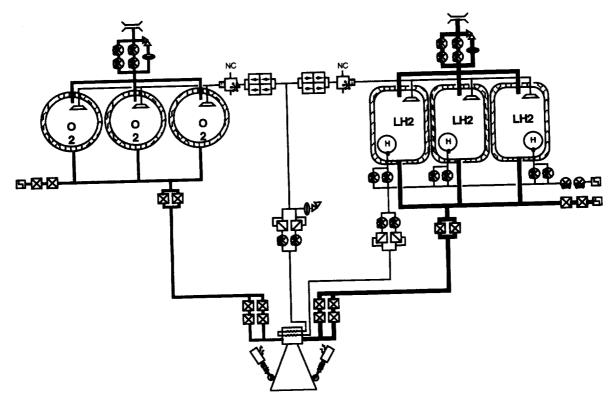


Figure 5-17. LO2/LH2 pressure-fed return.

Since the return stage propellants are cryogenic, an active venting subsystem is required during flight operations and lunar stay. Pre-abort chilldown of the engines may be required to meet the lunar lander abort requirements.

The lander stage is similar to the lander stage described in section 5.2.6, Trade 6.

5.2.14 Trade 14 System Description - IME LO2/LH2 Pump-Fed Stage-and-a-Half Vehicle

The IME stage-and-a-half design (fig. 5-18) is very similar to both the baseline stage-and-a-half design outlined in section 5.2.10, Trade 10 and the all-IME vehicle design outlined in section 5.2.12, Trade 12. Like Trade 12, the IME stage-and-a-half design utilizes the lander stage IME propulsion system design to meet its thrust requirements. Like Trade 10, this option also leaves the lander propellant tanks and structure behind on returning to Earth, as well as using the same propellant tank stage configuration. Separation of the stages is accomplished with cryogenic and gas disconnects between the dropped lander tanks and the return propellant feed system. The IME propulsion system design allows the already high performance stage-and-a-half concept proposed in Trade 10 to be even lighter and less complex.

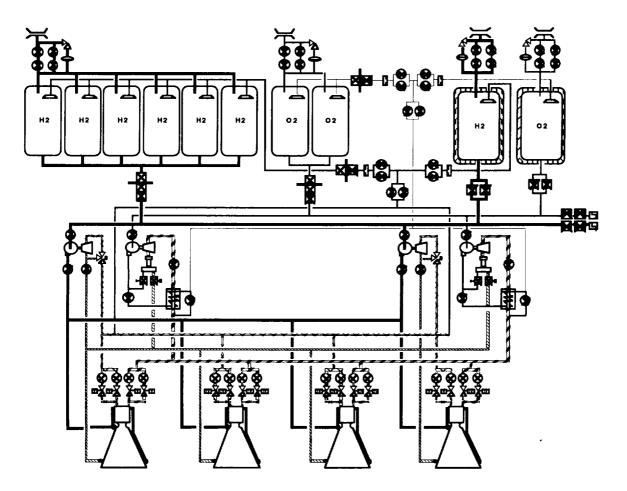


Figure 5-18. IME LO₂/LH₂ pump-fed stage-and-a-half vehicle.

5.3 Vehicle Configuration Layouts

5.3.1 Crew Vehicle Configurations

Simple computer aided design (CAD) models were developed for evaluating the relative merits of each crew vehicle configuration in terms of vehicle propulsion system packaging, touchdown cg, and cargo packaging. A scale drawing of the crew vehicle configurations is provided in figure 5-19. The configurations were built to the following set of design guidelines:

- 10 m maximum usable diameter for the HLLV payload fairing (project requirement)
- 1 m clearance between the crew module and the return-stage tanks to provide volume for crew module support equipment (e.g. fuel cells/reactant tanks)
- 0.5 m clearance (minimum) between the return-stage engine nozzle(s) and any significant engine blockage (e.g. lander-stage tanks)
- 0.3 m clearance (minimum) between the engine power head and the tanks to provide space for propellant lines and manifolds

For simplicity, the landing gear is not shown in figure 5-19. For any of the configurations, the initial vertical clearance between the footpads and the bottom of the lander stage is expected to be in the range of 1.5 to 2.0 m to provide a minimum ground clearance of about 1.0 m after the impact attenuation stroke. The length of the landing gear for a given configuration, therefore, is a function of the landing gear tread radius required to provide a specified stability rating, based upon the touchdown cg height of the vehicle. Note that the cg heights listed for the crew vehicle configurations are referenced to the bottom of the lander-stage engines (fig. 5-19) and not to the lunar surface itself.

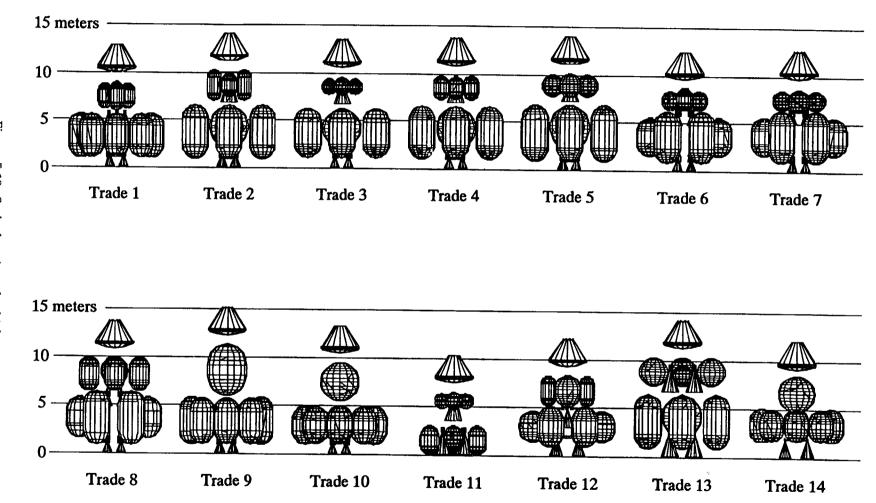
The 14 vehicle configurations can be loosely grouped into 3 main categories based on the staging options:

- single stage (Trade 9)
- 1-1/2 stage (Trades 10 and 14)
- two stage (Trades 1 to 8 and 11 to 13)

The single-stage and stage-and-a-half vehicle configuration have characteristics different from the two stage vehicles. Trades 9, 10, and 14 were all configured with the lander and return propellant divided into separate sets of tanks. The lander propellant is contained in a ring of eight tanks (two LO₂ and six LH₂), and the return propellant is contained in a pair of tanks stacked in the central hole of the tank ring. The engines are centered below the return oxidizer tank. In the 1-1/2-stage configuration, the core tanks and the engines must disconnect and slide out from the center of the lander tank ring. Trades 9, 10, and 14 demonstrated superior touchdown cg's because of the favorable location of the return oxidizer. The cargo for Trades 9, 10, and 14, however, must be packaged around the return LH₂ tanks, limiting the cargo volume to less than 20 m³. The height of the cargo platform is approximately 7 m for any of the three options.

The majority of the two-stage options (Trades 1 to 5) consisted of a pressure-fed storable return stage (space- and/or Earth-storable propellants) mounted on a cryogenic LO2/LH2 lander stage. Trade 1, the FLO reference configuration, used three existing AJ10-118 engines for the pressure-fed return stage. The three AJ10-118 engines were inset into the central hole of the descent tank ring to reduce the overall height of the vehicle. Like the single-stage and 1-1/2-stage configurations, the cargo for Trade 1 must be packaged on a high platform around the return-stage tanks, limiting the available cargo volume to less than 20 m³. Trades 2 to 5 represent variations on the return-stage propellants and the overall tank packaging philosophy relative to the reference configuration. Because Trades 2 to 5 involve the development of a new pressure-fed engine, the central hole in the lander stage was eliminated to provide a flat interstage interface. The cryogenic lander propellant was packaged in five tanks rather than eight with four hydrogen tanks positioned around a central oxygen tank. The large spaces between the hydrogen tanks are available for lunar cargo, providing a minimum usable cargo volume of 20 to 35 m³ located in close proximity to the lunar surface. The tank configurations for Trades 2 to 5 have two drawbacks, however. First, the 10 m diameter limitation (in combination with only four LH2 tanks) tends to increase the height of the lander stage relative to the Trade 1 configuration. Second, the use of a flat interstage interface forces the addition of a 0.5 m gap between the lander and return stages to reduce the back pressure on the single return-stage engine at ignition.

Trades 6 and 7 look quite similar to Trade 1. The primary differences from the reference configuration are the use of pump-fed rather than pressure-fed return-stage engines and the use of six lander-stage tanks rather than eight. The lander stages for Trades 6 and 7 consist of two LO₂ and four LH₂ tanks arranged in a ring around a central hole. As in Trade 1, the return-stage engines are inset into the central hole to reduce the overall height of the vehicle. From a configuration standpoint, there appears to be little benefit from the use of a pump-fed rather than a pressure-fed storable return stage. The cg and cargo packaging characteristics for Trades 6 and 7 are very similar to those of Trade 1.


Examples of two-stage cryogenic configurations are provided in Trades 8, 12, and 13. Trade 8 uses RL10 pump-fed engines on both the lander and return stages, while Trade 13 uses an RL10 pump-fed lander stage and a pressure-fed return stage. Both of the configurations are considered to be inferior to the other options in term of touchdown cg height and cargo volume. In addition, the large volumes of the Trade 8 and Trade 13 return stages tend to drive the nose of the HLLV payload fairing toward a very blunt profile, leading to larger aerodynamic losses and higher peak aerodynamic loading during ascent. Trade 12 uses high performance IMEs for the lander and return stages, which considerably reduces the total cryogenic propellant load relative to Trades 8 and 13. The net effect of the IMEs and the low-bulk density cryogenic propellants is a vehicle with a moderate cg height at touchdown and moderate cargo volume, similar in external appearance to the configurations for Trades 6 and 7.

Trade 11, a two-stage CIF5/N2H4 pressure-fed vehicle, is the unique configuration of the trade study group. The high Isp and high-bulk density of this propellant combination resulted in an extremely compact vehicle. The height of the vehicle is essentially driven by the stacked length of the lander and return-stage pressure-fed engines, with the nose of the crew module just topping 10 m. The estimated touchdown cg height is approximately 5 m. The Trade 11 vehicle is also the only configuration that did not use the full 10 m diameter of the payload fairing. It should, therefore, be possible to match the cargo volume of any of the other 13 configurations by taking advantage of the full payload fairing diameter.

5.3.2 Cargo Vehicle Configurations

Although the majority of the work focused on the crew vehicle configurations, several cargo mission configurations were also considered. figure 5-20 shows a lunar habitat packaged on a cryogenic lander stage. The central hole of the lander stage is filled with the fuel cell reactant tanks and other habitat subsystems. If a common lander stage is used for both the crew and cargo missions, the cargo configuration provided in figure 5-20 is representative of the cargo lander geometry for all of the configuration options except for Trade 11. The geometry variations between the various options will be minimal, with the lander-stage platform height varying from approximately 5 to 6 m relative to the bottom of the lander engine nozzles. In contrast, the lander stage for Trade 11 provides a platform height of less than 3 m.

A second option is to reconfigure the propellant tanks specifically for the cargo mission. A partial representation of a ClF5/N2H4 cargo propulsion system is provided in figure 5-21. The propellant is divided into two pairs of tanks that are mounted on each side of the habitat along with a 30 klbf pressure-fed engine. Note that the fuel cell reactant tanks for the habitat (not shown in fig. 5-21) would also have to be integrated into this cargo stage. In contrast, the most viable option for a cryogenic cargo lander is to move the tank set above the lunar habitat with a new feed system to deliver propellant to the bottom-mounted engines.

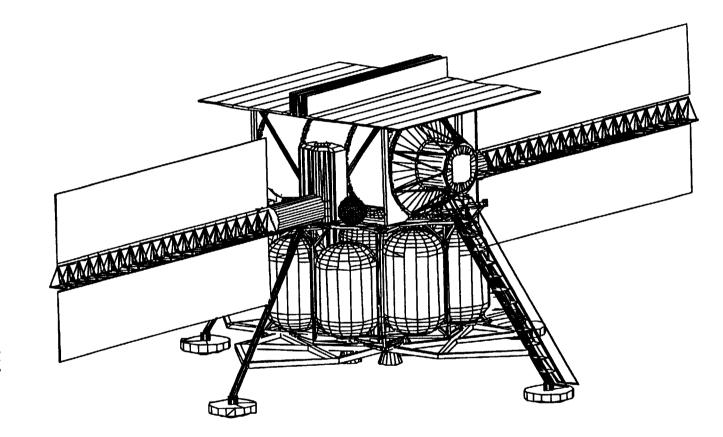


Figure 5-20. Habitat lander for LO2/LH2 vehicles.

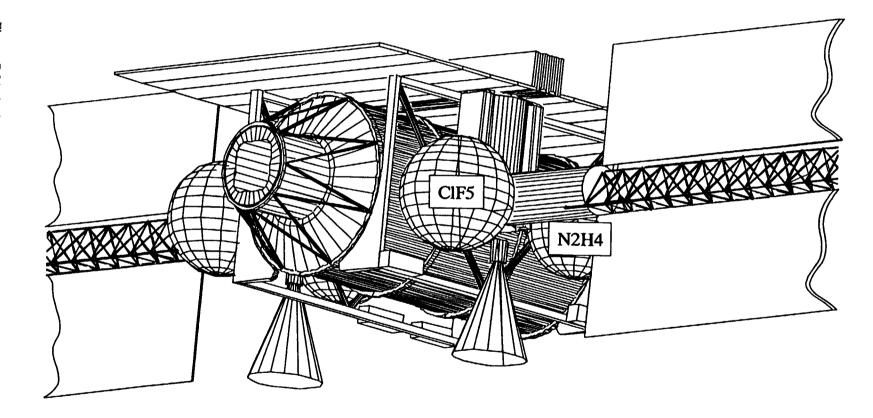


Figure 5-21. Habitat lander using ClF5/N2H4 propulsion.

This page intentionally left blank.

.

SECTION 6.0

LUNAR LANDER PROPULSION SELECTION CRITERIA AND EVALUATION METHODOLOGY

The First Lunar Outpost Propulsion System Trade Study used the analytic hierarchy process (AHP) to evaluate the effectiveness of the reference FLO design and all promising propulsion system concepts in meeting the FLO transportation system requirements. AHP is a structured approach for handling complex problems concerning interrelated study criteria and subjective priorities. The evaluation hierarchy developed for the FLO trade study criteria is presented in figure 6-1. The hierarchy relates cost, schedule, and risk to attributes that are quantifiable.

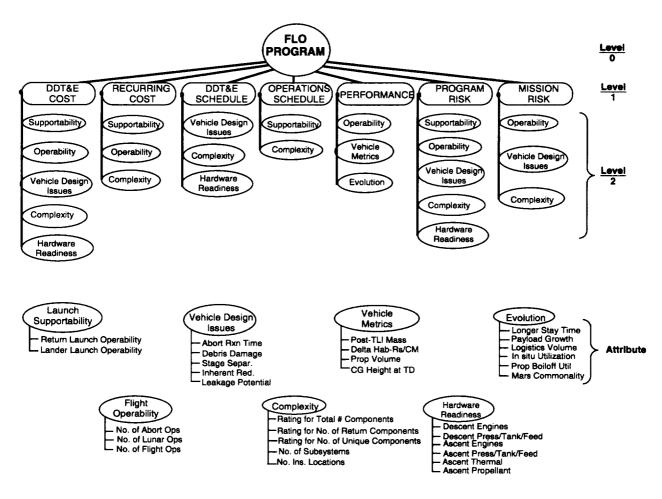


Figure 6-1. FLO propulsion trade study criteria hierarchy.

The criteria in the hierarchy shown in figure 6-1 are weighted using the Analytic Hierarchy Process called "pairwise comparisons." The criteria weights are combined with quantitative evaluations of each propulsion trade option to provide the trade study ranking of the trade options. Confidence is achieved in the trade study ranking by performing a sensitivity analysis of the trade study rankings. The rankings and sensitivity analysis are the basis for the trade study conclusions. This process is shown in figure 6-2.

Figure 6-2. Trade study process.

The following sections describe the trade study process in more detail. The selection criteria are defined in section 6.1, and a summary of the trade option design data is presented with the definitions. Section 6.2 describes how the AHP calculates the criteria weights and ranks the trade options.

6.1 Selection Criteria Definition

The trade study evaluation criteria were organized into a hierarchy as shown in figure 6-1. The top level (level 0) was considered the objective level. The main objective of the FLO trade study was to pick the lander/return stage propulsion system concept(s) that could best meet the FLO transportation system requirements. Beneath this objective level lies the first level criteria, which were considered to impact the study objective directly. Beneath the first level lie the second-level subcriteria, which were considered to impact the first-level criteria. Input to the second-level subcriteria are the attributes against which all the trade options were evaluated. Each of these attributes had a rating, and every FLO vehicle trade option was assigned one of the attribute ratings for each attribute. These levels are discussed in the following sections. The matrices documenting the pairwise comparisons, and the weights derived at each level within the evaluation hierarchy, are presented in section 7 and appendix D.

6.1.1 Level One Criteria: Cost, Schedule, Performance, and Risk

The level one criteria represent program variables that reflect the overall program environment. The program variables of *cost*, *schedule*, *performance* and *risk* are presented in the level one criteria with a distinction between development and operations. The distinction is drawn between development and operations to sensitize the model to the number of FLO missions. The level one program criteria are defined in sections 6.1.1.1 through 6.1.1.7.

6.1.1.1 DDT&E Cost

The DDT&E cost is the component of the overall program cost related to the development and qualification of the vehicle hardware, the vehicle software, and the flight facilities in support of the first FLO mission. DDT&E costs are typically a function of vehicle design and hardware complexity, vehicle flight operability, and component hardware readiness (HR).

The influence of complexity and HR on *DDT&E cost* may be more obvious than the influence of vehicle design issues and flight operability. For example, during preflight Apollo, the vehicle design issue called FITH increased the *DDT&E cost*. The Lunar Module Series 7B tests at White Sands Test Facility during December 1968 were initiated to ensure thermal and startup transient confidence during stage separation. Because this issue arose outside the normal mission duty cycle testing, it increased the *DDT&E cost* of the program. An additional concern is the effect that vehicle flight operability has on *DDT&E cost*. Avionics and software are proportionally related to the number of mission operations required for a nominal flight, the lunar stay, and any aborts. DDT&E costs attributed to avionics can be driven by numerous operations requiring synchronization and extensive software verification.

6.1.1.2 Recurring Cost

The *recurring cost* is the component of the overall program cost related to mission operations and the production and modification of flight hardware and software. The *recurring cost* is determined by the level of launch support required, the level of mission support required to train the crew and operate the vehicle, and the quantity and complexity of hardware to be manufactured and verified. *Recurring costs* tend to dominate the overall program cost as the number of missions increases.

6.1.1.3 DDT&E Schedule

The DDT&E schedule is a measure of the difficulty associated with constructing the manufacturing and processing facilities, and designing/evaluating the vehicle hardware and software with respect to the program goal of a 1999 launch date. The DDT&E schedule is influenced by vehicle design issues, vehicle complexity, and component HR.

The inclusion of vehicle *complexity* and component technology readiness level (TRL) into the *DDT&E* schedule may be more obvious than the inclusion of vehicle design issues. The Apollo FITH example described in section 6.1.1.1 threatened to prolong the DDT&E phase of the program. An Apollo lunar landing could have been delayed into the next decade if FITH confidence had not been achieved as quickly as it was.

6.1.1.4 Operational Schedule

The *operational schedule* is a measure of how well a vehicle trade option meets production, assembly, qualification, and launch preparation time requirements for a set of flight hardware. The *operational schedule* is influenced by the launch support required and the vehicle complexity.

6.1.1.5 Performance

Performance is a measure of the vehicle trade option effectiveness in meeting or exceeding overall program requirements. Each of the alternative FLO vehicle trade options is designed to meet a common set of program requirements for crew, payload, and mission abort capabilities. The effectiveness of each vehicle trade option to meet these requirements is measured by evaluating the post-TLI mass, volume, cg height, and the level of activity required to operate the propulsion system. Since all of the vehicle trade options meet the minimum requirements, a higher performing vehicle trade option may be smaller, more compact, or simpler to operate than the other options.

In addition to vehicle metrics such as post-TLI mass and volume, evolution is also included hierarchically under *performance* because evolution is defined as the potential to exceed the initial program requirements. The evolution subcriteria belong in the hierarchical position under *performance* because evolution is frequently traded with the other *performance* subcriteria. For example, scarring or designing a system for evolution may require that the system is suboptimized for the immediate mission. Trading vehicle metrics such as post-TLI mass and vehicle volume with evolution makes the suboptimized situation explicit.

6.1.1.6 Programmatic Risk

Programmatic risk is defined by the uncertainty associated with meeting the FLO cost, schedule, and performance goals during the DDT&E phases of the program. This uncertainty is influenced by vehicle design issues, vehicle component TRL, launch support requirements, and the complexity of the hardware and software.

With respect to vehicle design issues, it was stated in section 6.1.1.1 that the FITH design issue arose late in the Apollo program. Fortunately, these issues were resolved through a successful test program. Even though the test program was successful, the Apollo FITH tests demonstrate the potential for design issues to affect the program by increasing costs and delaying schedule.

6.1.1.7 Mission Risk

Mission risk is defined in this trade study as a combination of the risk associated with not completing all mission objectives successfully, and the risk to the safety of the crew and support personnel associated with all phases of the mission, including aborts. *Mission risk* is influenced by the satisfactory solutions of all vehicle design issues, including the level of redundancy and mission-abort characteristics. Also important is the level of design and operational complexity of the hardware and software.

6.1.2 Lower Level Criteria: Quantifiable Data and Ratings

The issues affecting each level-one criterion are further disseminated into levels of finer detail in the evaluation hierarchy until a level is reached where each trade study vehicle option is assigned a numerical rating. The lower levels contain the subcriteria, the attributes, and the attribute ratings. These levels are generically described first, and the specific categories are then presented. Following the description of each subcriteria is a summary of the trade score range.

<u>Subcriteria</u>: A subcriterion affects one or more criteria in the next higher level. The subcriteria can be found in level 2 as shown in figure 6-1. It is best illustrated in the following example: the subcriterion *Complexity* affects both the *DDT&E* COST and *MISSION RISK* criteria (among others). For this reason, the subcriterion *Complexity* will appear under both of those criteria and could have a different relative contribution to each.

<u>Attribute:</u> An attribute is a quality used to measure a subcriterion. The attributes are designated in figure 6-1. A complete and sufficient set of attributes measures the degree to which a vehicle trade option satisfies a particular subcriterion. Most attributes in this trade study can be measured quantitatively, so that each vehicle option is assigned a "score" based on an engineering evaluation for each attribute.

<u>Attribute Rating</u>: The range of scores for a given attribute is divided further into attribute ratings. These attribute ratings are divided so that significant differences between the vehicle trade options are captured. For example, the subcriterion *complexity* contains a set of attributes consisting of component counts, subsystem counts, and instrumentation location counts. Each of the vehicle trade options are evaluated and assigned one attribute rating for each attribute. Consideration is given to avoiding ranges that place vehicle trade option scores near the transition from one rating to another. In the following section, the attributes for each subcriteria will be defined along with their corresponding attribute ratings.

6.1.2.1 Launch Supportability

The *launch supportability* subcriterion measures the complexity and effort required for ground support of the different propulsion system options evaluated. The level of the support required is measured by using the launch operability index (LOI) developed under contract to NASA by Rocketdyne. This index considers the type of systems typically requiring installation and checkout at Kennedy Space Center before considering the launch and the facilities/scenarios required to maintain them. The result of applying the LOI to lander and return propulsion system options is an overall *launch supportability* rating that can then be used for relative comparisons between trade options. For the special case where the lander and return propulsion systems are not separate, such as on the singlestage vehicle or the stage-and-a-half vehicle, a perfect LOI score was assessed for the active return systems that do not exist separately from the lander systems. Detailed charts describing the LOI are provided in appendix C, and a summary of the ratings each vehicle received for LOI are shown in figure 6-3.

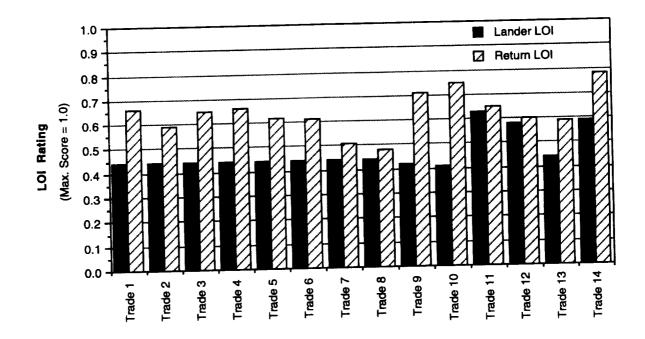


Figure 6-3. LOI trade rating summary.

6.1.2.2 Flight Operability

The *flight operability* subcriterion captures the complexity of the propulsion system as it relates to the number of significant operations required to support the vehicle during a nominal flight scenario, a nominal lunar stay, and during the worst-case abort situation: abort during powered lunar descent. A significant operation is defined as a commanded event causing a specific state change in a schematic component or similar group of components. Each *flight operability* attribute is defined below and is measured with the following attribute ratings:

Number of Abort Operations is the number of operations required to abort the mission successfully during the lunar descent phase. Typical operations counted are "shut down opposing engine," "throttle up remaining engines," "open tank isolation valves," "open engine valves," and "fire pyros to separate lander structure from return structure," etc. This attribute varies from 4 to 12 abort operations required for all of the 14 vehicle options considered. Additionally, whether or not propellant line and engine chilldown is required presented an additional *abort operations* discriminator, which signifies whether nominal operations are required to support an abort. The range of abort operations required is divided into the following attribute ratings:

"Fewer than, or equal to 4 abort operations, no chilldown required" "Between 5 and 6 abort operations, no chilldown required" "Greater than, or equal to 7 abort operations, no chilldown required" "Between 7 and 10 abort operations, chilldown required" "Greater than, or equal to 11 abort operations, chilldown required" <u>Number of Flight Operations</u> is the number of all propulsion system operations required to complete the mission successfully and is typically dominated by items such as "open pneumatic pressure regulation system," "open tank isolation valves," "open engine valves," "fire ignitor," etc. This attribute varies from 26 to 97 for all of the 14 vehicle options considered. The range of total mission operations required is divided into the following attribute ratings:

"Fewer than 40 flight operations" "Between 41 and 60 flight operations" "Between 61 and 70 flight operations" "Between 71 and 80 flight operations" "Between 81 and 90 flight operations" "Greater than 91 flight operations"

Number of Lunar Operations is the number of operations required to safe and maintain the overall vehicle and the return propulsion system. It is influenced mainly by cryogenic venting operations required during the lunar stay and is also influenced by any post lunar landing activities to deactivate the lander. This attribute varies from 2 to 28 lunar operations required for all of the 14 vehicle options considered. The range is divided into the following attribute ratings:

"Fewer than 8 lunar operations" "Between 8 and 24 flight operations" "Greater than 24 flight operations"

A summary of the ratings each vehicle received for the *flight operability* attributes are shown in figure 6-4.

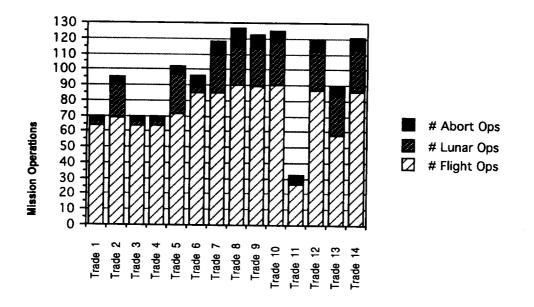


Figure 6-4. Flight operability trade ratings summary.

6.1.2.3 Vehicle Design Issues

The vehicle design issues subcriterion captures vehicle system complexities that may increase the uncertainty and risk associated with the DDT&E and Operations phase of the program. Vehicle design issues identified in the trade are (1) abort reaction times and design unique failure modes such as (2) debris damage during lunar descent and (3) stage separation difficulties, (4) inherent redundancy differences between the vehicles, and (5) lunar leakage potential. Each vehicle design issue is defined below and is measured with the following attribute ratings:

Abort Reaction Time varies among the different stage and propellant combinations. The *abort reaction time* is measured as the maximum time required to initiate an Earth return abort during lunar descent and includes the time required to reach 90% of the required abort engine thrust. The different attribute ratings are

"Less than 0.5 sec, without a prechill requirement (<0.5 NP)" "Between 0.5 and 1.5 sec without a prechill (0.5-1.5 NP)" "Greater than 1.5 sec without a prechill (>1.5 NP)" "Less than 1 sec with prechill requirements (<1 P)" "Between 1 and 1.5 sec with prechill requirements (1-1.5 P)"

<u>Debris Damage</u> concern arises when any vehicle configuration uses the same engines for both lunar descent and ascent propulsion, which could lead to a failure mode consisting of debris damage to the main engines during descent and landing. The attribute ratings are simply

"Yes, there would be a debris damage issue for the return propulsion system (Exposed)." "No, there would not be a debris damage issue for the return propulsion system (Protected)."

<u>Stage Separation</u> is intended to capture the inherent differences between the various stage configurations as they might appear if a stage separation were required. Of particular importance is the difficulty created by FITH, which is the multiple stage difficulty of firing the engines from a fresh, unused stage down into the exhausted stage. The different attribute ratings are

"No separation required (No sep)"

"Flat interface with no FITH issues regarding separation (FLAT)"

"Structurally flat with return engines protruding into lander stage (eng n hole)"

"Return stage surrounded with structure and disconnects (INTERCONNECTED)"

Redundancy is the attribute intended to capture the variation of component redundancy between stage configurations beyond the minimum fault tolerance required. All vehicle trade options are designed to a minimum level of redundancy, and this redundancy is currently set at zero fault tolerant for mission success (MS), single fault tolerant for crew return, and zero fault tolerant after a descent-abort scenario. When feasible, the designs allow the systems to exceed zero fault tolerance, but the overall propulsion system design is only as redundant as its least redundant component. With this in mind, the following attribute ratings are

"Zero fault MS, Single fault Return, Zero fault Post-descent abort (0, 1, 0)" "Single fault MS, Single fault Return, Single fault Post-descent abort (1, 1, 1)" <u>Lunar Leakage Potential</u> is the attribute intended to record concerns regarding the variety of leakage potentials between the vehicles during the lunar stay. Of particular concern are propellants with very small molecules and active seals required for periodic venting during the lunar stay. Of least concern are propellants isolated with pyro valves until required for the Earth return. The different attribute ratings are

"Any propellant, hermetically sealed: Relatively low potential" "Medium molecule propellants requiring venting (LO2 and CH4): Moderate potential" "Small molecule propellants requiring venting (LH2): Relatively high potential"

A summary of the ratings each vehicle received for the Vehicle Design Issue attributes are shown in table 6-I.

Ascent Prop/Stage Configuration Ascent Feed System Descent Prop	Trade 1 MMH/N2O4 Pressure LO2/LH2	Trade 2 LO2/N2H4 Pressure LO2/LH2	Trade 3 CIF5/N2H4 Pressure LO2/LH2	Trade 4 M20/N2H4 high Press. LO2/LH2		Trade 6 MMH/N2O4 Pump LO2/LH2	Trade 7 LO2/CH4 Pump LO2/LH2
VEHICLE DESIGN ISSUES Abort Response Time Debris Damage Immunity Stage Separation - Fire-in-hole Redund. (No. Faults: des,asc,abt) Leakage Potential	<.5 NP protected eng n hole 1,1,1 low	<.5 NP protected flat 1,1,1 moderate	<.5 NP protected flat 1,1,1	<.5 NP protected flat 1,1,1	<.5 NP protected flat 1,1,1 moderate	>1.5 NP protected eng n hole 1,1,1	1-1.5 P protected eng n hole 1,1,1 moderate
Ascent Prop/Stage Configuration Ascent Feed System Descent Prop	Trade 8 LO2/LH2 Pump LO2/LH2	Trade 9 Single LO2/LH2	Trade 10 Stage 1/2 LO ₂ /LH ₂	Trade 11 CIF5/N2H4 Pressure CIF5/N2H4	Trade 12 LO2/LH2 IME used both stage	Trade 13 LO2/LH2	Trade 14 Stage 1/2 IME stage LO2/LH2
VEHICLE DESIGN ISSUES Abort Response Time Debris Damage Immunity Stage Separation - Fire-in-hole Redund. (No. Faults: des,asc,abt) Leakage Potential	11.5 P protected eng n hole 1,1,1 high	0.5-1.5 NP exposed no sep 0,1,0 high	1-1.5 P exposed interconn. 0,1,0 high	<0.5 NP protected flat 1,1,1	1-1.5 P protected flat 1,1,1 high	<.5 NP protected flat 1,1,1 high	1-1.5 P exposed nterconn. 0,1,0 high

Table 6-I. Vehicle Design Issues Trade Rating Summary

6.1.2.4 Complexity

The relative complexities of the propulsion systems considered in the trade study were estimated by comparing the attributes pertaining to the number of system components, the number of subsystems, and the number of instrumentation locations.

At the second FLO propulsion workshop with industry and other NASA centers, suggestions were made to include additional types of system component counts, rather than just counting the "Total Number of Components." The workshop participants recommended that counts be included that capture the following qualities: (1) component commonality, (2) component function, and (3) component type.

Recommendations from the second workshop resulted in the incorporation of the following *complexity* rating counts: "Rating for Total Number of Components," "Rating for Total Number of Return Stage Components," and "Rating for Total Number of Unique Components," in addition to the counts for "Total Number of Subsystems" and "Total Number of Instrumentation Locations" previously used. The additional component ratings relaxed the importance of the "Rating for Total Number of Components" in favor of emphasizing the importance of the *complexity* associated with the return stage function and the benefit to *complexity* associated with commonality. Guidelines were created to define each of the different attribute types to help ensure consistency throughout the trade study.

For the trade study, a component is considered an item that provides an active schematic function. Components are counted for both the lander and return-stage main propulsion systems. Examples include counting a quad check valve as four components, counting individual tanks, valves, regulators, and engines thrust chamber assemblies (TCAs) as one component each. Any mechanical components supporting TCA operation should be counted as one component each. For example, count pumps, turbines, and engine valves as one component each. Items not counted as components include feed lines, filters, orifices, and ground-serviced test ports.

When counting for the attribute "Rating for Total Number of Components," both the lander and return component counts are summed together. When counting for the "Rating for Total Number of Return Stage Components," only those components that are active during the return trip from the lunar surface to Earth are counted. Including this count emphasizes the importance of maintaining simple return-stage propulsion system designs. The attribute for the "Rating for Total Number of Unique Components" counts each different component type once. Since many of the components are similar among the different stages, this attribute captures the commonality of these components throughout the system by counting only the unique components within the system. The components are considered unique if the design requires a separate DDT&E program.

The component counts in this study are modified to include a differentiation between simple components and complex components (i.e., check valves do not equal pumps) by counting them with a *complexity* factor defined below. Three *complexity* factor categories for components were developed to allow each component to be evaluated. Each category employs a multiplication factor to modify the actual component count. The multiplication factor is chosen to equal the category number. This overall *complexity* rating formula is represented by the following equation:

Complexity Rating =	(Component Count) * (Complexity Factor)
	(Category #1 Component Count)*(1) + (Category #2 Component Count)*(2) + (Category #3 Component Count)*(3)

The category definitions are defined below, and then the attributes and their ratings are presented: Category Definitions

(a) CATEGORY 1: This category contains components that are relatively simple compared to other components existing in the trade study designs. This category primarily includes components that are straightforward to produce and operate passively without requiring an electrical command. To qualify for this category, the component must be simple with very few moving parts. (table 6-I)

(b) CATEGORY 2: This category contains components that have an average level of *complexity*. These components may require an electrical or mechanical command for operation. (table 6-I)

(c) CATEGORY 3: This category contains components that are more complex than any of the other component categories. These components may require long lead times for design, manufacture, and verification, or they may have one of the following physical characteristics: combustion operating temperatures, large sealing force margins, high rotation speeds, large parts count, and/or tight bearing or metal seal tolerances. (table 6-II)

	COMPONENTS	COMMENTS
CATEGORY 1	hydraulic accumulators and check valves	few parts, no active control required
CATEGORY 2	solenoid valves, pneumatic valves TVC hydraulic actuators	moderate part complexity
	3-way solenoid valves with vent ports, solenoid activated pilot ball valves, pressure regulators, pyro valves relief valves/burst discs EMA throttle valves, Fill QDs and ignitors	electrical or mechanical commands initiate action
CATEGORY 3	pumps (cryogenic, storable, or hydraulic), turbines, gas generators, heat exchangers, T-0 disconnects, high rpm gear boxes, engine chambers, large tanks, and TVC EMAs	high parts <i>complexity</i> , difficult operating conditions, or complicated manufacture

Table 6-II. Component Complexity Factor

<u>Complexity Rating for Total Number of Components:</u> This rating is calculated in the manner described above. The different attribute scores are

"Less than 300"

"Between 301 and 400"

"Between 401 and 500"

"Between 501 and 600"

"Greater than 601"

<u>Complexity Rating for Number of Return Components</u>: This rating is calculated in the manner described above. The different attribute scores are

"Less than 95" "Between 95 and 120" "Between 120 and 200" "Between 200 and 300" "Between 300 and 350" "Greater than 350"

<u>Complexity Rating for Number of Unique Components</u>: This rating is calculated in the manner described above. The different attribute scores are

"Less than 75" "Between 76 and 100" "Between 101 and 125" "Greater than 126"

<u>Number of Subsystems</u>: A subsystem is a group of components using the same fluid to accomplish a function. Typical propulsion system functions include pressurization, propellant storage and distribution, and propellant combustion devices. The ratings are

"Fewer than 10 subsystems"

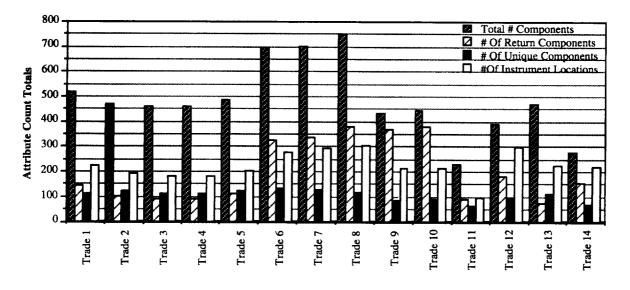
"Between 10 and 14 subsystems"

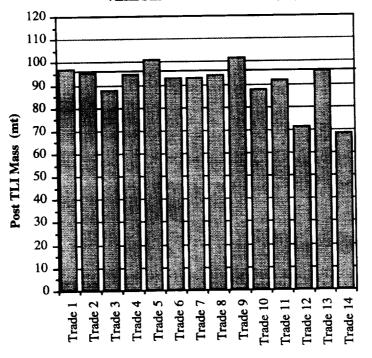
"Greater than 14 subsystems"

Number of Instrumentation Locations: An instrumentation location is any place where a transducer, switch indicator, flowmeter, etc., is required to monitor the system. The attribute ratings are

"Fewer than 190 locations" "Between 190 - 230 locations " "Between 230 - 300 locations" "Greater than 300 locations"

A summary of the ratings each vehicle received for the *complexity* attributes are shown in figure 6-5.




Figure 6-5. Complexity Trade Ratings Summary

6.1.2.5 Vehicle Metrics

The vehicle metrics subcriteria consists of four different measurements: (1) vehicle post-TLI mass, (2) cargo vehicle mass difference w/crew vehicle, (3) total vehicle volume, and (4) vehicle cg. The vehicle post-TLI mass was chosen to represent how well the trade concept meets the crew vehicle HLLV limits. However, to avoid implying that the crew vehicle is always the TLI or HLLV mass driver, the second mass parameter, the mass difference between the habitat (cargo) vehicle and the crew vehicle post-TLI mass is used. The third measurement of performance is the total volume of the propellant tanks, including pressurant. This performance parameter drives the vehicle structural mass, vehicle dimensions and crew egress difficulties. The last vehicle measurement is the crew vehicle cg at lunar touchdown. This measurement reflects the relative stability of the lander vehicle. The attributes used to measure vehicle metrics are listed below along with their attribute ratings:

<u>The Vehicle Post-TLI Mass</u> was chosen to represent how well the trade concept meets the crew vehicle HLLV limits. The attribute ratings are

"Less than 80 mt" "Between 81 - 90 mt" "Between 91 - 95 mt" "Greater than 96 mt" A summary of how each vehicle performed for the post-TLI attribute is shown in figure 6-6.

VEHICLE POST TLI MASS (mt)

Figure 6-6. Post-TLI mass summary.

The Cargo Vehicle Mass Difference w/Crew Vehicle was chosen to avoid implying that the crew vehicle is always the TLI or HLLV payload mass driver. Additionally, to allow commonality between the crew lander vehicle and the cargo lander vehicle, it is desirable to have similar post-TLI mass sizes. The attribute ratings are

"Negative: Indicating crew vehicle is driver" "Equal: Indicating vehicles are similarly sized" "Positive: Indicating habitat vehicle is driver"

<u>Total Volume</u> of the propellant and pressurant tanks is another measurement of performance. This performance parameter drives the vehicle structure mass, dimensions, and crew egress difficulties. The attribute ratings are

"Less than 75 m³" "Between 76 - 140 m³" "Between 141 - 160 m³" "Between 161 - 175 m³" "Between 176 - 200 m³" "Greater than 200 m³" A summary of how each vehicle performed for the volume attribute is shown in figure 6-7.



Figure 6-7. Volume summary.

<u>Center of Gravity</u> at touchdown is the last vehicle metric. This measurement reflects the relative stability of the lander vehicle. The attribute ratings for this metric are

"Less than 5 m" "5 to 6.5 m" "6.5 to 8 m" "Greater than 8 m"

6.1.2.6 Hardware Readiness

HR is a measure of the TRL and the expected technology readiness difficulty (TRD). The NASA TRL scale (fig. 6-8) is used to provide consistency in the classification of technical status and is applied to the engines, thermal management, pressurization/feed/tank systems, and propellant combination used in each trade option. The TRD is an estimate of the relative difficulty expected to raise the TRL level to a 9. The HR is calculated by multiplying the TRL times the TRD.

 $HR = (TRL) \times (TRD)$

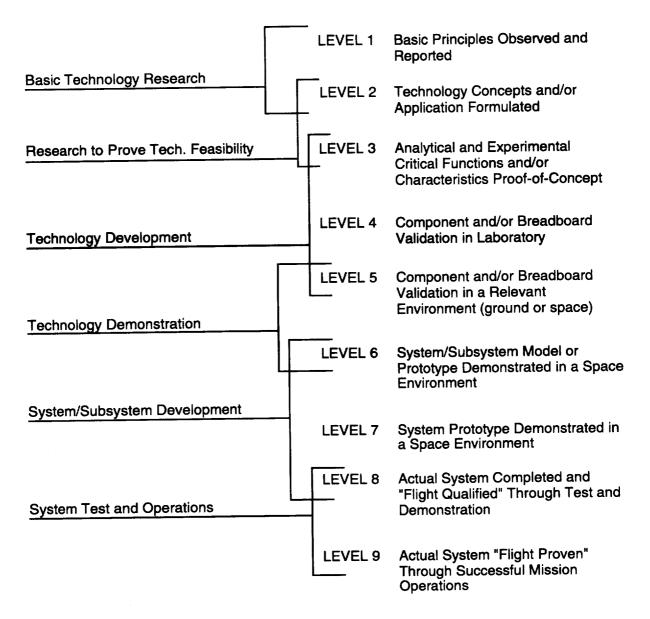


Figure 6-8. NASA technology readiness levels.

Technology Readiness Difficulty is estimated differently for engines, tank/pressurization/feed systems, thermal, and propellants. The following TRD values were used in the trade study to determine hardware readiness level.

Engine	
TRD	
1.0	Minimal Mods, Pressure-Fed, Standard Propellants
0.90	Minimal Mods, Pressure-Fed, Low-Experience Propellants
0.90	Moderate Mods, Pressure-Fed, Standard Propellants
0.80	Significant Mods, Pressure-Fed, Standard Propellants
0.75	Significant Mods, Pressure-Fed, Low-Experience Propellants
0.65	Significant Mods, Pressure-Fed, Exotic Propellants
1.0	Minimal Mods to Pump-Fed, Standard Propellants
0.80	Moderate Mods to Pump-Fed, Standard Propellants
0.70	Significant Mods, Pump-Fed, Standard Propellants
0.60	Significant Mods to Pump-Fed, Low-Experience Propellants
Feed/Pressurization/Tank Sys	tems
TRD	
1.0	Exposure to Standard Propellant/Pressurant Combinations
0.9	Exposure to Low Experience Propellant Combinations
0.65	Exposure to Exotic Propellant Combinations
T 10	
Thermal Systems	
TRD	
1.0	MLI or other Insulating Systems
1.0	Heaters
0.8	Vapor-Cooled Shields
0.6	Refrigeration
Propellant	
TRD	
1.0	Percent Propollant Manufacture T
0.7	Recent Propellant Manufacturing Experience
	Exotic Propellant, Limited EPA Data for Large Quantities

The HR is calculated by multiplying the TRL times the TRD for each of the following vehicle systems: (1 and 2) Return and Lander Engines, (3 and 4) Return and Lander Feed/Pressurization/Tank Systems, (5 and 6) Return & Lander Propellants, and (7) Return Thermal Systems. (Note that there are no discriminators between the vehicles for Lander Thermal Systems). Each of the seven different systems listed are scored for the attribute HR, and these scores will place the system into one of the following attribute ratings:

"Hardware Readiness = 7-9" "Hardware Readiness = 6-6.9" "Hardware Readiness = 4-5.9" "Hardware Readiness = Less than 4" A "7-9" rating implies the hardware is ready for phase C/D. A "6-6.9" rating implies that predictable development is required to support phase C/D. A "4-5.9" rating implies that some risk is associated with development to phase C/D. And, a "less than 4" rating implies that significant risk is associated with advanced development, and concerns exist that could preclude the use of the hardware.

A summary table showing the TRL, TRD and HR ratings for each of the trades is provided in table 6-III.

6.1.2.7 Evolution

The *evolution* subcriteria provide positive consideration in the trade study for propulsion systems that have the potential for alternate mission scenarios. The *evolution* subcriteria are categorized using different *evolution* scenarios, and the trade vehicles are evaluated for the degree to which they are able to meet these evolutionary scenarios. The evolutionary scenarios considered in the trade study are (1) Longer Lunar Stay Time, (2) Larger Payloads, (3) Extra Volume for Increased Logistics, (4) In Situ Resource Utilization, (5)Propellant Boiloff Utilization, and (6) Mars Commonality. It should be emphasized that the evolution requirements need more definition, and this affects the ability of this subcriteria to strongly distinguish the evolution potential of the different trade vehicle options.

Longer Lunar Stay Time is measured by placing the return propulsion system for different vehicle trade options into the different lunar stay categories defined below:

Category 1: The propulsion system has an unlimited lunar stay time. The propellants are completely "lunar storable," with no power requirements to maintain temperatures above freezing or below boiling. The propulsion system is mechanically inactive during the lunar stay. Note that none of the trade alternatives fits into this category.

Category 2: The propulsion system essentially has an unlimited lunar stay time, affected linearly only by increasing total energy requirements with increasing lunar stay time. It has low lunar night power requirements and no lunar day power needs. The propulsion system is mechanically inactive during the lunar stay.

Category 3: One propellant is storable as described in attribute ranking 2, above. The other propellant (LO₂ in this trade study) has no heating requirements but must have an increase in MLI or incorporation of vapor-cooled shields for a 6-month stay. For a 1-year stay, a refrigeration or reliquifaction system is recommended, but this would be traded with the weight, complexity, and HR of these systems compared to designing for the expected boiloff. Active venting is required.

Category 4: Both propellants (LO₂ and CH₄ in this trade study) have no heating requirements but require an increase in MLI or incorporation of vapor-cooled shields for a 6-month stay. For a 1-year stay, two separate refrigeration or reliquifaction systems are recommended, but this would be traded with the weight, complexity, and HR of these systems compared to designing for the expected boiloff. Active venting and periodic propellant management are required.

		Trade 1	Trade 2	Trade 3	Trade 4	Trade 5	Trade 6	Trade 7	Trade 8	Trade 9*	Trade	Trade	Trade	Trade	Trade
	Return Stage	Baseline	N2H4/	N2H4/	M20/	CH ₄ /	MMH/	CH4/	I II.		10*	11	12	13	14*
	-		LO ₂	CPF	NTO	LO ₂	NTO	LO ₂	LH ₂ / LO ₂	single	1 and 1/2	N ₂ H ₄ / CPF	LH ₂ /	LH ₂ /	1 and 1/2
Return Stage	Pressurization	pressure	pressure	pressure	Press.	pressure	pump	pump	pump	stage	stage		LO ₂	LO ₂ pressure	D.C.
	1 1 0				Opt.	·			Punp	stuge	stage	pressure	on	pressure	IME Stage
	Lander Stage	Vehicle	LH ₂ / LO ₂	LH ₂ /	LH ₂ /	LH ₂ /	LH ₂ /	LH2/	LH ₂ /	LH ₂ /	LH ₂ /	both	both	IME:	LH ₂ /
			1.02	LO ₂	LO ₂	LO ₂	LO2	LO ₂	LO ₂	LO ₂	LO ₂	stages	stages	LH/LOX	LO ₂
RETURN	TRL	9	5	6											
ENGINE				5	5	5	5	6	7	6	6	5	3	5	3
	Difficulty	1	0.75	0.65	0.8	0.75	0.7	0.6	1	0.8	0.8	0.65	0.7	0.8	0.7
	HR	9	3.75	3.25	4	3.75	3.5	3.6	7	4.8	4.8	3.25	2.1	4	2.1
					-										
RETURN	TRL	7	7	5	7	7	7	7	7	7	7	5	3	7	3
TANK/PRESS	Difficulty	1	1	0.65	1	0.8	1	0.8	1		1	0.65	1	1	1
/FEED	HR	7	7	3.25	7	5.6	7	5.6	7	7	7	3.25	3	7	_
			I		_			5.0			<u> </u>	3.23	3	/	3
RETURN	TRL	7	7	5	7	7	7	6	6	6	6	5	6		
THERMAL	Difficulty	1	1	1	1	1	1	1	1	1	1	$\frac{1}{1}$		6	6
MANAGEMENT	HR	7	7	5	7	7	7	6	6	6			1	1	1
				·					0	0	6	5	6	6	6
RETURN	TRL.	9	9	5	9	7	9	7	9	9	9	<u> </u>			
PROPELLANT	Difficulty	1	-1	0.7	1	1	$-\frac{1}{1}$	$-\frac{i}{1}$		_		5	9	9	9
	HR	9		3.5		7		-	1	1	1	0.7	1	1	1
				5.5	9		9	7	9	9	9	3.5	9	9	9
LANDER *	TRL	7	7	7	7	7	7	7	7						
ENGINES	Difficulty	1		$-\frac{1}{1}$	1	$-\frac{i}{1}$	$\frac{1}{1}$		_	9	9	5	3	3	9
	HR	7	7	$-\frac{1}{7}$	7	$\frac{1}{7}$		1	1	1	1	0.65	0.7	0.7	1
		<u> </u>			/	/	7	7	7	9	9	3.25	2.1	2.1	9
ANDER	TRL	7	7 1	7	7	7	7	7			<u> </u>				
TANK/PRESS	Difficulty	1	$-\frac{i}{1}$	1	$\frac{1}{1}$				7	9	7	5	3	3	6
FEED	HR	7	-7	$-\frac{1}{7}$	7	1	1	1	1	1	1	0.65	1	1	1
		'				7	7	7	7	9	7	3.25	3	3	6

Table 6-III. Hardware Readiness Summary

* The single-stage and stage-1/2 vehicles are credited with an engine TRL=9, reflecting the fact that there are no separate engines for landing.

Category 5: LO₂/LH₂ cryogenic systems do not require heaters but must have active venting and propellant management during the lunar stay. For a 6-month lunar stay, integrated vapor-cooled shields are required, reducing the LO₂ boiloff by 95% and reducing the LH₂ boiloff by 50% compared to only 2-in. of MLI. For a 1-year lunar stay, two separate refrigeration or reliquifaction systems are required with integrated vapor-cooled shields.

Larger Payload is measured as the post-TLI mass cap (96 mt) minus the habitat TLI vehicle mass plus the post-TLI mass cap minus the Crew Mission TLI Vehicle Mass. The purpose of this attribute is to measure the extra payload benefits for vehicle options should the HLLV be designed for a 96 mt post-TLI requirement. The attribute ranges are

"Less than 0.5 mt" "Between 0.5 - 1.0 mt" "Between 1.0 - 1.5 mt" "Between 1.5 - 2.5 mt" "Greater than 2.5 mt"

<u>Extra Volume for Increased Logistics</u> is measured by comparing the propellant tank and staging volumes with the shroud limitations of the HLLV. This measurement is strictly a volume comparison and does not consider cg limitations or effects on vehicle design. Three attribute ratings were defined as

"Less than 20 m³ available" "Between 20 - 35 m³ available" "Greater than 35 m³ available"

In Situ Resource Utilization compares the different trade options for compatibility with possible in situ resource utilization (ISRU), or lunar mining. Because of the abort-to-orbit during descent requirement, various other abort and operational issues, and the 1999 launch requirements, ISRU was not allowed to affect the vehicle design. This measurement considers only the potential of ISRU. The two attribute rating possibilities so far are

"Yes, in situ resource utilization is possible with this propellant (YES)." "No, in situ resource utilization is NOT possible with this propellant (NO)."

<u>Propellant Boiloff Utilization</u> compares the vehicle availability of propellant residuals and boiloff for use in functions other than propulsion. Possible boiloff uses considered in this attribute are RCS propellant, power system reactants, ECLSS, and ISRU support. The two attribute rating possibilities so far are

"Yes, propellant boiloff utilization is possible with this propellant (YES)." "No, propellant boiloff utilization is NOT possible with this propellant (NO)." <u>Mars Commonality</u> is the last *evolution* subcriteria, and it considers the level of applicability the lunar vehicle has toward a Mars mission. Mars vehicle applicability is based on possible ISRU benefits and aeroshell packaging. Both methane and oxygen can be produced on Mars. The roughly defined attribute ratings are

"Improves a Mars mission scenario (PROMOTES)."

"Applies to a Mars mission scenario (SOME)"

"Little Commonality with Mars mission scenario (NONE)."

A vehicle that utilizes both LO₂ and CH₄ or provides large benefits to aeroshell packaging is considered to "PROMOTE" Mars commonality. A vehicle that utilizes LO₂ and not CH₄ is considered to provide "SOME" Mars commonality.

A summary table showing the *evolution* attribute ratings for each of the trades is provided in table 6-IV.

	Trade 1	Trade 2	Trade 3	Trade 4	Trade 5	Trade 6	Trade 7
Ascent Prop/Stage Configuration	MMH/N2O4	LO2/N2H4	CIF5/N2H4	M20/N2O4	LO ₂ /CH ₄	MMH/N2O4	LO ₂ /CH4
Ascent Feed System	Pressure	Pressure	Pressure	high Press.	Pressure	Pump	Pump
Descent Prop	LO2/LH2	LO2/LH2	LO2/LH2	LO2/LH2	LO2/LH2	LO2/LH2	LO2/LH2
EVOLUTION							
Longer stay time	2	3	2	2	2	2	4
Larger payloads	<0.5	<.5	>2.5	0.5-1.0	<0.5	0.5-1.0	1.5 - 2.5
Logistics volume	<20	20-35	20-35	20-35	20-35	20-35	20-35
In situ resource utilization	no	yes	no	no	yes	no	ves
Boiloff utilization	no	yes	no	no	yes	no	ves
MARS commonality	none	none	promotes	none	promotes	none	promotes
					·		<u> </u>
	Trade 8	Trade 9	Trade 10	Trade 11	Trade 12	Trade 13	Trade 14
Ascent Prop/Stage Configuration	LO ₂ /LH ₂	Single	Stage 1/2	CIF5/N2H4	LO2/LH2	LO ₂ /LH ₂	Stage 1/2
Ascent Feed System	Pump			Pressure	IME used	Pressure	IME
Descent Prop	LO2/LH2	LO ₂ /LH ₂	LO2/LH2	CIF5/N2H4	both stage	LO ₂ /LH ₂	stage LO ₂ /LH ₂
EVOLUTION							
Longer stay time	5	5	5	2	4	5	4
Larger payloads	1 - 1.5	<0.5	>2.5	1.5 - 2.5	>2.5	<0.5	>2.5
Logistics volume	20-35	<20	<20	>35	>35	<20	>35
In situ resource utilization	yes	yes	yes	no	yes	yes	yes
Boiloff utilization	yes	yes	yes	no	yes	yes	yes
MARS commonality	some	some	some	promotes	some	none	some

Table 6-IV. Evolution Summary

6.1.3 Summary of Design Criteria Evaluation Data

Each trade alternative is rated with the categories described in the previous section. These ratings are the result of the engineering design process. The manner in which these ratings are used to select the best trades is the trade study selection process. The trade study selection process is described in section 6.2.

6.2 Trade Study Selection Process

Using the AHP, criteria weights are derived from pairwise comparisons performed among criteria of the same hierarchical level. At the lowest reaches of the evaluation hierarchy, the vehicle trade options are assigned the appropriate attribute ratings. The attribute ratings received by each vehicle trade option are fed upward through the weighted levels of the hierarchy. This process produces a quantified conclusion, which rates the vehicle trade options. Calculating the conclusions will be presented in section 6.2.3 but only after first describing the pairwise comparison matrix in section 6.2.1 and the manner in which that matrix is used to calculate criteria weights in section 6.2.2. Finally, section 6.2.4 will describe the sensitivity analysis.

6.2.1 The Pairwise Comparison Matrix

The matrix in figure 6-9 is an example matrix used to pairwise compare the first level criteria with respect to the FLO Propulsion System Study goal. This matrix, as all others used for AHP, contains an equal number of rows and columns. Each row and each column contain all of the elements of one level. The elements of one level are compared, one pair at a time, with respect to their importance to the level above. Thus, each open box of the matrix is assigned a score for the relative importance of one element over another with respect to the hierarchy level above. The scores are chosen from the relative comparison scale shown to the right of the matrix in figure 6-9. The scores should reflect the comparison statement, "ROW element is <u># from scale</u> more *important* than COLUMN element." If the column element is actually more important than the row element, then the value used to describe the comparison should be entered as a negative number. For this trade study, a negative number is distinguished by parentheses.

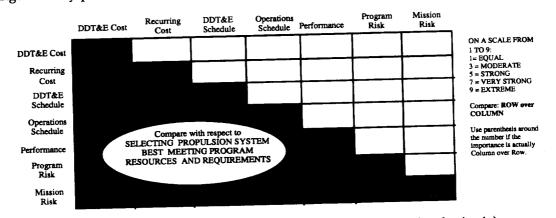


Figure 6-9. Pairwise comparison matrix (example: first-level criteria).

6.2.2 Deriving Criteria Weights Using Pairwise Comparisons

The next step is a computation of the priority vector for the matrix to get the relative weights of each element. In mathematical terms,¹ the matrix is completed by making the diagonal of the matrix equal to 1, and since reverse comparisons take place below the diagonal, reciprocals are inserted below the diagonal to complete the square matrix. The eigenvector of the matrix is then calculated and normalized to provide the priority vector. The priority vector contains the weights of each element, and the sum of all the weights adds to 1. It should be noted that the eigenvalue for the matrix can also be used to calculate a consistency ratio, providing feedback to the user on the consistency of the comparisons made in the matrix.

Thus, pairwise comparisons are collected for every level in the hierarchy from which relative weights are derived. This means that the relative weights of the first level criteria with respect to the goal are calculated, as are the relative weights of the subcriteria with respect to each criterion, and on down the hierarchy. For each set of relative weights calculated with respect to the node above, the weights are proportioned using the priority vector to add up to the weight of the node above. Thus, the cumulative value of all the criteria with respect to the goal equals 1.0, and each set of subcriteria has a cumulative weight equal to the criterion directly above it. The sum of <u>all</u> the subcriteria in level two, totaled under every first-level criteria, totals 1.0 as well. Additionally, the subcriteria are evaluated using attributes (the attributes are pairwise compared for their importance to the subcriteria), and the different vehicle options are rated for each attribute in the hierarchy. The result is a weighted hierarchy where the lower level receives a weighted portion of the level just above it. Thus at the attribute weights equals 1.0.

6.2.3 Calculating the Trade Study Rankings

The trade study rankings are calculated by combining the weights derived through pairwise comparisons with the evaluations performed on each vehicle trade option. The evaluations performed on each vehicle trade option result in assigning an attribute rating to each vehicle option for each attribute in the study. The maximum attribute weight will be awarded to any option that scores the highest rating available. If an option scores a lower rating than the top rating available, it is assigned only a portion of the total attribute weight available. The portion of the attribute awarded to the vehicle is totaled for all attributes as they appear at the bottom of the hierarchy. Thus, for each attribute in the hierarchy, each vehicle trade option has the potential to score the entire weight of that attribute, and when this score is totaled across the attributes level, a maximum score of 1.0 is possible.

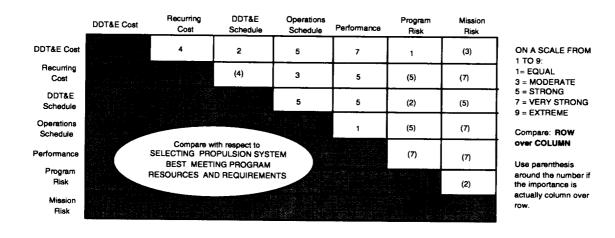
¹ More information is available in the text by Thomas Saaty, <u>Multicriteria Decision Making: The Analytic</u> <u>Hierarchy Process.</u>

6.2.4 Sensitivity Analysis

The sensitivity of the trade conclusions to any criteria or subcriteria can be analyzed using the sensitivity analysis package available with the software used for this trade study.² Sensitivity analyses enable the evaluation of the trade study conclusion under different program level environments. Even though the attribute ratings are relatively inflexible for a particular vehicle and consist of hard numbers and engineering justifications, the program priorities are perhaps more flexible with a changing program environment. As the program environment changes, AHP pairwise comparisons may be reviewed to investigate the effect of the new environment on the trade study conclusions. Sensitivity analysis allows an investigation of "what ifs." It attempts to answer questions such as, "What if the program schedule became more important?" or "What if evolution toward a Mars scenario gains importance?" The sensitivity analysis can show whether the trade conclusion would change under the new program level environment.

² The AHP used in this trade study is performed on software called *Expert Choice* available from Expert Choice, Inc., 4922 Ellsworth Avenue, Pittsburgh, PA 15213, phone (412) 682-3844.

SECTION 7.0 TRADE STUDY RESULTS


The analytical trade study results were calculated using the selection criteria and evaluation methodology described in section 6.0. This section will present the higher level pairwise comparison matrices and their derived criteria weights. The lower level pairwise comparison matrices and the derived weights are available in appendix D. Following the pairwise comparison results are the analytical results of the trade study. These results consist of a list that ranks the alternative vehicles and the sensitivity analysis of that list.

7.1 Pairwise Comparison Matrices and Derived Criteria Weights

The trade study process, AHP, allows the program management for FLO to control the criteria pairwise comparisons for this trade study, while the vehicle evaluations and conceptual designs are made at the engineering level. The pairwise comparison team consisted of project level personnel from the New Initiatives Office supported by the ExPO, the Systems Engineering Division, and the Propulsion and Power Division at JSC. This team completed the top eight pairwise comparison matrices with consensus. The top eight matrices included the matrix for comparing the level-one criteria with respect to the goal and the seven matrices for comparing the level-two subcriteria with respect to the criteria in the level above. These matrices are presented below with the weights derived from them using AHP.

7.1.1 Level One Weighting

The level one comparison matrix compares the seven program level criteria with respect to the program goal of selecting the main propulsion systems. This matrix emphasizes the hard choices that a program must make regarding cost, schedule, performance, and risk. The matrix and the derived weights are presented in figure 7-1.

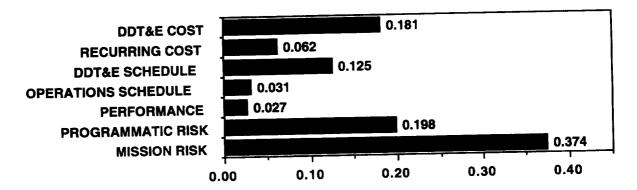


Figure 7-1. First level pairwise comparison matrix and derived weights.

The significant assumptions regarding this matrix and derived weights are listed below:

- 1. DDT&E costs and schedules are considered more important than recurring costs and schedules. This philosophy minimizes the scope of the program, making it more predictable, and keeps the cost of the first missions to a minimum. Past programs have not survived because of their wide scope, with the effect of creating large and unpredictable costs and schedules. Other programs have overemphasized the savings associated with designing for multiple missions. The current program environment suggests clear and achievable short-term goals, and this philosophy is represented in the current pairwise comparisons.
- 2. *Program risk* and *mission risk* are relatively important, and this is reflected as they appear in the pairwise comparisons. Again, this reflects the current environment where overruns and accidents are not acceptable.
- 3. The *performance* rates relatively low when pairwise compared to the other criteria. This is because the definition for *performance* is a "measure of the effectiveness of a vehicle trade option in meeting or exceeding program requirements." Since all vehicles meet the minimum program requirements, additional *performance* is not required at the expense of any other program criteria.

7.1.2 Level Two Weighting

The level two comparison matrices compare the subcriteria under each of the seven program level criteria. These subcriteria comparisons are made with respect to the individual criterion in the level directly above. The matrices and derived weights are presented below, along with the basic assumptions and comments that explain each set of comparisons.

7.1.2.1 Subcriteria With Respect to DDT&E Cost

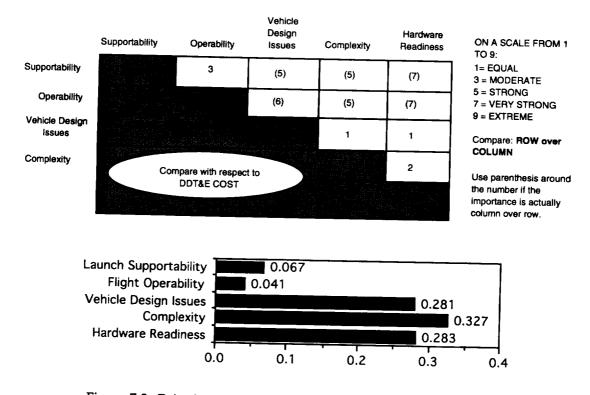
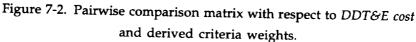



Figure 7-2 shows the pairwise comparisons and derived weights for subcriteria with respect to *DDT&E cost*. The discussion following the figure identifies the key assumptions behind the pairwise comparisons.

The significant assumptions regarding this matrix and derived weights are listed below:

- 1. The importance of *launch supportability* on DDT&E cost is minimized by the experience and hardware of previous programs. However, if an emphasis on *recurring cost* were to be established, then the importance of *launch supportability* on DDT&E cost would also be emphasized.
- 2. The importance of flight operability on DDT&E cost is driven by the avionics requirements associated with abort, lunar stay, and nominal flight. When more operations are required, more synchronization and software verification are also required, and this affects the DDT&E cost. However, the innovations associated with *flight operability* can be minimized to reduce DDT&E cost based on previous experience with nominal operations and some experience with the abort operations. For this reason, *flight operability* is also minimized in its importance to DDT&E cost when compared to vehicle design issues, complexity and HR.

7.1.2.2 Subcriteria With Respect to RECURRING COST

Figure 7-3 shows the pairwise comparisons and derived weights for subcriteria with respect to *recurring cost*. The discussion following the figure identifies some of the key assumptions behind the pairwise comparisons.

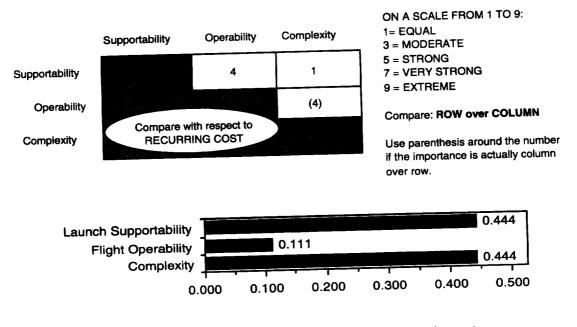


Figure 7-3. Comparison matrix with respect to recurring cost and derived criteria weights.

The significant assumptions regarding this matrix and derived weights are listed below:

- 1. The *complexity* of a system affects the number of spares on hand, the amount of effort required to integrate all the parts, and the number of parts to purchase for each mission. For this reason *complexity* compares relatively high.
- 2. The *launch supportability* of a system also compares high, because ground operations to support a flight are a significant contributor toward the *recurring cost*.
- 3. Launch supportability and complexity compared equally with respect to recurring cost, because it is believed that a good program balance is achieved when vehicle hardware and the ground infrastructure contribute equally to recurring cost.

7.1.2.3 Subcriteria with Respect to DDT&E SCHEDULE

Figure 7-4 shows the pairwise comparisons and derived weights for subcriteria with respect to *DDT&E schedule*. The discussion following the figure identifies the key assumption behind the pairwise comparisons.

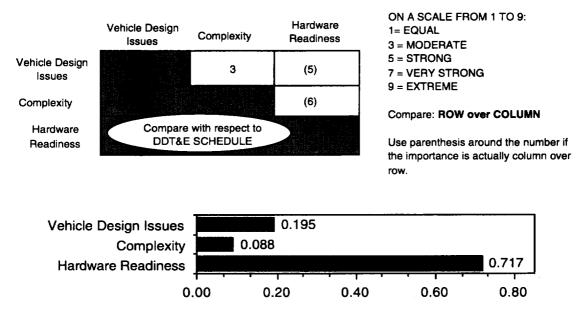


Figure 7-4. Pairwise comparison matrix with respect to DDT&E schedule and derived criteria weights.

The significant assumption regarding this matrix and derived weights is that the HR criteria is considered strongly more important than *complexity* or design issues, since it is believed to drive the *DDT&E schedule*. The other subcriteria, *vehicle design issues*, require effort but without the uncertainty associated with a low HR.

7.1.2.4 Subcriteria with Respect to OPERATIONS SCHEDULE

Figure 7-5 shows the pairwise comparisons and derived weights for subcriteria with respect to *operations schedule*. The discussion following the figure identifies the key assumption behind the pairwise comparisons.

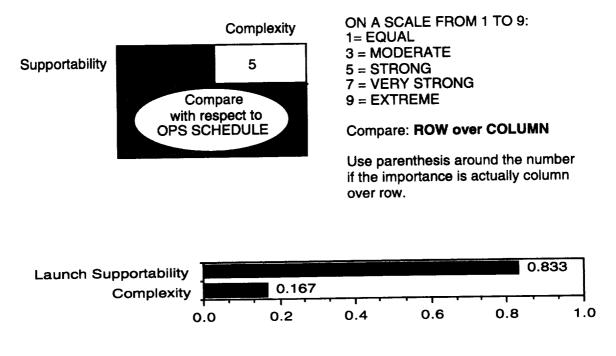
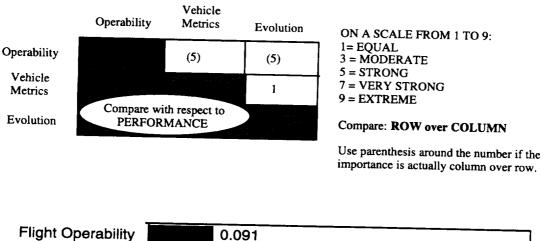



Figure 7-5. Pairwise comparison matrix with respect to *operations schedule* and derived criteria weights.

The significant assumptions regarding this matrix and derived weights is that the *operations* schedule criteria is a measure of how well a vehicle trade option meets production, assembly, qualification, and launch preparation time requirements for a set of flight hardware. Although *complexity* affects this criterion, *launch supportability* specifically addresses this issue and is considerably more important.

7.1.2.5 Subcriteria with Respect to PERFORMANCE

Figure 7-6 shows the pairwise comparisons and derived weights for subcriteria with respect to *performance* The discussion following the figure identifies some of the key assumptions behind the pairwise comparisons.

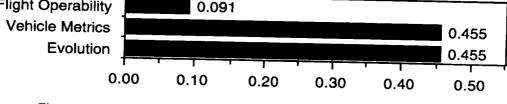


Figure 7-6. Pairwise comparison matrix with respect to *performance* and derived criteria weights.

The significant assumptions regarding this matrix and derived weights are listed below:

- 1. *Performance* is a measure of the effectiveness of a vehicle trade option in meeting program requirements. Since all vehicles meet the minimum requirements, this is a measure of how well the vehicle exceeds those requirements.
- 2. Improving the *vehicle metrics* provides additional program flexibility, and this asset is balanced by improving the vehicle *evolution* characteristics. Thus *evolution* rates equal to *vehicle metrics*.
- 3. If *evolution* were to become a clearly defined objective, with increased importance, then it could be weighted more heavily here. The FLO program is intended to have clearly defined and predictable objectives that exist within a limited budget. For *evolution* to be considered an important criterion, it should be equally limited and clear in scope.

7.1.2.6 Subcriteria with Respect to PROGRAMMATIC RISK

Figure 7-7 shows the pairwise comparisons and derived weights for subcriteria with respect to *programmatic risk*. The discussion following the figure identifies some of the key assumptions behind the pairwise comparisons.

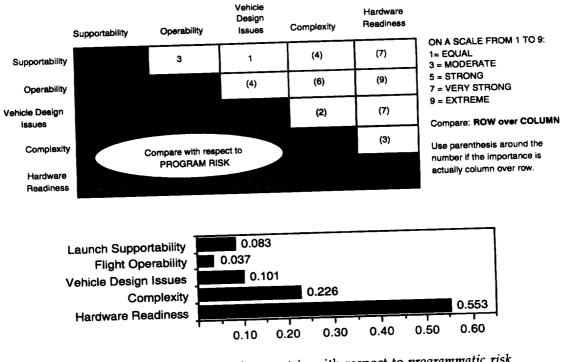


Figure 7-7. Pairwise comparison matrix with respect to programmatic risk and derived criteria weights.

The significant assumptions regarding this matrix and derived weights are listed below:

- 1. Programmatic risk is most affected by the uncertainty associated with the HR. It is clearly evident from the pairwise comparisons that HR is rated considerably more important than the other criteria. *Complexity* is considered moderately important in the weighting, since it is believed that a complex vehicle can offer headaches and overruns, but that HR has the potential to offer showstoppers.
- 2. It was generally accepted during the weighting process that all *vehicle design issues* would have solutions to them. This is not to say that those solutions would be easy or agreeable to everyone. However, since HR poses potential showstoppers, it is believed to be comparatively more important to the *programmatic risk* than *vehicle design issues*.

7.1.2.7 Subcriteria with Respect to MISSION RISK

Figure 7-8 shows the pairwise comparisons and derived weights for subcriteria with respect to *mission risk* The discussion following the figure identifies some of the key assumptions behind the pairwise comparisons.

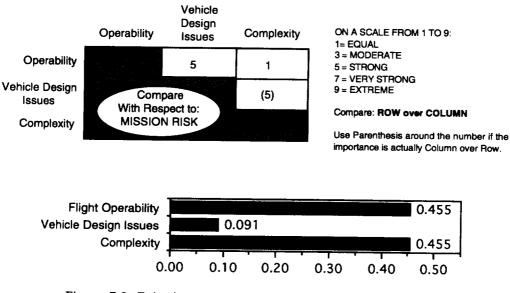


Figure 7-8. Pairwise comparison matrix with respect to *mission risk* and derived criteria weights.

The significant assumptions regarding this matrix and derived weights are listed below:

- 1. The more active the hardware is during the mission, the more opportunities exist for failure. If valves are frequently cycled, such as during multiple venting activities, the chances of failure increase. This relation is captured by the high importance attributed to *flight operability* with respect to *mission risk*.
- 2. Solutions to some *vehicle design issues* may offer more *mission risk* than others, and this is reflected in its relative importance to *mission risk*.
- 3. Complexity is conceptually related to reliability. Complexity measures the number and type of components and subsystems and instrumentation. For this reason, complexity is a significant contributor toward mission risk.

7.1.3 Cumulative Weights of Level-Two Subcriteria with Respect to Goal

The set of pairwise comparisons in section 7.1.2 produced derived criteria weights that agreed with engineering judgment. Another assessment of whether these pairwise comparisons make sense is presented below by calculating the cumulative effect of each subcriterion on the trade study conclusion. For example, the *vehicle design issues* category carries 28.1% of the *DDT&E cost* weight,

19.5% of the DDT&E schedule weight, 10.1% of the programmatic risk weight, and 9.1% of the mission risk weight. The cumulative weight of vehicle design issues can be calculated as follows:

Vehicle

Design Issues = 28.1% (DDT&E cost weight) + 19.5% (DDT&E schedule weight) + 10.1% (programmatic risk weight) + 9.1% (mission risk weight)

OR,

Vehicle

Design Issues = $(0.281 \times 0.181) + (0.195 \times 0.125) + (0.101 \times 0.198) + (0.091 \times 0.374)$ = 0.129

Similarly, the cumulative weights of the seven different subcriteria are calculated and shown in figure 7-9 below:

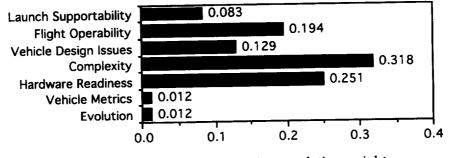


Figure 7-9. Second-level criteria cumulative weights with respect to selecting propulsion system.

The weights above should be questioned for agreement with engineering judgment. Figure 7-9 shows that *complexity* is the most important driver in the trade study for selecting the most design optimum propulsion system. Closely following *complexity* is the HR. The fact that these subcriteria are the drivers for selecting the propulsion system agrees with the engineering judgment that the least complicated vehicle using developed hardware or technology will be the safest, cheapest, most predictable vehicle.

7.2 Analytical Trade Study Results

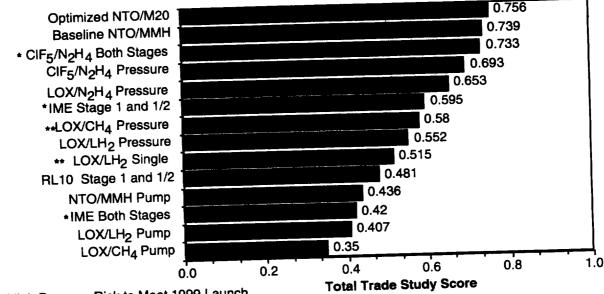

Using the criteria weights described above and the design data summarized in table 7-I, the trade study results were generated using the AHP process described in section 6.2.3. These results are summarized next in section 7.2.1, and are followed with discussion and sensitivity analyses in section 7.2.2.

Table 7-1. Design Data Summary

Access Prov / Stage Times / Ti			Trade 2	Trade 3	Trade 4	Trade 5	Trade 6	Trade 7	Trade 8	Trade 9	Trade 10) Trade 11	Trade 12	Trade 13	Trade 14
Descent Prop Product Prossure Pross	Ascent Prop / Stage	MMH/						LO ₂ /	LO ₂ /	Single					
Descent Prop Pressure Ingn Pressure Pressure IME Status St	•							CH4							
Descent Prop LO2/LD2/LD2/LH2 LO2/LH2 LU2/LH2 LU2/LH2 <td>Ascent Feed System</td> <td>Pressure</td> <td>Pressure</td> <td>Pressure</td> <td></td> <td>Pressure</td> <td>Pump</td> <td>Pump</td> <td>Pump</td> <td></td> <td></td> <td>Pressure</td> <td>IME used</td> <td>Pressure</td> <td>IME</td>	Ascent Feed System	Pressure	Pressure	Pressure		Pressure	Pump	Pump	Pump			Pressure	IME used	Pressure	IME
LH2 LL2 LU2 LU2 <thlu2< th=""> <thlu2< th=""> <thlu2< th=""></thlu2<></thlu2<></thlu2<>	Descent Prop	LO ₂ /	100/	100/		1 100	1.00		1.0.1		1			1	stage
GROUND SUPPORTABILITY Lander Operability Index Return Operability Index 0.4 0.45 0.48 0.41 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 <th< td=""><td>•</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>LO2/LH2</td></th<>	•			-											LO2/LH2
Lander Operability Index 0.44 0.57 0.45 0.45 0.58 0.58 0.51 0.44 0.57 0.58 0.58 0.55 0.55 0.58 0.58 0.52 2.5 1.1.5 P 0.5 0.5 1.1.5		<u> </u>					<u> </u>	<u>+</u> -	Lus			- 04	stage	LH2	
Return Operability Index 0.66 0.66 0.62 0.61 0.61 0.42 0.71 0.75 0.85 0.68 0.69 0.74 0.75 0.75 0.85 0.68 0.69 0.71 0.75 0.75 0.75 0.85 0.85 0.75 0								1				1			
Heatur Operability Mex 0.66 0.59 0.66 0.62 0.61 0.51 0.48 0.71 0.75 0.65 0.68 0.79 0.78 PLIGHT OPERABILITY 4 5 4 4 5 8 8 12 8 7 4 7 6 8 No. of Fliph Ops 64 69 64 64 71 85 85 90 90 28 87 58 86 OppA/Activity 2 21 2 26 2 25			0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.42	0.41	0.63	0.58	0.44	0.50
Light OPERABILITY Image of the second of		0.66	0.59	0.65	0.66	0.62	0.61	0.51	0.48				-		
No. of Flight Ops No. of Light Ops Ope/Activity Ga 2 Ga 2 <thg< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.09</td><td>0.78</td></thg<>														0.09	0.78
No. of High Ups No. of Lines Surface 64 69 64 71 85 85 90 89 90 26 87 58 85 No. of Lines Surface 2 21 2 26 2 25 25 25 28 2 25 25 25 28 2 25 25 25 25 28 2 25 25 25 28 2 25 25 25 28 2 25 25 25 28 2 25 25 25 28 2 25 25 25 28 2 25 25 28 2 25 25 28 2 25 25 28 <td></td> <td></td> <td></td> <td>4</td> <td>4</td> <td>5</td> <td>8</td> <td>8</td> <td>12</td> <td>8</td> <td>7</td> <td>4</td> <td>7</td> <td>6</td> <td></td>				4	4	5	8	8	12	8	7	4	7	6	
No. 10 Lufar Surface 2 21 2 <th2< th=""> 1 1 1</th2<>		1		64	64	71	85	85	90	89	90	26	1 - 1		1 - r
VEHICLE DESIGN ISSUES Abort Response Time -0.5 NP -1.5 P -1.15 P -1.5 P -0.5 NP -0.5 NP -1.5 NP -1.5 P -0.5 NP -0.5 NP -1.5 NP -1.5 P -0.5 NP -0.5 NP -1.5 NP -1.5 P -0.5 NP		2	21	2	2	26	2	25	25	25	28				
Abort Response Time 40.5 NP 15 NP 11.5 P 51.5 NP 11.5 P 60.5 NP 11.5 NP <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td> -' </td>				l			l								-'
Debris Damage Immunity Stage Separation - Fré-in-hole Medund, (No. Faultis: des, asc, abb) protected fat fat		-0.5 NP			-0 E NID	A E ND	4 5 10		1						
Stage Separation - Frienk-hole protected protected protected protected protected protected second prot			20.0 14	KU.5 NF	<0.5 MP	<0.5 MP	1.5 NP	1-1.5 P	1-1.5 P	.5-1.5 NP		<0.5 NP	1-1.5 P	<.5 NP	1-1.5 NP
Stage Separation - Fire-in-hole eng n flat		protected	protected	protected	protected	protected	protected	orotected	protected	exposed		protected	n minata d		
Redund. (No. Faults: des.asc.abt) hole	Stage Separation - Fire-in-hole				-	I					-	l.			
Leakage Potential Iow moderate Iow <	Bedund (No. Foulth: doe oos alw)						hole	hole				ina.	mat	nat	
COMPLEXITY Index Index <thindex< th=""> Index Index</thindex<>								1 · ·		0,1,0		1,1,1	1,1,1	1,1,1	
Components Internal Materian Note	-	IOM	moderate	low	low	moderate	low	moderate	high	high	high	low	high		high
Components number No. Active Return 140 100 90 90 110 323 331 382 364 376 90 181 75 154 Comp. Components 109 121 109 109 117 130 128 113 80 86 64 96 108 67 Number of Subsystems 11 12 11 11 12 12 13 15 7 7 8 12 11 67 Number of Subsystems 11 12 11 11 12 12 13 15 7 7 8 12 11 6 VEHICLE METRICS 222 190 184 184 201 227 293 306 208 208 95 295 222 216 Post TLI Mass (m1 96.5 95 87.2 94.2 100.1 92.4 139 24 25 55 167.9 D		516	470	460	460	480	693	701	752	432	440	207	207	400	
Comp. Rating for No. Unique Components 109 121 109 109 117 130 128 113 80 86 64 96 108 67 Number of Subsystems 11 12 11 11 12 12 13 15 7 7 8 12 11 6 Number of Instrument Locations 222 190 184 184 201 277 293 306 208 95 295 222 216 Post TLI Mass (mi) 96.5 95 87.2 94.2 100.1 92.5 92.4 93.5 101.4 87.4 91.2 70.9 95.3 67.9 Delta Habitat - Ascent Mass 154.5 152.3 135.4 149.8 17.4 7.3 7.3 8.5 6.1 5.9 4.8 4.8 9.2 5.5 12.4 4.8 4.8 3.25 2.1 4 2.1 13.9 4.8 4.8 3.25 2.1 4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TUL</td> <td>440</td> <td>221</td> <td>30/</td> <td>400</td> <td>2/6</td>										TUL	440	221	30/	400	2/6
Rating for No. Unique Components 109 121 109 109 117 130 128 113 80 86 64 96 108 67 Number of Subsystems 11 12 11 11 12 12 13 15 7 7 8 12 11 6 Number of Subsystems 222 190 184 184 201 277 293 306 208 208 95 295 222 216 Post TLI Mass (mt) 96.5 95 87.2 94.2 100.1 92.5 92.4 93.5 101.4 87.4 91.2 70.9 95.3 67.9 Volume of Prop Tanks 154.5 152.3 135.4 149.8 173.4 148 152 179 218 169 45.4 128 180 121.9 12.4 180 121.9 12.4 12.5 15.5 16.4 5.9 16.4 5.9 16.4 5.9 16.9	Raung for No. Active Heturn	140	100	90	90	110	323	331	382	364	376	90	181	75	154
Components Int		109	121	109	100	117	100	100	440						
Number of Instrument Locations 222 190 184 184 201 277 293 306 208 208 95 225 222 216 Post TLI Mass (mt) 96.5 95 87.2 94.2 100.1 92.5 92.4 93.5 101.4 87.4 91.2 70.9 95.3 67.9 VeHICLE METRICS 154.5 152.3 135.4 149.8 173.4 148 152 179 218 169 45.4 128 180 121.9 CG Height @ TD 7.7 7.3 7 7.4 7.4 7.3 7.3 8.5 6.1 5.9 4.8 7 8.4 5.9 Return Engine 9 3.75 3.25 4 3.75 3.5 3.6 7 4.8 4.8 3.25 2.1 4 2.1 Return Engine 9 9 3.5 7 7.9 7 7.3.25 3 7 3 Return Ther	Components			109	103		130	128	113	80	86	64	96	108	67
Number of Instrument Locations 222 190 184 184 201 277 293 306 208 208 95 205 222 216 VEHICLE METRICS 965 95 87.2 94.2 100.1 92.5 92.4 93.5 101.4 87.4 91.2 70.9 95.3 67.9 Volume of Prop Tanks 154.5 152.3 135.4 149.8 173.4 148 152 179 218 169 45.4 128 180 121.9 18.6 124 2.5 5.5 -16.4 8.0 121.9 -4.8 -9.6 -1.1 -0.9 -4.2 -13.9 2.4 2.5 5.5 -16.4 8.4 5.9 Return Engine 9 3.75 3.25 7 6.3 7 6.3 7 4.8 4.8 3.25 2.1 4 2.1 Return Propellant 9 9 3.5 7 7 7 7 7 9		11	12	11	11	12	12	13	15	7	7	8	12	11	6
VEHICLE METRICS Post TLI Mass (mi) 96.5 95 87.2 94.2 100.1 92.5 92.4 93.5 101.4 87.4 91.2 70.9 95.3 67.9 Delta Habitat - Ascent Mass CG Height @ TD 154.5 152.3 135.4 149.8 173.4 148 152 179 218 169 45.4 128 180 121.9 CG Height @ TD 7.7 7.3 7 7.4 7.4 7.3 7.3 8.5 6.1 5.9 4.8 7 8.4 5.9 Return Press/Tanks/Feed 7 7 3.25 7 6.3 7 4.8 4.8 3.25 2.1 4 2.1 Return Press/Tanks/Feed 7 7 3.25 7 6.3 7 7.8 7 3.25 3.5 3.6 7 4.8 4.8 3.25 2.1 4 2.1 Return Press/Tanks/Feed 7 7 7.5 7 7 7 9 9 3.5 9 9 9 3.25 1 7 9 9 <		222	190	184	184	201	277	293	306		•	_			
Volume of Prop Tanks 154.5 152.3 154.4 100.1 92.5 92.4 93.5 101.4 87.4 91.2 70.9 95.3 67.9 Delta Habitat - Ascent Mass -7.3 -5 1.2 173.4 148 152 179 218 169 45.4 128 180 121.9 CG Height @ TD 7.7 7.3 -5 1.2 -7.4 7.4 7.3 -7.3 6.1 5.9 4.8 7 8.4 5.9 G Height @ TD 7.7 7.3 7 7.4 7.4 7.3 7.3 8.5 6.1 5.9 4.8 7 8.4 5.9 Return Press/Tanks/Feed 7 7 3.25 7 6.3 7 6.3 7 7 3.25 3 7 3 7 3 5 9 9 9 3.5 7 7 7 7 7 3 2.5 3 7 3 6 6 <td></td> <td>200</td> <td>666</td> <td>210</td>													200	666	210
Volume of Prop Tanks 154.5 152.3 135.4 149.8 173.4 148 152 179 218 169 45.4 128 180 121.9 Delta Habitat - Ascent Mass -7.3 -5 1.2 -4.8 -9.6 -1.1 -0.9 -4.2 -13.9 2.4 2.5 5.5 -16.4 8.4 HARDWARE READINESS 7.7 7.3 7 7.4 7.4 7.3 7.3 8.5 6.1 5.9 4.8 7 8.4 5.9 Return Engine 9 3.75 3.25 7 6.3 7 7.8 7 3.25 3 7 3.5 3.6 7 7 3.25 3 7 3 7 7 7 3.25 3 7					94.2		92.5	92.4	93.5	101.4	87.4	91.2	70.9	95.3	67 0
Lender Abditat - Ascent Mass -7.3 -5 1.2 -4.8 -9.6 -1.1 -0.9 -4.2 -13.9 2.4 2.5 5.5 -16.4 8.4 CG Height @ TD 7.7 7.3 7 7.4 7.4 7.3 7.3 8.5 6.1 5.9 4.8 7 8.4 5.9 Return Engine 9 3.75 3.25 4 3.75 3.5 3.6 7 4.8 4.8 3.25 2.1 4 2.1 Return Press/Tanks/Feed 7 7 3.25 7 6.3 7 6.6 7					149.8	173.4	148	152	179	218	169				
HARDWARE READINESS 7.7 7.3 7 7.4 7.4 7.3 7.3 8.5 6.1 5.9 4.8 7 8.4 5.9 HARDWARE READINESS 9 3.75 3.25 4 3.75 3.5 3.6 7 4.8 4.8 3.25 2.1 4 2.1 Return Press/Tanks/Feed 7 7 3.25 7 6.3 7 6.3 7 7 3.25 3 7 3 Return Thermal Mgmt 7 7 5 7 7 7 6 7 7						-9.6	-1.1	-0.9	-4.2	-13.9	2.4	2.5			
Hardbringing 9 3.75 3.25 4 3.75 3.5 3.6 7 4.8 4.8 3.25 2.1 4 2.1 Return Press/Tanks/Feed 7 7 3.25 7 6.3 7 7.7 7 3.25 3 7 3.15 Return Thermal Mgmt 7 7 5 7 6.3 7 7 7 3.25 3 7 3 Return Propellant 9 9 3.5 7 7 7 7 7 9 9 9 3.5 9 9 9 9 3.5 9 9 9 9 3.5 7 7 7 7 7 9 7 9 9 3.5 9 9 9 9 3.5 9 9 9 3.5 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 3.25 2.1 7 9 3.25 2.1 7 9	• -	7.7	7.3	7	7.4	7.4	7.3	7.3	8.5	6.1	5.9	4.8	7		
Return Press/Tanks/Feed 7 7 3.25 7 6.3 7 6.3 7 7 7 3.25 2.1 4 2.1 Return Thermal Mgmt 7 7 5 7 6.3 7 6.3 7 7 7 3.25 3 7 3 Return Thermal Mgmt 9 9 3.5 7 7 7 6 6 6 6 5 6 7															
Herdin Press/Tables/Teled 7 3.25 7 6.3 7 6.3 7 7 7 3.25 3 7 3 Return Thermal Mgmt 7 7 5 7 7 7 6 6 6 6 5 6 7		-	,		-			3.6	7	4.8	4.8	3.25	2.1	4	2.1
Return Propellant 9 9 3.5 7 7 9 7 9					-					7	7	3.25	3	7	3
Lander Engines 7							-	6	6	6	6	5	6	6	6
Lander Press/Tank/Feed 7 9 7 3.25 3 7 6 Longer stay time 2 3 2 2 4 2 4 5 5 5 2 5<	•		-				-	7	9	9	9	3.5	9	9	9
EVOLUTION 2 3 2 2 4 2 4 5 5 5 2 5										9	9	3.25	2.1	7	9
Longer stay time 2 3 2 2 4 2 4 5 5 5 2 5 5 Larger Payloads <0.5				7	7	7	7	7	7	9	7	3.25	3	7	6
Larger Payloads <0.5 <.5 >2.5 0.5 .5 5 5 2 5															
Logistics Volume <20 20-35	- ,	- 1					_			-	5	2	5	5	5
In situ Resource Utilizationnoyesnoyes20-3520-3520-35200<20>35>35<20>35Boiloff Utilizationnoyesnonoyesnoyes	· · ·					1						1.5 - 2.5	>2.5	<0.5	>2.5
Boiloff Utilization no yes no yes yes yes yes yes yes yes MARS Commonality none some promotes none yes no yes yes yes yes yes	-									<20	<20	>35	>35	<20	>35
MARS Commonality none some promotes pope promotes pope promotes pope			'			· 1		· 1	· 1	· · ·	yes	no	yes	yes	yes
			· · ·			· ·		· · ·	· 1		· ·	no	yes	yes	yes
		110110	30110	promotes	TIONE	PROTHOTOS	none	promotes	some	some	some	oromotes	some	none	some

7.2.1 Trade Alternative Rankings and Discussion

The design data from the detailed evaluations of each vehicle were entered into AHP using the criteria and weights derived with FLO program management. The design data is summarized in section 5.4 and the detailed data sheets are available in appendix A. The criteria pairwise comparisons and the derived criteria weights are disclosed in section 7.1 and appendix D. The result of combining the criteria weights with the design data is a list ranking the trade alternatives. The ranking is ordered with the system best meeting the program requirements and resources at the top of the ranking. The rankings of the trade study alternatives are summarized in figure 7-10 and table 7-II below.

* High Program Risk to Meet 1999 Launch

** Does Not Meet Mass Requirement At 100+ mt

Figure 7-10. Trade study rankings (total possible score of 1.0).

The rankings in table 7-II and figure 7-10 show the optimized N₂O₄/M₂O return stage with the baseline LO₂/LH₂ RL10 lander stage as the number one choice for the propulsion system in best meeting the FLO program resources and requirements. This number one ranking assumes that the optimized return stage can be developed by the 1999 launch date, which is considered to be feasible if advanced development is started immediately. If advanced development funding is not available, then the optimized engine might not make the 1999 launch requirement, and the baseline return stage would become the number one choice in meeting the FLO program resources and requirements.

Trade No.		Return Stage	Londor Store	
	Return Stage Description	Pressurization	Lander Stage Description	TOTAL
4	Optimized N2O4/M20	Pressure	Baseline LO2/LH2	.756
1	Baseline N ₂ O ₄ /MMH	Pressure	Baseline LO ₂ /LH ₂	.739
11	*CIF5 on Both Stages	Pressure	CIF ₅ Pressure	.733
3	CIF5/N2H4	Pressure	Baseline LO ₂ /LH ₂	.693
2	LO2/N2H4	Pressure	Baseline LO ₂ /LH ₂	.653
14	*IME LO2/LH2 Stage 1-1/2	Pump	IME Stage 1-1/2	.595
5	**LO2/CH4	Pressure	Baseline LO ₂ /LH ₂	.580
13	LO ₂ /LH ₂	Pressure	Baseline LO2/LH2	.552
9	LO2/LH2 Single Stage	Pump	Single	.515
10	RL10 LO2/LH2 Stage 1-1/2	Pump	RL10 Stage 1-1/2	.481
6	N2O4/MMH Pump	Pump	Baseline LO ₂ /LH ₂	.436
12	*IME LO2/LH2 Both Stages	Pump	IME LO ₂ /LH ₂	.420
8	LO2/LH2 Pump	Pump	Baseline LO ₂ /LH ₂	.407
7	LO2/LH2 Pump	Pump	Baseline LO ₂ /LH ₂	.350

Table 7-II. Trade Study Rankings: (Total Possible Score of 1.0)

High program risk to meet 1999 launch

** Does not meet TLI mass requirement

The ClF5/N2H4 advanced engine designs occupy the number three and number four ranking positions in the trade study. The trade with ClF5/N2H4 on both stages occupies the number three ranking. This high ranking shows the effect of having the low complexity, the low number of operations, and the rapid abort response time provided by a storable, hypergolic, pressure-fed propulsion system on both the lander and return stages of the vehicle. ClF5/N2H4 on both stages is currently restricted from a higher ranking by the HR level. The HR level of ClF5 is not only low, it would require dedicated and well-funded effort to bring the ClF5/N2H4 propulsion system to maturity by the 1999 launch goal. For the propulsion system with ClF5/N2H4 on both the lander and return stages, this effort would include development of two separate stages, with throttling on the lander stage, and the effort required would be an "Apollo type" effort. The effort for the ClF5/N2H4 on the return stage with RL10s on the lander stage would be simpler without throttling, but funding should start immediately if the 1999 launch date is to be met.

The IME stage-and-a-half trade occupies the sixth ranking in the trade study, even though this trade also may have difficulty meeting the 1999 launch date. This trade ranks high by virtue of its low number of components on the stage-and-a-half design combined with the simplified design of the IME over other pump-fed engines. The IME design does not require redundant engines, because it

operates with redundant pumps, turbines, and feed-system components upstream of the engines. The benefits of a low total complexity for the entire vehicle, however, are mitigated by a relatively high complexity for the return stage, compared to the higher ranking storable, pressure-fed stages. The HR is the issue, however, that presents the most difficulty for the IME. There are numerous technology issues, which could preclude the selection of the IME, that should be investigated before selection as a FLO or SEI propulsion system is made.

7.2.2 Trade Rankings Sensitivity Analysis

Sensitivity analysis is a study of the effects of changing criteria weights on the trade study conclusion. The results of this analysis tend to highlight rankings that are sensitive to small changes in weights and allow increased confidence in rankings that are insensitive to criteria weight changes. The method used to perform the sensitivity analysis is to (1) select a set of alternatives smaller than the entire set of trade alternatives, and (2) generate dynamic graphs showing the effect on the trade conclusion by changing criteria weights. This set of trades selected shall be a set of seven or fewer trades for reasons dictated by a software limitation and by the practical need to avoid confusingly large sets of data.

The sensitivity analysis for this study was investigated for changing program level criteria weights. For example, this sensitivity analysis answers the question, "What if the importance of DDT&E cost is increased or the importance of DDT&E schedule is decreased?" The selection of the trades used in the sensitivity analysis is described in sections 7.2.2.1; the results of that analysis are presented by describing the graphs in Section 7.2.2.2.

7.2.2.1 Selecting the Set of Trades for Sensitivity Analysis

The sensitivity analyses that are presented in this section were intended to address the host of questions regarding the weights of the program-level criteria (first level criteria) and how changes in those weights affect the trade conclusion. To simplify this analysis, the number of trades was reduced from 14 to 6. The particular trades that were eliminated for these sensitivity analyses are presented below:

- 1. LO2/N2H4 and LO2/CH4 pressure-fed return stages (with baseline lander stage) were eliminated from the sensitivity analyses. The CIF5/N2H4 pressure-fed vehicles cover many of the advantages that the two LO2 vehicles offer. All engines have evolution potential for a Mars mission. There may be other sensitivity analyses that could be run to take a closer look at the pressure-fed return stages, but this analysis is intended to be more general in scope.
- 2. Pressure-fed LO₂/LH₂ was eliminated by reason of excessive volume.
- 3. Single-stage LO₂/LH₂ was eliminated because it exceeds the TLI mass limit.

- 4. Pump-fed N₂O₄/MMH, LO₂/LH₂, and LO₂/CH₄ two-stage vehicles were eliminated because they have numerous parts, numerous operations, low HR levels, and many design difficulties.
- 5. The IME vehicle on both stages was eliminated in favor of including the IME stage-and-onehalf vehicle. The remaining IME Stage 1-1/2 is the most advanced concept in line with the IME philosophy.

7.2.2.2 Sensitivity Analysis of Selected Trades

The following sensitivity graphs focus on the six trades remaining after the down selection described above. They are (1) the baseline, (2) the optimized baseline, (3) the two-stage ClF5 with ClF5/N2H4 on both stages, (4) the two-stage ClF5 with RL10 cryogenic engines on the lander stage, (5) the IME Stage 1-1/2, and (6) the RL10 Stage 1-1/2.

The graphical results should be interpreted with the following conventions:

- The graphs show relative rankings as a function of criteria weight. The relative rankings are presented as a normalized percent of the total possible score for each trade in the sensitivity analysis.
- The intersections of the vertical line with the lines representing each trade provide the corresponding rankings of the trades, as read from the top of the vertical line down.
- The position of the vertical line represents the derived criteria weight used to determine the trade rankings.
- Shifting the vertical dotted line to the right or left represents changing the derived weight of the criteria.

These results are presented below. The first graph, figure 7-11, shows the sensitivity of the ranking to changes in the weight of DDT&E cost. This graph shows that the trade study rankings are insensitive to changes in the weight of DDT&E cost. The reason for this insensitivity can be understood by recognizing that the important subcriteria under DDT&E cost are also the important subcriteria driving the overall trade study selection. To verify this reason, see figure 7-1 showing the subcriteria weights that affect DDT&E cost, and compare these weights to the cumulative weights of the subcriteria as they affect the trade study conclusions in figure 7.9. By comparing these two figures, it can be seen that DDT&E cost shares the same important subcriteria as the cumulative subcriteria list. For example, the most important subcriteria to the trade study conclusions and to DDT&E cost are *complexity* and *HR*.

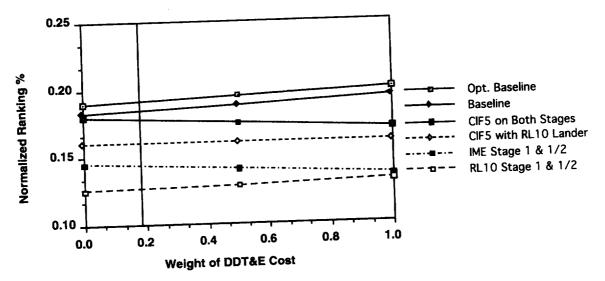


Figure 7-11. Sensitivity of rankings to DDT&E cost.

The next graph (fig. 7-12) shows the sensitivity of the trade study rankings to the criteria weight of *recurring cost*. This graph shows that the weight of *recurring cost* would have to be raised from 0.062 to approximately 0.20 before any change in the top ranking would occur. The change that would occur is that the optimized baseline trade would be replaced with the CIF5/N2H4 vehicle having CIF5 on both stages. This result occurs because the pressure-fed, storable CIF5/N2H4 vehicle is dramatically less complex than any pump-fed cryogenic lander stage. This hardware simplicity, combined with the reduced operations and checkout required for servicing, produces the result that if *recurring cost* were to drive the trade study, CIF5/N2H4 on both stages would be the preferred answer.

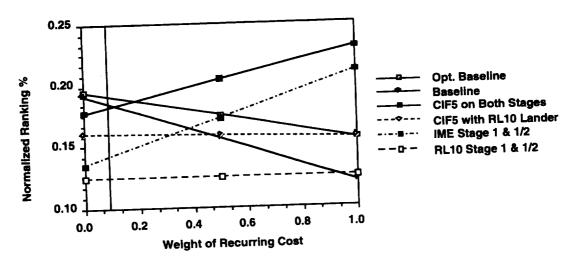


Figure 7-12. Sensitivity of rankings to recurring cost.

The next graph (fig. 7-13) shows the sensitivity of the trade study ranking to the criteria weight of DDT&E schedule. This graph shows that the weight of DDT&E schedule would have to be raised from 0.125 to approximately 0.25 before any change in the top ranking would occur. The result of increasing the weight of DDT&E schedule is to change the ranking in favor of the baseline. Note, however, that if the DDT&E schedule weight were reduced, the ClF5 vehicle would again approach the top ranking.

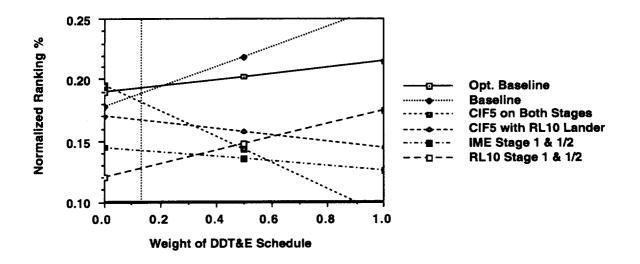


Figure 7-13. Sensitivity of rankings to DDT&E schedule.

The next graph (fig. 7-14) shows the sensitivity of the trade study ranking to the criteria weight of the *operational schedule*. This graph shows that the weight of *operational schedule* would have to be raised from 0.031 to approximately 0.15 before any change in the top ranking would occur. The change that occurs by emphasizing the schedule associated with recurring operations is to raise the ranking for ClF5/N2H4 on both stages to the highest position. Note that the IME Stage 1-1/2 becomes the highest ranking when *operations schedule* is considered a major factor in selecting the FLO vehicle (weight > 70%). This is because the IME Stage 1-1/2 trade has a better launch operability index than the ClF5/N2H4 engine, primarily because of the reduced number of stages.

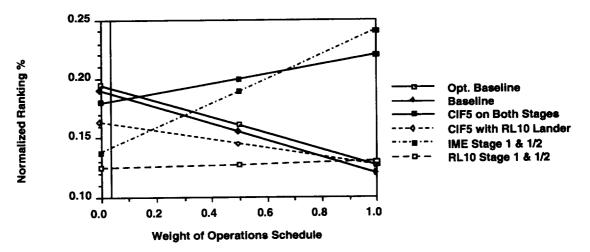


Figure 7-14. Sensitivity of rankings to operational schedule.

The next graph (fig. 7-15) shows the sensitivity of the trade study ranking to the criteria weight of *performance*. This graph shows that the weight of *performance* would have to be raised from 0.027 to approximately 0.19 before any change in the top ranking would occur. Recall that *performance* is defined as the ability to exceed vehicle requirements. *Performance* is measured by looking at the number of operations required to fly the vehicle, the post-TLI mass of the vehicle, and the evolution potential for the vehicle. If criteria weight for *performance* is increased, the lighter trades rank higher. Even though the IME Stage 1-1/2 vehicle is the lightest trade, the ClF5/N2H4 trades also rank high when the weight for *performance* is increased. This is due to the absence of boiloff for longer stay times and the minimized operations with a pressure fed-storable propellant.

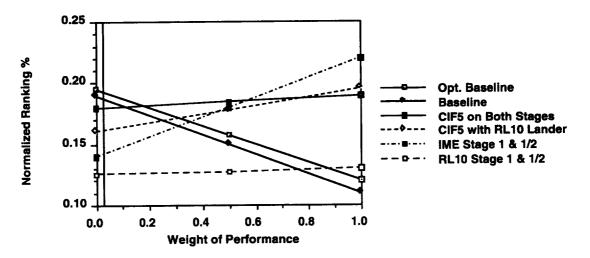


Figure 7-15. Sensitivity of rankings to performance.

The next graph (fig. 7-16) shows the sensitivity of the trade study ranking to the criteria weight of program risk. This graph shows that the weight of program risk would have to be raised from 0.198

to approximately 0.5 before any change in the top ranking would occur. This increase in criteria weight would put the baseline trade back in the top ranking, mostly because of its higher HR. Similarly, if the weight for *program risk* were reduced, the trade with ClF5 on both stages would become the highest ranking.

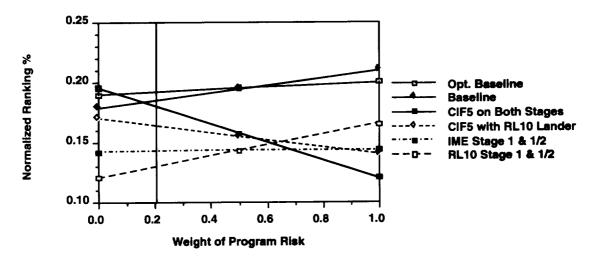


Figure 7-16. Sensitivity of rankings to program risk.

The next graph (fig. 7-17) shows the sensitivity of the trade study ranking to the criteria weight of *mission risk*. This graph shows that the weight of *mission risk* would have to be raised from 0.374 to approximately 0.55 before any change in the top ranking would occur. By increasing the weight for *mission risk*, the trade with CIF_5/N_2H_4 on both stages rises to the top of the rankings because it is the simplest and most inactive system. The cryogenic pump-fed trades fall with increased *mission risk* weights, reflecting the more complex hardware and the higher number of operations required for cryogenic fluid management.

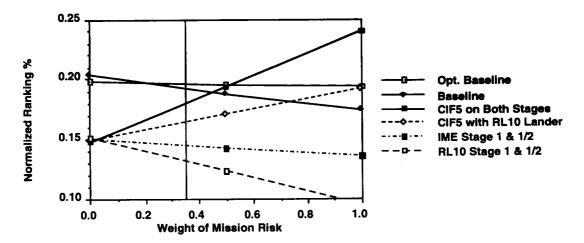


Figure 7-17. Sensitivity of rankings to mission risk.

7.2.2.3 Sensitivity Analysis Conclusions

The sensitivity analysis performed on the level-one criteria with respect to the trade study conclusions shows that the results are fairly insensitive to realistic changes in the weighting. All the weights except for *mission risk* need to be at least doubled before a change in the ranking occurs. *Mission risk* has to be raised above 50% from its already dominant 37.4% weight before a change in the conclusions occurs. The conclusions are similarly insensitive to reductions in criteria weights, and this provides confidence in the trade study conclusions.

SECTION 8.0

RECOMMENDATIONS

The results and insensitivities presented in section 7.0 suggest certain recommendations to conclude this trade study report. These recommendations are summarized in the sections below.

8.1 Best Option

The trade study showed that the baseline propulsion system or the optimized baseline propulsion system should be selected for a 1999 launch. The optimized baseline should be chosen to simplify the system if 1993 funds become available for advanced development of a new ascent engine. If startup funds for a 1999 launch are not available soon, then the recommendation is to stay with the baseline propulsion system to meet the 1999 launch goal.

8.2 Recommended Advanced Technology Development

In the event the 1999 launch goal slips, the recommendation is to pursue certain advanced development programs. The completion of an advanced development program for the ClF_5/N_2H_4 engines and the IME engines could significantly change the outcome of this trade study. If ClF_5/N_2H_4 were hardware ready in the required thrust class, it would be considered the best propulsion system for a lunar return vehicle. Similarly, if the IME were available, it could be considered for the lunar lander stage. There would also be a trade for the IME Stage 1-1/2 and the ClF_5/N_2H_4 on the lander stage.

The ClF5/N2H4 option not only benefits FLO but also shows potential for a Mars return vehicle. The high density and small package reduces the size of a Mars aeroshell compared to any other propellant combination. The storability of ClF5 and hydrazine on the Mars surface provides for a zero boiloff system that is mechanically inactive during the Mars stay. Additionally, ClF5/N2H4 offers the performance necessary to allow the use of a pressure-fed return stage, which offers simplicity and high system confidence. The IME cryogenic pump-fed engines offer the best pump-fed simplicity and performance yet achieved. Its value should not be limited to FLO either and could be applied to space transfer systems and upper stages.

8.3 Trade Study Flexibility to FLO Program Changes

One significance of this trade study approach is the ability to adapt to changing vehicle requirements and changing program environments. For example, the trade rankings presented in this report are a function of the program management environment and reflect the atmosphere of reduced cost, predictable goals, and high mission safety with low risks. If the program environment changes, this will affect the criteria weights, and this in turn will change the trade rankings to conform to the new program environment. The process of revisiting the assumptions used to derive criteria weights and investigating the effect on the rankings is made relatively simple with AHP.

APPENDIX A

This appendix contains the detailed data sheets for each of the 14 trade study propulsion systems, presented in order from Trade #1 through Trade #14. The detailed data sheets summarize the evaluations for each of the trade study propulsion systems for each of the parameters that were measured.

APPENDIX A Trade #1 NTO/MMH

TRADE #1 NTO/MMH PRESSURE FED RETURN STAGE LOX / LH2 PUMP FED LANDER STAGE

GROUND SUPPORTABILITY A1.1

RETURN STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

#2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)

#3) HYPERGOLIC BIPROPELLANTS (3)

#4) EXPENDABLE (10)

#5) NO AUXILARY PROPULSION (10)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) ALL EMA ACTUATORS (8)

#8) NO HEATSHIELD (10)

#9) NO GROUND PURGE (10)

#10) MAIN ENGINES GIMBALLED WITH EMA (5)

#11) FLUIDS (2) ONLY, EXPENDABLE, NO LEAKAGE, LOADED LONG BEFORE COMMIT(10)

#12) AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (6)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) FEW STATIC SEALS ONLY USED IN FLUID SYSTEMS (7)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) PRESSURE FED BIPROPELLANT (9)

RETURN LOI= .66

LANDER STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

#2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)

#3) LO2/LH2, AND MONOPROPELLANT (3)

#4) EXPENDABLE (10)

#5) SINGLE USING TOXIC PROP, AUXIALLRY PROPULSION (4)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) EMA AND ACTIVE PNEUMATICS (4)

#8) NO HEATSHIELD (10)

#9) PNEUMATIC STORAGE, MULTIPLE PURGE (2)

#10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2)

#12) AUTOGENOUS AND AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (5)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITH OUTREMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED , THROTTLE (4.5)

LANDER STAGE LOI= .44

A1.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

Activate Engine - Tank Pyro Iso Valves 1 Activate Tank- Pressurization Pyro Iso Valves 1 Open Hypergolic Engine Valves 1 Separate From Lander Stage Structure 1 TOTAL NUMBER OF ABORT OPERATIONS

# OF FLIGHT OPERATIONS	NOMINAL SCENARIO
20	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) • Settle Ullage (RCS or Other) • Operate Active Vent System
11	Open Solenoid Vent Valves Close Solenoid Vent Valves Mid-Course Correction
	 Open Pneumatic System Open pneumatic regulation system solenoid valves
	 Open Tank Isolation Valves
	Open corresponding 3-way solenoid valves
	Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open Engine Prevalves (Chilldown Engine)
	Open fuel prestart 3-way solenoid valve
	 Open oxidizer prestart 3-way solenoid valve Open Engine Valves
	Open start 3-way solenoid valve
	• Fire Ignitor
	 Open GH2 Autogenous Pressurization Valves
	 Close Engine Valves (Shutdown Engine)
	 Close and vent start 3-way solenoid valve Close Engine Prevalves
	 Close and vent fuel prestart 3-way solenoid valve
	Close and vent oxidizer prestart 3-way solehold valve
	 Close GH2 Autogenous Pressurization Valves
	 Close Tank Pressurization System
	 Close and vent LH2 pressurant regulation
	system and descent tank pressurization solenoid valves
	 Close and vent LO2 pressurant regulation
	system and descent tank pressurization
â	solenoid valves
9	LOI Burn
	Prepressurize Propellant Tanks Open LH2 processories contains
	 Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
	Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	 Open start 3-way solenoid valve
	Fire Ignitor
	Open GH2 Autogenous Pressurization Valves Close Engine Velves (Shutdawa Engine)
	 Close Engine Valves (Shutdown Engine) Close and vent start 3-way solenoid valve
	Close Engine Prevalves
	 Close and vent fuel prestart 3-way solenoid value
	 Close and vent oxidizer prestart 3-way solenoid valve
	 Close GH2 Autogenous Pressurization Valves

Close Tank Pressurization System

- Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
- Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Lander Stage Burn
 - Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Engine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve
 - · Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire lanitor

 - - · Close and vent start 3-way solenoid valve
 - · Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS Return Stage Burn

- · Activate Engine Tank Pyro Iso Valves
 - Activate Tank- Pressurization Pyro Iso Valves
 - · Open Hypergolic Engine Valves
 - Separate From Lander Stage Structure
 - Close Engine Valves
 - Close Pressurization Iso valves
- TEI Burn
 - Activate Tank Pressurization Iso valves
 - · Open Hypergolic Engine Valves
 - Close Engine Valves
 - Close Tank Pressurization valves
 - 1 Mid-Course Correction
 - Activate Tank Pressurization valves
 - Open Hypergolic Engine Valves
 - Close Engine Valves
 - Close Tank Pressurization valves

TOTAL NUMBER OF FLIGHT OPERATIONS

- - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)

A-4

10

6

4

4

64

# OF LUNAR OPERATIO	
0	RETURN STAGE No Lunar Operations Until Liftoff
$\frac{1}{2}$	LANDER STAGE Bleed off Oxidizer Residuals Bleed off Fuel Residuals
2 TOTA	L NUMBER OF LUNAR OPERATIONS

A1.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Lander Stage: Zero Fault Tolerant for engine failure except during terminal phase of descent, one fault tolerant for feed system component failure. Return Stage: Single Fault Tolerant for Ascent and Post Abort. Engine structural filure not credible. Engine mechanical valves are redundant.
ABORT REACTION TIME	Less Than 0.5 Second Without Preparation
STAGE SEPARATION	Not Clean, Some Obstruction Creates "Fire-in-the- Hole" Concerns. The 3 ascent engines protrude down into a hole in the Lander Stage.
DEBRIS DAMAGE IMMUNITY	Immune, since Return Stage Protected & Unused

A1.4 COMPLEXITY

#OF COMPONENTS	COMPLEXITY CATEGORY	DESCRIPTION
		RETURN STAGE
8	1	2 Sets of Quad Check Valves
4	2	2 Sets of series redundant Pressure Regulators
2	2	Pressure Reg Iso Valves
5	2 2 2 3 3	Pyro Isolation Valves
1	3	Helium Tank
2	3	Fuel Tanks
2		Oxidizer Tanks
2 2 2	3	Heat Exchangers
24	2	Biprop Valves
2	2	Burst Disc/Relief Valves
5	2	Fill quick disconnects
6	3 3 2 2 2 3 3 3	EMA TVC actuators
_3	3	Engines
66		Total Return Stage Component Count
		LANDER STAGE
2	3	GHe Tanks (4500 psia)
10	2	GHe Solenoid Valves
6	1	GHe check vales
8	2	GH2 Solenoid Valves
4	2	GOX Solenoid Valves
4	2	Relief Valves (GHe, 60 psia)
2	2	Relief Valves (GHe, 500 psia)
2 4 2 8	2	Regulators, single stage (GHe, 50 psia)
2	2	Regulators, single stage (GHe 450 psia)
8	1	One Dual Set Check valve/RL10 (GH2)

•	2	LH2 Fill and Drain Pneumatic Valves
2	2	LO2 Fill and Drain Pneumatic Valves
2		LH2 T-0 Disconnect
1	3 3	LO2 T-0 Disconnect
]	2	GHe Fill Quick Disconnect
1	2	Engine/Tank Pre valves
8	2	3-Way Solenoid Valves with vent ports
4	2 3	LH2 Tanks with diffusers and start buckets
6	3	LOX Tanks with diffusers and start buckets
2	3	RL10 Throttling Engine Chambers
4	3	Oxidizer Turbopumps
4	3 3 3 3 3 3 2 2	Fuel Turbopumps
4	3	Engine Turbines
4	3	High rpm Gear Box
4	3	Engine Cooldown vent valves
8 4	3	EMA Operated Fuel Throttle Valves
4	2	EMA Operated OX Valves
4	2	Ignitors
4	2	Pneumatically Actuated Engine FeedValves
12	2	3-Way Solenoid Valves with vent ports
20	2 2 2 2	Engine TVC Hydraulic Actuators
8		Hydraulic Accumulator
4	1	Hydraulic Relief Valves
4	2 3	Low pressure pump and recirc chamber
4	3	High Pressure Pump
_4	3	High Flessure Fund
173		Lander Stage Component Count
		TOTAL PROPULISION SYSTEM COMPONENT COUNT

239

TOTAL PROPULSION SYSTEM COMPONENT COUNT

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

516	COMPLEXITY RATING FOR TOTAL # OF COMPONENTS
140	COMPLEXITY RATING FOR # OF ACTIVE RETURN STAGE
109	COMPLEXITY RATING FOR # OF UNIQUE COMPONENTS

# OF SUBSYSTEM	IS DESCRIPTION
# 01 300010121	RETURN STAGE
1	Tank Pressurization
1	Tanks and Feed System
1	Thermal Control -Electrical Heaters
1	Main Engines
4	
·	LANDER STAGE
1	LH2 Tank Pressurant Regulation/Autogenous PressSystem
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
1	LH2 Tank Propellant Gaging Systems
i	Tanks and Feed System
i	Main Engine System (includes actuator and throttling systems
7	
11	TOTAL PROPULSION SUBSYSTEM COUNT

# OF INSTRUMENTATION LOCATIONS	DESCRIPTION
5	RETURN STAGE
9	Temperature Transducers
<u>48</u>	Pressure Transducers
62	Valve Position Indicators (2 per Prop Feed Valve only)
11 9 24 <u>24</u> 64	LANDER STAGE Pressurization/Feed/Vent Systems Temperature Transducers Pressure Transducers Valve Position Indicators (2 per prop prevalve and f/d) Liquid level sensors (3 per tank)
16	Engine Systems (4 RL10's)
36	Temperature Transducers
4	Pressure Transducers
8	Tachometers
<u>32</u>	Thrust Control Indicators (2 per TC)
96	Valve Position Indicators (2 per valve)

222 TOTAL INSTRUMENT LOCATIONS COUNT

A1.5 VEHICLE METRICS

96.5 mt	Post TLI Mass
154.5	Propellant Volume (m^3)
-7.3 mt	△ Habitat - Return Stage Mass
7.7 m	CG Height at Touchdown

A1.6 HARDWARE READINESS (HR)

TRL	X DIFFICULTY	=	HR	
9 7 7 9	1 1 1		9 7 7 9	RETURN STAGE Engines Tanks/Press/Feed Thermal Management Propellant LANDER STAGE
7 7	1		7 7	Engines Tanks/Press/Feed

A1.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY

Unlimited Except By Heater Power None None minimal

APPENDIX A TRADE #2 LOX/N2H4

TRADE #2 LOX / N2H4 PRESSURE FED RETURN LOX / LH2 PUMP FED ENGINE LANDER

A2.1. GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

#2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)

#3) HYPERGOLIC BIPROPELLANTS (3)

#4) EXPENDABLE (10)

#5) NO AUXILARY PRÓPULSION (10)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) ALL EMA ACTUATORS (8)

#8) NO HEATSHIELD (10)

#9) SINGLE GROUND PURGE (9)

#10) MAIN ENGINES GIMBALLED WITH EMA

#11) SINGLE FLUID LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT (4)

#12) AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (6)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) PRESSURE FED BIPROPELLANT (9)

RETURN STAGE LOI=.59

LANDER STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

#2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)

#3) LO2/LH2 , AND MONOPROPELLANT (3)

#4) EXPENDABLE (10)

#5) SINGLE USING TOXIC PROP, AUXIALLRY PROPULSION (4)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) EMA AND ACTIVE PNEUMATIC ACTUATORS (4)

#8) NO HEATSHIELD (10)

#9) PNEUMATIC STORAGE, MULTIPLE PURGE (2)

#10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT (2) #12) AUTOGENOUS AND AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (5)

#13) NO PRECONDITIONING REQUIRED (10) #14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED , THROTTLE (4.5)

LANDER STAGE LOI=.44

A2.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	Activate Engine - Tank Pyro Iso Valves Activate Tank- Pressurization Pyro Iso Valves
1	Open Engine Valves
1	Fire lanitors
1	Separate From Lander Stage Structure
1	TOTAL NUMBER OF ABORT OPERATIONS
5	TUTAL NUMBER OF ABOTT OF ELECTION

# OF FLIGHT OPERATIONS	NOMINAL SCENARIO
20	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) • Settle Ullage (RCS or Other)
	 Operate Active Vent System Open Solenoid Vent Valves Close Solenoid Vent Valves
11	Mid-Course Correction Open Pneumatic System
	 Open pneumatic regulation system solenoid valves
	Open Tank Isolation Valves
	 Open corresponding 3-way solenoid valves
	Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valvesOpen LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve
	 Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	 Open start 3-way solenoid valve Fire Ignitor
	 Open GH2 Autogenous Pressurization Valves
	Close Engine Valves (Shutdown Engine)
	 Close and vent start 3-way solenoid valve
	Close Engine Prevalves
	Close and vent fuel prestart 3-way solenoid valve
	 Close and vent oxidizer prestart 3-way solenoid valve Close GH2 Autogenous Pressurization Valves
	Close Tank Pressurization System
	Close and vent LH2 pressurant regulation
	system and descent tank pressurization
	solenoid valves
	Close and vent LO2 pressurant regulation
	system and descent tank pressurization solenoid valves
9	LOI Burn
	Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	Open LO2 pressurant regulation system and descent tank accounting to a logitude to a logitu
	 descent tank pressurization solenoid valves Open Engine Prevalves (Chilldown Engine)
	Open fuel prestart 3-way solenoid valve
	Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	 Open start 3-way solenoid valve
	Fire Ignitor
	 Open GH2 Autogenous Pressurization Valves Close Engine Valves (Shutdown Engine)
	 Close and vent start 3-way solenoid valve
	Close Engine Prevalves
	 Close and vent fuel prestart 3-way solenoid valve
	Close and vent oxidizer prestart 3-way solenoid valve
	Close GH2 Autogenous Pressurization Valves
	 Close Tank Pressurization System

 Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves

 Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves

Lander Stage Burn

- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Éngine Prevalves (Chilldown Engine)
 - · Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire lanitor
 - Open GH2 Autogenous Pressurization Valves
 - · Close Engine Valves (Shutdown Engine)
 - Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Lander Stade Vent LOX tank in transit **Return Stage Burn** Activate Engine - Tank Pyro Iso Valves

- Activate Tank- Pressurization Pyro Iso Valves
- Open Engine Valves
- Fire Ignitors
- Separate From Lander Stage Structure
- Close Engine Valves
- Close Pressurization valves
- **TEI Burn**
 - Open Pressurization valves
 - Open Engine Valves
 - Fire Ignitors
 - Close Engine Valves
 - Close pressurization valves
- **1 Mid-Course Correction**
 - Open Pressurization valves
 - Open Engine Valves
 - Fire Ignitors
 - Close Engine Valves
 - Close Pressurization valves
- TOTAL NUMBER OF FLIGHT OPERATIONS

10

2

7

5

5

69

# OF LUNAR OPERA		
19	RETURN STAGE Vent LOX tank	
$\frac{1}{2}$	LANDER STAGE Bleed off Oxidizer Residuals Bleed off Fuel Residuals	
21 T	OTAL NUMBER OF LUNAR OPERATIONS	

A2.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Lander Stage: Zero Fault Tolerant for engine failure except during terminal phase of descent, one fault tolerant for feed system component failure. Return Stage: Single Fault Tolerant for Ascent and Post Abort. Engine structural filure not credible. Engine mechanical valves are redundant.
ABORT REACTION TIME	Less Than 0.5 Second Without Preparation
STAGE SEPARATION	FLAT, Clean, The single Return Stage engine does not protrude down into a hole in the Lander Stage.

Moderate

LUNAR LEAKAGE

DEBRIS DAMAGE IMMUNITY Immune, since Return Stage Protected & Unused

A2.4 COMPLEXITY

#OF COMPONENTS	COMPLEXITY CATEGORY	DESCRIPTION RETURN STAGE
8	1	2 Sets of Quad Check Valves
4	2	
	2	2 Sets of series redundant Pressure Regulators
2 5	2	Pressure Reg Iso Valves
1	2 2 2 3	Pyro Isolation Valves
2	3	Helium Tank
2 2	3	Fuel Tanks
<u>د</u>	3	Oxidizer Tanks
1	3 3 2 3	Heat Exchangers
2	2	T-0 Fill/drain valves
	3	T-0 Disconnect
4	2 2 3 2 2	GOX vent valves
3	2	Fill quick disconnects
2	2	Burst Disc/Relief Valves
2	3	EMA TVC actuators
8	2	Biprop Engine Valves
2	2	Ignitors
1	3	Engine
50		Total Return Stage Component Count
		LANDER STAGE
3	3	GHe Tanks (4500 psia)
10	2	GHe Solenoid Valves
6	1.	GHe check vales
8	2	GH2 Solenoid Valves
4	2	GOX Solenoid Valves

APPENDIX A TRADE #2 LOX/N2H4

$ \begin{array}{c} 4\\ 2\\ 4\\ 2\\ 8\\ 2\\ 1\\ 1\\ 1\\ 1\\ 8\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$	2 2 2 2 2 2 2 1 2 2 3 3 2 2 2 2 2 2 2 2	Relief Valves (GHe, 60 psia) Regulators, single stage (GHe, 50 psia) Regulators, single stage (GHe 450 psia) One Dual Set Check valve/RL10 (GH2) LH2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves LH2 T-0 Disconnect CO2 T-0 Disconnect Engine/Tank Pre valves 3-Way Solenoid Valves with vent ports LH2 Tanks with diffusers and start buckets LOX Tanks with diffusers and start buckets RL10 Throttling Engine Chambers Oxidizer Turbopumps Fuel Turbopumps Engine Turbines High npm Gear Box Engine Cooldown vent valves EMA Operated OX Valves Ignitors Pneumatically Actuated Engine FeedValves 3-Way Solenoid Valves with vent ports Engine TVC Hydraulic Actuators Hydraulic Accumulator Hydraulic Relief Valves Low pressure pump and recirc chamber High Pressure Pump Lander Stage Component Count TOTAL PROPULSION SYSTEM COMPONENT COUNT
COMPLEXITY F	ATING = (Cat 470 100 121	COMPLEXITY RATING FOR TOTAL # OF COMPONENTS COMPLEXITY RATING FOR # OF ACTIVE RETURN STAGE COMPLEXITY RATING FOR # OF UNIQUE COMPONENTS
# OF SUBSYS	TEMS	DESCRIPTION
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ -1 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ 7 \\ 7 \end{array} $		RETURN STAGE Tank Pressurization Lox Tank vent system Tanks and Feed System Thermal Control -Electrical Heaters Main Engines LANDER STAGE LH2 Tank Pressurant Regulation and Autogenous Pressurization System LO2 Tank Pressurant Regulation System Pneumatic Pressurant Regulation and Pressurization System Tank Vent Control System LH2 Tank Propellant Gaging Systems Tanks and Feed System Main Engine System (includes actuator and throttling systems
12	TOTAL	PROPULSION SUBSYSTEM COUNT

# OF INSTRUMENTATION LOCATIONS	DESCRIPTION
6	RETURN STAGE
7	Temperature Transducers
6	Pressure Transducers
	Liquid Level Sensors (3 per tank)
39	Valve Position Indicators
15	LANDER STAGE
8	Tank Liquid level sensors
8	Pressure Transducers
<u>24</u>	Temperature Transducers
55	Valve Position Indicators
16	Engine Systems (4 RL10's)
36	Temperature Transducers
4	Pressure Transducers
8	Tachometers
<u>32</u>	Thrust Control Indicators
96	Valve Position Indicators

190 TOTAL INSTRUMENT LOCATIONS COUNT

A2.5 VEHICLE METRICS

95.0 mt	Post TLI Mass
152.3	Propellant Volume (m^3)
-5 mt	△ Habitat - Return Stage Mass
7.3 m	CG Height at Touchdown

A2.6 HARDWARE READINESS (HR)

TRL	X DIFFICULTY	=	HR	
_				RETURN STAGE
5	0.75		3.75	Engines
7	1		7	Tanks/Press/Feed
7	1		7	Thermal Management
9	1		9	Propellant
				LANDER STAGE
7	1		7	Engines
7	1		7	Tanks/Press/Feed

A2.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS LOGISTICS VOLUME INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY

Req Heater Power, some O2 boiloff, category 3 Some capability, but less than 5.0 mt Between 20 - 35 m³ Yes, O2 from lunar soil Yes, O2 possible APPENDIX A TRADE #3 CIF5/N2H4

TRADE #3 CIF5/N2H4 PRESSURE FED RETURN STAGE LOX / LH2 PUMP FED LANDER STAGE

A3.1. GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

#2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)

#3) HYPERGOLIC BIPROPELLENTS (1)

#4) EXPENDABLE (10)

#5) NO AUXILARY PROPULSION (10)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) ALL EMA ACTUATORS (8)

#8) NO HEATSHIELD (10)

#9) NO GROUND PURGE (10)

#10) MAIN ENGINES GIMBALLED WITH EMA (5)

#11) FLUIDS (2) ONLY, EXPENDABLE, NO LEAKAGE, LOADED LONG BEFORE COMMIT(10)

#12) AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (6)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) FEW STATIC SEALS ONLY USED IN FLUID SYSTEMS (7)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) PRESSURE FED BIPROPELLANT (9)

RETURN STAGE LOI= .65

LANDER STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

#2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)

#3) LO2/LH2 , AND MONOPROPELLANT (3)

#4) EXPENDABLE (10)

#5) SINGLE USING TOXIC PROP, AUXIALLRY PROPULSION (4)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) EMA AND ACTIVE PNEUMATICS (4)

#8) NO HEATSHIELD (10)

#9) PNEUMATIC STORAGE, MULTIPLE PURGE (2)

#10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2) #12) AUTOGENOUS AND AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (5)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITH OUTREMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED , THROTTLE (4.5)

LANDER STAGE LOI= .44

A3.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	Activate Engine - Tank Pyro Iso Valves
-i	Activate Tank- Pressurization Pyro Iso Valves
4	Open Hypergolic Engine Valves
	Separate From Lander Stage Structure
1	TOTAL NUMBER OF ABORT OPERATIONS
4	TOTAL NUMBER OF ABORT OF ERATIONS

# OF FLIGHT OPERATIONS	NOMINAL SCENARIO
20	 TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) Settle Ullage (RCS or Other) Operate Active Vent System Open Solenoid Vent Valves
11	 Close Solenoid Vent Valves Mid-Course Correction Open Pneumatic System
	 Open pneumatic regulation system solenoid valves
	 Open Tank Isolation Valves Open corresponding 3-way solenoid valves
	 Prepressurize Propellant Tanks Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
	 Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve Open oxidizer prestart 3-way solenoid valve
	 Open Engine Valves Open start 3-way solenoid valve
	Fire Ignitor
	 Open GH2 Autogenous Pressurization Valves Close Engine Valves (Shutdown Engine)
	 Close and vent start 3-way solenoid valve Close Engine Prevalves
	 Close and vent fuel prestart 3-way solenoid valve
	 Close and vent oxidizer prestart 3-way solenoid valve Close GH2 Autogenous Pressurization Valves
	 Close Tank Pressurization System
	 Close and vent LH2 pressurant regulation system and descent tank pressurization
	solenoid valvesClose and vent LO2 pressurant regulation
	system and descent tank pressurization
9	solenoid valves LOI Burn
	Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
	 Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve Open oxidizer prestart 3-way solenoid valve
	 Open Engine Valves
	 Open start 3-way solenoid valve Fire Ignitor
	 Open GH2 Autogenous Pressurization Valves Close Engine Valves (Shutdown Engine)
	 Close and vent start 3-way solenoid valve
	 Close Engine Prevalves Close and vent fuel prestart 3-way solenoid valve
	 Close and vent oxidizer prestart 3-way solenoid valve
	 Close GH2 Autogenous Pressurization Valves Close Tank Pressurization System

- Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
- Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves

Descent Burn

- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Engine Prevalves (Chilldown Engine)
 - · Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - Close and vent start 3-way solenoid valve
 Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
 - Close and vent oxidizer product of they
 Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Ascent Burn 6 Activate Engine - Tank Pyro Iso Valves Activate Tank- Pressurization Pyro Iso Valves · Open Hypergolic Engine Valves Separate From Lander Stage Structure Close Engine Valves Close Pressurization Iso valves **TEI Burn** 4 Activate Tank Pressurization Iso valves Open Hypergolic Engine Valves Close Engine Valves Close Tank Pressurization valves 1 Mid-Course Correction Δ Activate Tank Pressurization valves Open Hypergolic Engine Valves Close Engine Valves Close Tank Pressurization valves TOTAL NUMBER OF FLIGHT OPERATIONS 64

10

NOMINAL SCENARIO
RETURN STAGE
No Lunar Operations Until Liftoff
LANDER STAGE
Bleed off Oxidizer Residuals
Bleed off Fuel Residuals
UMBER OF LUNAR OPERATIONS

TOTAL NUMBER OF LUNAR OPERATIONS

A3.2 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Lander Stage: Zero Fault Tolerant for engine failure except during terminal phase of descent, one fault tolerant for feed system component failure. Return Stage: Single Fault Tolerant for Ascent and Post Abort. Engine structural filure not credible. Engine mechanical valves are redundant.
ABORT REACTION TIME	Less Than 0.5 Second Without Preparation
STAGE SEPARATION	FLAT, Clean, The single Return Stage engine does not protrude down into a hole in the Lander Stage.
LUNAR LEAKAGE	Hermetically Sealed.

Immune, since Return Stage Protected & Unused

DEBRIS DAMAGE IMMUNITY

A3.4 COMPLEXITY

#OF COMPONENTS	COMPLEXITY CATEGORY	DESCRIPTION
		RETURN STAGE
8	1	2 Sets of Quad Check Valves
4	2	2 Sets of series redundant Pressure Regulators
2 5	2	Pressure Reg Iso Valves
	2 2 2 3 3 3 3 2 2 2 2 3 3	Pyro Isolation Valves
1	3	Helium Tank
2 2 2	3	Fuel Tanks
2	3	Oxidizer Tanks
2	3	Heat Exchangers
24	2	Biprop Valves
2	2	Burst Disc/Relief Valves
2 5 6	2	Fill quick disconnects
6	3	EMA TVC actuators
3	3	Engines
66		Total Return Stage Component Count
		LANDER STAGE
3	3	GHe Tanks (4500 psia)
10	2	GHe Solenoid Valves
6	1	GHe check vales
6 8 4	2	GH2 Solenoid Valves
4	2	GOX Solenoid Valves
4	2	Relief Valves (GHe, 60 psia)
2	2	Relief Valves (GHe, 500 psia)
2 4	2 2 2 2 2 2 2 2	Regulators, single stage (GHe, 50 psia)
2	2	Regulators, single stage (GHe 450 psia)
2 8	1	One Dual Set Check valve/RL10 (GH2)

2	2	LH2 Fill and Drain Pneumatic Valves
2	2	LO2 Fill and Drain Pneumatic Valves
1	3	LH2 T-0 Disconnect
1	3	LO2 T-0 Disconnect
1	2	GHe Fill Quick Disconnect
8	2	Engine/Tank Pre valves
4	2	3-Way Solenoid Valves with vent ports
Å	3	LH2 Tanks with diffusers and start buckets
1	3	LOX Tanks with diffusers and start buckets
4	3	RL10 Throttling Engine Chambers
4	3	Oxidizer Turbopumps
4	2 2 3 3 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 2	Fuel Turbopumps
4	3	Engine Turbines
4	3	High rpm Gear Box
8	3	Engine Cooldown vent valves
4	2	EMA Operated Fuel Throttle Valves
4	2	EMA Operated OX Valves
4	2	Ignitors
12	2	Pneumatically Actuated Engine FeedValves
20	2	3-Way Solenoid Valves with vent ports
8	2	Engine TVC Hydraulic Actuators
4	ī	Hydraulic Accumulator
4		Hydraulic Relief Valves
4	2 3	Low pressure pump and recirc chamber
_4	3	High Pressure Pump
171	-	Lander Stage Component Count
237		TOTAL PROPULSION SYSTEM COMPONENT COUNT

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

460	COMPLEXITY	RATING	FOR	TOTA	L # OF	COMPON	ENTS
90	COMPLEXITY	RATING	FOR	# OF	ACTIVE	RETURN	STAGE
109*	COMPLEXITY	RATING	FOR	# OF	UNIQUE	COMPO	NENTS
103							

OF SUBSYSTEMS

DESCRIPTION

1 1 1	RETURN STAGE Tank Pressurization Tanks and Feed System Thermal Control -Electrical Heaters Main Engine
4	
	LANDER STAGE
1	LH2 Tank Pressurant Regulation and Autogenous Pressurization System
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
4	LH2 Tank Propellant Gaging Systems
4	Tanks and Feed System
<u> </u>	Main Engine System (includes actuator and throttling systems
7 11	TOTAL PROPULSION SUBSYSTEM COUNT

# OF INSTRUMENTATION LOCATIONS	DESCRIPTION
	RETURN STAGE
6	Temperature Transducers
7	Pressure Transducers
20	Valve Position Indicators
33	
	LANDER STAGE
15	Tank Liquid level sensors
8	Pressure Transducers
8	Temperature Transducers
24	Valve Position Indicators
55	
	Engine Systems (4 RL10's)
16	Temperature Transducers
36	Pressure Transducers
4	Tachometers
8	Thrust Control Indicators
32	Valve Position Indicators
96	Valve FUSITION INDICATORS

184 TOTAL INSTRUMENT LOCATIONS COUNT

A3.5 VEHICLE METRICS

87.2 mt	Post TLI Mass
135.4	Propellant Volume (m^3)
1.2 MT	△ Habitat - Return Stage Mass
7.0 m	CG at Touchdown

A3.6 HARDWARE READINESS (HR)

TRL	X	DIFFICULTY	=	HR	
5		0.65			RETURN STAGE
-				3.25	Engines
5		0.65		3.25	Tanks/Press/Feed
5		1		5	Thermal Management
5		0.7		3.5	Propellant
				L	ANDER STAGE
7		1		7	Engines
7		1		7	Tank/Press/Feed

A3.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS LOGISTICS VOLUME INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY

Unlimited Except By Heater Power, Category 2 Yes Between 20 - 35 mt None None minimal

-

APPENDIX A TRADE #4 NTO/MMH HI-EFF

TRADE #4

NTO/M20 PRESSURE FED OPTIMIZED SINGLE ENGINE RETURN STAGE LOX / LH2 PUMP FED LANDER STAGE

GROUND SUPPORTABILITY A4.1

RETURN STAGE Launch Operability index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) HYPERGOLIC BIPROPELLENTS (3)
- #4) EXPENDABLE (10)

#5) NO AUXILARY PROPULSION (10)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) ALL EMA ACTUATORS (8)

- #8) NO HEATSHIELD (10)
- #9) NO GROUND PURGE (10)
- #10) MAIN ENGINES GIMBALLED WITH EMA (5)
- #11) FLUIDS (2) ONLY, EXPENDABLE, NO LEAKAGE, LOADED LONG BEFORE COMMIT(10)
- #12) AMBIENT HELIUM CLOSED LOOP FLOW CONTROL VALVE (6)
- #13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) FEW STATIC SEALS ONLY USED IN FLUID SYSTEMS (10)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) PRESSURE FED BIPROPELLANT (9)

RETURN STAGE LOI=.66

LANDER STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) LO2/LH2, AND MONOPROPELLANT (3)
- #4) EXPENDABLE (10)

#5) SINGLE USING TOXIC PROP, AUXIALLRY PROPULSION (4)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) EMA AND ACTIVE PNEUMATICS (4)

#8) NO HEATSHIELD (10)

#9) PNEUMATIC STORAGE, MULTIPLE PURGE (2)

#10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2)

#12) AUTOGENOUS AND AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (5)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED , THROTTLE (4.5)

LANDER STAGE LOI=.44

A4.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	Activate Engine - Tank Pyro Iso Valves
4	Activate Tank- Pressurization Pyro Iso Valves
1	And the area to Engine Valves
1	Open Hypergolic Engine Valves
	Separate From Lander Stage Structure
1	
4	TOTAL NUMBER OF ABORT OPERATIONS
-	

# OF FLIGHT OPERATIONS	NOMINAL SCENARIO
20	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) • Settle Ullage (RCS or Other)
11	 Operate Active Vent System Open Solenoid Vent Valves Close Solenoid Vent Valves Mid-Course Correction Open Pneumatic System
	 Open pneumatic system Open pneumatic regulation system solenoid valves
	Open Tank Isolation Valves
	 Open corresponding 3-way solenoid valves Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
	 Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	Open start 3-way solenoid valve
	 Fire Ignitor Open GH2 Autogenous Pressurization Valves
	 Close Engine Valves (Shutdown Engine)
	Close and vent start 3-way solenoid valve
	 Close Engine Prevalves Close and vent fuel prestart 3-way solenoid valve
	 Close and vent oxidizer prestart 3-way solenoid valve
	 Close GH2 Autogenous Pressurization Valves
	 Close Tank Pressurization System Close and vent LH2 pressurant regulation
	system and descent tank pressurization
	solenoid valves
	 Close and vent LO2 pressurant regulation system and descent tank pressurization
•	solenoid valves
9	LOI Burn
	 Prepressurize Propellant Tanks Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	 descent tank pressurization solenoid valves Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve
	Open oxidizer prestart 3-way solenoid valve
	 Open Engine Valves Open start 3-way solenoid valve
	Fire Ignitor
	Open GH2 Autogenous Pressurization Valves
	 Close Engine Valves (Shutdown Engine) Close and vent start 3-way solenoid valve
	Close Engine Prevalves
	 Close and vent fuel prestart 3-way solenoid valve
	 Close and vent oxidizer prestart 3-way solenoid valve Close GH2 Autogenous Pressurization Valves
	 Close Tank Pressurization System

- Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
- Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves

10

6

4

4

64

- **Descent Burn** Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and
 - tank pressurization solenoid valves Open LO2 pressurant regulation system and
 - tank pressurization solenoid valves Open Engine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve · Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - · Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

- Ascent Burn
 - Activate Engine Tank Pyro Iso Valves
 - Activate Tank- Pressurization Pyro Iso Valves
 - · Open Hypergolic Engine Valves
 - Separate From Lander Stage Structure
 - Close Engine Valves
 - Close Pressurization Iso valves
- TEI Burn
 - Activate Tank Pressurization Iso valves
 - Open Hypergolic Engine Valves
 - Close Engine Valves
 - Close Tank Pressurization valves
 - **1 Mid-Course Correction**
 - Activate Tank Pressurization valves
 - · Open Hypergolic Engine Valves
 - Close Engine Valves
 - Close Tank Pressurization valves

TOTAL NUMBER OF FLIGHT OPERATIONS

APPENDIX A TRADE #4 NTO/MMH HI-EFF

# OF LUNAR OPERA	
0	RETURN STAGE No Lunar Operations Until Liftoff
1	LANDER STAGE Bleed off Oxidizer Residuals
<u>1</u> 2	Bleed off Fuel Residuals
2 т	

TOTAL NUMBER OF LUNAR OPERATIONS

A4.3 **VEHICLE DESIGN ISSUES**

INHERENT REDUNDANCY Lander Stage: Zero Fault Tolerant for engine failure except during terminal phase of descent, one fault tolerant for feed system component failure. Return Stage: Single Fault Tolerant for Ascent and Post Abort. Engine structural filure not credible. Engine mechanical valves are redundant.

ABORT REACTION TIME

STAGE SEPARATION FLAT, Clean, The single Return Stage engine does not protrude down into a hole in the Lander Stage.

DEBRIS DAMAGE IMMUNITY

LUNAR LEAKAGE

Return Propellant is Hermetically Sealed During Lunar Stay

Immune, since Lander Stage Protected & Unused

Less Than 0.5 Second Without Preparation

A4.4 COMPLEXITY

#0F	COMPLEXITY	
COMPONENTS	CATEGORY	DECODIDITION
OUNIN ONLINIO	CATEGORY	DESCRIPTION
٥	4	RETURN STAGE
8		2 Sets of Quad Check Valves
4	2	2 Sets of series redundant Pressure Regulators
2	2	Pressure Reg Iso Valves
5	2	Pyro Isolation Valves
1	3	Helium Tank
2	3	Fuel Tanks
2	3	Oxidizer Tanks
2 8	3	Heat Exchangers
8	2	Biprop Valves
2 5	2	Burst Disc/Relief Valves
	2 2 2 3	Fill quick disconnects
2	3	EMA TVC actuators
1	3	Engines
44		Total Return Stage Component Count
		LANDER STAGE
3	3	GHe Tanks (4500 psia)
10	2	GHe Solenoid Valves
6	1	GHe check vales
8	2	GH2 Solenoid Valves
4	2	GOX Solenoid Valves
4	2 2	Relief Valves (GHe, 60 psia)
2	2 2	Relief Valves (GHe, 500 psia)
4	2	Regulators, single stage (GHe, 50 psia)
2	2	Regulators, single stage (GHe 450 psia)
8	1	One Dual Set Check valve/RL10 (GH2)

APPENDIX A TRADE #4 NTO/MMH HI-EFF

$\begin{array}{c} 2\\ 2\\ 1\\ 1\\ 1\\ 8\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 12\\ 20\\ 8\\ 4\\ 4\\ 4\\ 4\\ 171 \end{array}$	223322233333332222221233	LH2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves LH2 T-0 Disconnect CQ T-0 Disconnect GHe Fill Quick Disconnect Engine/Tank Pre valves 3-Way Solenoid Valves with vent ports LH2 Tanks with diffusers and start buckets LOX Tanks with diffusers and start buckets RL10 Throttling Engine Chambers Oxidizer Turbopumps Fuel Turbopumps Engine Turbines High rpm Gear Box Engine Cooldown vent valves EMA Operated Fuel Throttle Valves Ignitors Pneumatically Actuated Engine FeedValves 3-Way Solenoid Valves with vent ports Engine TVC Hydraulic Actuators Hydraulic Accumulator Hydraulic Relief Valves Low pressure pump and recirc chamber High Pressure Pump Lander Stage Component Count
215		

215

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

	COMPLEXITY				F COMPONENTS VE RETURN STAGE UE COMPONENTS
109*	COMPLEXITY	HAIING	run #	0. 0	

OF SUBSYSTEMS

DESCRIPTION

1 1 1	RETURN STAGE Tank Pressurization Tanks and Feed System Thermal Control -Electrical Heaters Main Engine
4	
	LH2 Tank Pressurant Regulation and Autogenous
1	Brossurization SVS100
1	Pneumatic Pressurant Regulation and Pressuration Operation
1	Tank Vent Control System
1	LH2 Tank Propellant Gaging Systems
i	Tanks and Feed System Main Engine System (includes actuator and throttling systems
i	Main Engine System (includes actuator and another of p
7 11	TOTAL PROPULSION SUBSYSTEM COUNT

# OF INSTRUMENTATION LOCATIONS	DESCRIPTION
	RETURNSTAGE
6	Temperature Transducers
7	Pressure Transducers
<u>_20</u>	Valve Position Indicators
33	
	LANDER STAGE
15	Tank Liquid level sensors
8	Pressure Transducers
8	Temperature Transducers
24_	Valve Position Indicators
55	
	Engine Systems (4 RL10's)
16	Temperature Transducers
36	Pressure Transducers
4	Tachometers
8	Thrust Control Indicators
32_	Valve Position Indicators
96	

184 TOTAL INSTRUMENT LOCATIONS COUNT

A4.5 VEHICLE METRICS

94.2 mt	Post TLI Mass
149.8 m3	Propellant Volume (m^3)
-4.8 mt	△ Habitat - Return Stage Mass
7.4 m	CG at Touchdown

A4.6 HARDWARE READINESS (HR)

TRL	X	DIFFICULTY	=	HR	
5		0.8		Α	RETURN STAGE
7		1		7	Engines Tanks/Press/Feed
7		1		7	Thermal Management
7		1		7	Propellant
_					LANDER STAGE
7		1		7	Engines
7		1		7	Tanks/Press/Feed

A4.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS LOGISTICS VOLUME INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY

Unlimited Except By Heater Power, Category 2 none Between 20 - 35 m³ None None minimal APPENDIX A TRADE #5 LOX/CH4

TRADE #5 LOX / CH4 PRESSURE FED RETURN LOX / LH2 PUMP FED ENGINE LANDER

A5.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index #1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3) #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5) #3) SPACE STORABLE, NON-TOXIC PROPELLANTS (7) #4) EXPENDABLE (10) #5) NO AUXILARY PRÓPULSION (10) #6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4) #7) ALL EMA ACTUATORS (8) #8) NO HEATSHIELD (10) #9) SINGLE GROUND PURGE (9) #10) MAIN ENGINES GIMBALLED WITH EMA (5) #11) TWO FLUID CH4 AND LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT (4) #12) AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (6) #13) NO PRECONDITIONING REQUIRED (10) #14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7) #15) STATIC AND DYNAMIC SEALS (3) #16) LITTLE PHYSICAL INTEGRATION (3) #17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3) #18) PRESSURE FED BIPROPELLANT (9) RETURN STAGE LOI=.62 LANDER STAGE Launch Operability Index #1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3) #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5) #3) LO2/LH2 , AND MONOPROPELLENT (3) #4) EXPENDABLE (10) #5) SINGLE USING TOXIC PROP, AUXIALLRY PROPULSION (4) #6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4) #7) DISTRIBUTED HYDRAULIC ACTUATORS (3) #8) NO HEATSHIELD (10) #9) PNEUMATIC STORAGE, MULTIPLE PURGE (2) #10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2) #11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT (2) #12) AUTOGENOUS AND AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (5) #13) NO PRECONDITIONING REQUIRED (10) #14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED , THROTTLE (4.5)

LANDER STAGE LOI=

A5.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	Activate Engine - Tank Pyro Iso Valves Activate Tank- Pressurization Pyro Iso Valves
4	Open Engine Valves
	Fire lanitors
	Separate From Lander Stage Structure
1	TOTAL NUMBER OF ABORT OPERATIONS
5	TOTAL NUMBER OF ABORT OF EAST

# OF FLIGHT OPERATIONS	NOMINAL SCENARIO
20	 TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) Settle Ullage (RCS or Other) Operate Active Vent System
11	 Open Solenoid Vent Valves Close Solenoid Vent Valves Mid-Course Correction
	 Open Pneumatic System Open pneumatic regulation system solenoid valves
	 Open Tank Isolation Valves
	 Open corresponding 3-way solenoid valves
	 Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	Open start 3-way solenoid valve
	Fire Ignitor
	 Open GH2 Autogenous Pressurization Valves
	 Close Engine Valves (Shutdown Engine)
	Close and vent start 3-way solenoid valve
	Close Engine Prevalves
	Close and vent fuel prestart 3-way solenoid valve
	 Close and vent oxidizer prestart 3-way solenoid valve Close GH2 Autogenous Pressurization Valves
	 Close GHZ Adlogenous Pressurization valves Close Tank Pressurization System
	 Close and vent LH2 pressurant regulation
	system and descent tank pressurization
	solenoid valves
	 Close and vent LO2 pressurant regulation
	system and descent tank pressurization
•	solenoid valves
9	
	Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	Open Engine Prevalves (Chilldown Engine)
	 Open fuel prestart 3-way solenoid valve
	 Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	Open start 3-way solenoid valve
	Fire Ignitor Open GH2 Automotive Pressuring Making
	 Open GH2 Autogenous Pressurization Valves Close Engine Valves (Shutdown Engine)
	 Close Engine Valves (Shutdown Engine) Close and vent start 3-way solenoid valve
	 Close Engine Prevalves
	 Close and vent fuel prestart 3-way solenoid valve
	 Close and vent oxidizer prestart 3-way solenoid valve
	· Close GH2 Autogenous Prosourization Values

10

4

7

5

5

- Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
- Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves

Descent Burn

- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Engine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve
 - · Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Descent Vent LOX tank in transit

Ascent Burn

- Activate Engine Tank Pyro Iso Valves
- Activate Tank- Pressurization Pyro Iso Valves
- Open Engine Valves
- Fire ignitors
- Separate From Lander Stage Structure
- Close Engine Valves
- Close Pressurization Iso valves
- TEI Burn
 - Activate Tank Pressurization Iso valves
 - Open Engine Valves
 - Fire Ignitors
 - Close Engine Valves
 - Close Tank Pressurization valves
- 1 Mid-Course Correction
 - Activate Tank Pressurization valves
 - Open Hypergolic Engine Valves
 - Close Engine Valves
 - Close Tank Pressurization valves

7 1 TOTAL NUMBER OF FLIGHT OPERATIONS

# OF LUNAR OPERATION	
24	RETURN STAGE Vent LOX tank
$\frac{1}{-1}$	LANDER STAGE Bleed off Oxidizer Residuals Bleed off Fuel Residuals
26 TOTAL	NUMBER OF LUNAR OPERATIONS

A5.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Lander Stage: Zero Fault Tolerant for engine failure except during terminal phase of descent, one fault tolerant for feed system component failure. Return Stage: Single Fault Tolerant for Ascent and Post Abort. Engine structural filure not credible. Engine mechanical valves are redundant.
ABORT REACTION TIME	Less Than 0.5 Second Without Preparation
STAGE SEPARATION	Flat interface is possible
DEBRIS DAMAGE IMMUNITY	Immune, since Return Stage Protected & Unused
LUNAR LEAKAGE	Moderate opportunity for leakage during Lunar stay due to active static seals with large molecule propellants.

A5.4 COMPLEXITY

#OF	COMPLEXITY	
COMPONENTS	CATEGORY	DESCRIPTION
COMPONENTO	UNIEGONI	DESCRIPTION
8	4	RETURN STAGE
		2 Sets of Quad Check Valves
4	2	2 Sets of series redundant Pressure Regulators
2	2	Pressure Reg Iso Valves
5	2	Pyro Isolation Valves
1	3	Helium Tank
2	3	Fuel Tanks
2	3	Oxidizer Tanks
4	2	T-0 Fill/drain valves
2	3	T-0 Disconnect
4	2 2 3 3 3 2 3 2 2 2 2 2	GOX vent valves
4	2	CH4 vent valves
1	2	Fill quick disconnects
2 2	2 3 2 2 3	Burst Disc/Relief Valves
2	3	EMA TVC actuators
8 2	2	Biprop Engine Valves
2	2	Ignitors
1	3	Engine
54	-	Total Return Stage Component Count
• ·		Total neturn Stage Component Count
		LANDER STAGE
3	3	GHe Tanks (4500 psia)
10	2	GHe Solenoid Valves
6	1	GHe check vales
8	2	GH2 Solenoid Valves
4	2	GOX Solenoid Valves
	-	

4 2 4 2 8 2 2 1 1 1 1 8 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4	2222122332223333333332222221233	Relief Valves (GHe, 60 psia) Relief Valves (GHe, 500 psia) Regulators, single stage (GHe, 50 psia) Regulators, single stage (GHe 450 psia) One Dual Set Check valve/RL10 (GH2) LH2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves LH2 T-0 Disconnect GHe Fill Quick Disconnect Engine/Tank Pre valves 3-Way Solenoid Valves with vent ports LH2 Tanks with diffusers and start buckets LOX Tanks with diffusers and start buckets RL10 Throttling Engine Chambers Oxidizer Turbopumps Fuel Turbopumps Fuel Turbopumps Engine Coddown vent valves EMA Operated Fuel Throttle Valves Ignitors Pneumatically Actuated Engine FeedValves 3-Way Solenoid Valves with vent ports Engine TVC Hydraulic Actuators Hydraulic Relief Valves Lox Fuel Turbopumpa and recirc chamber High Pressure Pump Lander Stage Component Count
171 225		TOTAL PROPULSION SYSTEM COMPONENT COUNT
	ATING = (Cat	egory #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3
	480 110 117*	COMPLEXITY RATING FOR TOTAL # OF COMPONENTS COMPLEXITY RATING FOR # OF ACTIVE RETURN STAGE COMPLEXITY RATING FOR # OF UNIQUE COMPONENTS
# OF SUBSYST	EMS	DESCRIPTION
1 1 1 <u>1</u> 5 1 1 1 1		RETURN STAGE Tank Pressurization Lox Tank vent system Tanks and Feed System Thermal Control Vents Main Engines LANDER STAGE LH2 Tank Pressurant Regulation and Autogenous Pressurization System LO2 Tank Pressurant Regulation System Pneumatic Pressurant Regulation and Pressurization System Tank Vent Control System LH2 Tank Propellant Gaging Systems Tanks and Feed System Main Engine System (includes actuator and throttling systems
- <u>1</u> 7 12	TOTAL	PROPULSION SUBSYSTEM COUNT

#

OF INSTRUMENTATIO	ON
LOCATIONS	DESCRIPTION
	RETURN STAGE
7	Temperature Transducers
7	Pressure Transducers
12	Liquid Level Sensors (3 per tank)
	Valve Position Indicators
50	
	LANDER STAGE
15	Tank Liquid level sensors
8	GHe Temperature Transducers
8	Pressure Transducers
24	Valve Position Indicators
55	
	Engine Systems (4 RL10's)
16	Temperature Transducers
36	Pressure Transducers
4	Tachometers
8	Thrust Control Indicators
	Valve Position Indicators
96	
201 TOT	AL INSTRUMENT LOCATIONS COUNT

A5.5 VEHICLE METRICS

100.1 mt	Post TLI Mass
173.4	Propellant Volume (m^3)
9.6 mt	△ Habitat - Return Stage Mass
7.4 m	CG Height at Touchdown

A5.6 HARDWARE READINESS (HR)

TRL	X	DIFFICULTY	=	HR	
					RETURN STAGE
5		0.75		3.75	Engines
7		0.9		6.3	Tanks/Press/Feed
7		1		7	Thermal Management
7		1		7	Propellant
				l	LANDER STAGE
7		1		7	Engines
7		1		7	Tanks/Press/Feed

A5.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS LOGISTICS VOLUME INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY Req Heater Power, some O2 boiloff Some capability Between 20 -35 m³ Yes, O2 from lunar soil Yes, O2 possible CH4 from Mars atmosphere could promote Mars propulsion evolution.

TRADE #6 NTO/MMH PRESSURE FED RETURN STAGE LOX / LH2 PUMP FED LANDER STAGE

A6.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

Compartment Completely Closed, Panel Access (3) #1

- Functional Checks Automated, Leak Checks Manual (1.5) #2
- Hypergolic Bipropellents (3) #3
- Expendable (10) #4
- No Auxiliary Propulsion (10) #5
- Ordance Multiple Launc Site Installation Clearing Required (4) #6
- All EMA Actuators (8) #7
- No Heatshield (10) #8
- Pneumatic Storage, Multiple Purge (2) #9
- #10 Main Engine Gimballed With EMA (5)
- #11 Fluids Only, Expendable, No Leakage, Loaded Long Before Commit (10)
- #12 Ambient Helium Closed Loop Flow Control Valve (6)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Few Static Seals Only Used In Fluid Systems (10)
- #16 Little Physical Integration (3)
- #17 Special GSE With Maintanance Required (3)
- #18 Pump Fed Gas Generator Bipropellant (6)

RETURN STAGE LOI=.61

LANDER STAGE Launch Operability Index

- Compartment Completely Closed, Panel Access (3) #1
- Functional Checks Automated, Leak Checks Manual (1.5) #2
- Hypergolic Bipropellents (3) #3
- Expendable (10) #4
- Single Using Toxic Propellant, Auxiliary Propulsion (4) #5
- Ordance Multiple Launc Site Installation Clearing Required (4) #6
- **EMA And Active Pneumatics (4)** #7
- Local Shielding of Critical Components (6) #8
- Pneumatic Storage, Multiple Purge (2) #9
- #10 Engines Provide Power for Engine Actuator (2)
- #11 Multi-Fluid, Retract At Commit, Service Mast Required (2)
- #12 Autogenous And Ambient Helium-Closed Loop Control Valve (5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 Little Physical Integration (3)
- #17 Special GSE With Maintanance Required (3)
- #18 Pump Fed Expander, LH2 Autogenous, Throttle (4.5)
- **RETURN** LOI=.44

A6.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	 Open Pressurant & Pneumatic System Initiate pryotechnic isolation valves
1	Open Tank Propellant Feed System Initiate propellant pyrotechnic isolation valves
1	Open engine-pair pneumatic isolation valves
4	Start EnginesOpen turbine start valve (GHe spin-up)

	 Open gas generator propellant valves
	 Open engine propellant valves
4	Close turbine start valve
1	Separate From Lander Stage Structure
8	TOTAL NUMBER OF LANDER STAGE ABORT OPERATIONS
# OF FLIGHT OPER	ATIONS NOMINAL SCENARIO
	TRANSIT TO MOON FLIGHT OPERATIONS
20	Transit Thermal Vent Activities (10 times)
	Settle Ullage (RCS or Other)
	Operate Active Vent System
	 Open Solenoid Vent Valves
10	 Close Solenoid Vent Valves
12	Mid-Course Correction
	 Open Pneumatic System
	 Open pneumatic regulation system solenoid
	valves
	 Open Tank Isolation Valves
	 Open corresponding 3-way solenoid valves
	 Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open Engine Pair Isolation Valves
	Open 3-way solenoid valves
	 Open Engine Prevalves (Chilldown Engine)
	Open fuel prestart 3-way solenoid valve
	 Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	Open start 3-way solenoid valve
	Fire Ignitor
	Open GH2 Autogenous Pressurization Valves
	Close Engine Valves (Shutdown Engine)
	Close and vent start 3-way solenoid valve
	Close Engine Prevalves
	Close and vent fuel prestart 3-way solenoid valve
	Close and vent oxidizer prestart 3-way solenoid valve
	Close GH2 Autogenous Pressurization Valves Close Tank Pressurization Contents
	Close Tank Pressurization System
	 Close and vent LH2 pressurant regulation system and descent tank pressurization
	solenoid valves
	 Close and vent LO2 pressurant regulation
	system and descent tank pressuration
	solenoid valves
10	LOI Burn
	Prepressurize Propellant Tanks
	Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	Open Engine Pair Isolation Valves
	Open 3-way solenoid valves
	Open Engine Prevalves (Chilldown Engine)
	Open fuel prestart 3-way solenoid valve
	 Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	 Open start 3-way solenoid valve

.....

APPENDIX A TRADE #6 NTO/MMH, PUMP

10

- Fire Ignitor
- Open GH2 Autogenous Pressurization Valves
- · Close Engine Valves (Shutdown Engine)
- · Close and vent start 3-way solenoid valve Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Descent Burn
 - Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Éngine Prevalves (Chilldown Engine)
 - · Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - · Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Ascent Burn

- Open Pressurant & Pneumatic System
 - Initiate pryotechnic isolation valves
- Open Tank Propellant Feed System Initiate propellant pyrotechnic isolation valves
- Open engine-pair pneumatic isolation valves ---Start Engines---
- Open turbine start valve (GHe spin-up)
- Open gas generator propellant valves
- · Open engine propellant valves
- Seperate Stages w/ pyro valve initiation
- · Close turbine start valve ---Shutdown Engine---
- Close gas generator propellant valves
- Open engine/line/gas generator purge valves

13

A6.3

10	 Close tank pneumatic isolation valves Close engine propellant valves Close engine/line/gas generator purge valves TEl Burn Open engine-pair pneumatic isolation valves Start Engines
10	 Open turbine start valve (GHe spin-up) Open gas generator propellant valves Open engine propellant valves Close turbine start valve Shutdown Engine Close gas generator propellant valves Open engine/line/gas generator purge valves Close tank pneumatic isolation valves Close engine propellant valves Close engine/line/gas generator purge valves Mid-Course Correction Open engine-pair pneumatic isolation valves Start Engines Open turbine start valve (GHe spin-up) Open gas generator propellant valves Open engine propellant valves Close turbine start valve Shutdown Engine Close gas generator propellant valves Close turbine start valve Shutdown Engine Close gas generator propellant valves Open engine/line/gas generator purge valves Close tank pneumatic isolation valves Open engine/line/gas generator purge valves Close engine propellant valves Close engine propellant valves
85 TOTAL NUM	BER OF FLIGHT OPERATIONS
L	NOMINAL SCENARIO RETURN STAGE ANDER STAGE
1 -1 2	Bleed off Oxidizer Residuals Bleed off Fuel Residuals
2 TOTAL NUM	BER OF LUNAR OPERATIONS
VEHICLE DESIGN ISS	UES
INHERENT REDUNDANCY	Zero Fault Tolerant for Lander Stage. Single Fault Tolerant for Ascent and Post Abort.
ABORT REACTION TIME	 2.0 sec max. 0.5 sec to activate propulsion system and achieve acceptable engine inlet pressures 1.5 sec to achieve 90% thrust from engine start
STAGE SEPARATION	Not Clean, Some Obstruction Creates "Fire-in-the- Hole" Concerns
DEBRIS DAMAGE IMMUNITY	Immune, since Return Stage Protected & Unused

APPENDIX A TRADE #6 NTO/MMH, PUMP

A6.4 COMPLEXITY

#OF COMPONENTS	COMPLEXITY CATEGORY	DESCRIPTION
COMPONENTO	•	RETURN STAGE
2	3	N2O4 Tanks
2	3	MMH Tanks
8	2	GHe Solenoid Valves
8	2	EMA Tank Isolation Valves
	2 2 2 2	Pyro Valves, normally closed Fill Quick Disconnects
5	2	Burst Disk/Relief Valves
2	2	Relief Valves, GHe
6 5 2 2 1	2 3 2 2	GHe Tank, 4500 psia
	3	GHe Regulators, 50 psia
4	2	GHe Regulators, 310 psia
2 14	1	GHe Check Valves
4		Engine Chambers (Four XLR-132's)
4	3	N2O4 Pumps
4	3	MMH Pumps
4	3	Turbines
4	3 3 3 3 2	Gas Generators
24	2	Solenoid Valves, normally closed
12	2 2	Pneumatic Valves 3-Way Solenoid Valves w/ vent ports
12	2	GHe Check Valves
20	2	Electro-Mechanical Actuators (EMA's)
	3	
152		LANDER STAGE
3	3	GHe Tanks (4500 psia)
10	2	GHe Solenoid Valves
6	1	GHe check vales
8	2	GH2 Solenoid Valves
4	2	GOX Solenoid Valves
4	2 2 2 2 2 2 2	Relief Valves (GHe, 60 psia)
2	2	Relief Valves (GHe, 500 psia) Regulators, single stage (GHe, 50 psia)
4	2	Regulators, single stage (GHe 450 psia)
2		One Dual Set Check valve/RL10 (GH2)
8	1	LH2 Fill and Drain Pneumatic Valves
2 2	2 2 3	LO2 Fill and Drain Pneumatic Valves
1	3	LH2 T-0 Disconnect
1	3	LO2 T-0 Disconnect
i	2	GHe Fill Quick Disconnect
8	2	Engine/Tank Pre valves
4	2	3-Way Solenoid Valves with vent ports
4	3	LH2 Tanks with diffusers and start buckets LOX Tanks with diffusers and start buckets
1	3 3 3 3	RL10 Throttling Engine Chambers
4	3	Oxidizer Turbopumps
4	3	Fuel Turbopumps
4	3	Engine Turbines
4 4	3	High rom Gear Box
4 8	3	Engine Cooldown vent valves
o 4	2	EMA Operated Fuel Throttle Valves
4	-2	EMA Operated OX Valves
4	2 2 2	Ignitors
12	2	Pneumatically Actuated Engine FeedValves
20	2	3-Way Solenoid Valves with vent ports
8	2	Engine TVC Hydraulic Actuators

APPENDIX A TRADE #6 NTO/MMH, PUMP

4	1	Hydraulic Accumulator
4	2	Hydraulic Relief Valves
4	3	Low pressure pump and recirc chamber
_4	_3_	High Pressure Pump
171		Lander Stage Component Count

323 TOTAL PROPULSION SYSTEM COMPONENT COUNT

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

693	COMPLEXITY RATING FOR TOTAL # OF COMPONENTS	
323	COMPLEXITY RATING FOR # OF ACTIVE RETURN STAC	GE
130*	COMPLEXITY RATING FOR # OF UNIQUE COMPONENT	S

OF SUBSYSTEMS

DESCRIPTION

	RETURN STAGE
1	Tank Pressurization
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tanks and Feed System
1	Thermal Control -Electrical Heaters
1	Main Engines
5	
-	LANDER STAGE
1	LH2 Tank Pressurant Regulation and Autogenous
	Pressurization System
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
1	LH2 Tank Propellant Gaging Systems
1	Tanks and Feed System
1	Main Engine System (includes estudes and the Minus and
7	Main Engine System (includes actuator and throttling systems
,	

12 TOTAL PROPULSION SUBSYSTEM COUNT

# OF INSTRUMENTATION LOCATIONS	DESCRIPTION
12 32 0 <u>32</u> 76	RETURN STAGE Engine Systems (4 XLR-132's) Temperature Transducers Pressure Transducers Tachometers Valve Position Indicators (2 per valve)
10 12 16 <u>12</u> 50	Pressurization/Feed/Vent Systems Temperature Transducers Pressure Transducers Valve Position Indicators (2 per valve) Fluid Level Indicators (3 per tank)
•	LANDER STAGE Pressurization/Feed/Vent Systems

	Pressurzation/Feed/vent Systems
8	Temperature Transducers
8	Pressure Transducers
15	Fluid Level Indicators (3 per tank)
24	Valve Position Indicators (2 per valve)
55	

APPENDIX A TRADE #6 NTO/MMH, PUMP

16 36 4 8 <u>32</u>	Engine Systems (4 RL10's) Temperature Transducers Pressure Transducers Tachometers Thrust Control Indicators (2 per TC) Valve Position Indicators (2 per valve)
96	TOTAL INSTRUMENT LOCATIONS COUNT

277 TOTAL INSTRUMENT LOCATIONS

A6.5 VEHICLE METRICS

92.5 mtPost TLI Wass147.9Propellant Volume (m^3)-2.3 mt∆ Habitat - Return Stage Mass7.3 mCG Height at Touchdown

A6.6 HARDWARE READINESS (HR)

TRL	X DIFFICULTY	=	HR	
			_	RETURN STAGE
5	0.7		3.5	Engines
5	1		7	Tanks/Press/Feed
1			. 7	Thermal Management
7	1		1	
9	1		9	Propellant
3	•			LANDER STAGE
7	1		7	Engines
/			7	Tanks/Press/Feed
7	1		'	

A6.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS LOGISTICS VOLUME INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY Unlimited Except By Heater Power Depends on HLLV Between 20 - 35 m³ None None minimal

TRADE #7 LOX/LCH4 PUMP FED RETURN STAGE LOX / LH2 PUMP FED LANDER STAGE

A7.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

#1 Compartment Completely Closed, Panel Access (3)

- #2 Functional Checks Automated, Leak Checks Manual (1.5)
- #3 LO2 With Hydrocarbon Fuel (7)
- #4 Expendable (10)
- #5 No Auxiliary Propulsion (10)
- #6 Ordance Multiple Launc Site Installation Clearing Required (4)
- #7 EMA And Active Pneumatics (4)
- #8 No Heatshield (10)
- #9 Pneumatic Storage, Multiple Purge (2)
- #10 Engines Provide Power for Engine Actuator (2)
- #11 Multi-Fluid, Retract At Commit, Service Mast Required (2)
- #12 Autogenous And Ambient Helium-Closed Loop Control Valve (5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 Little Physical Integration (3)
- #17 Special GSE With Maintanance Required (3)
- #18 Pump Fed Expander, LH2 Autogenous, Throttle (4.5)

RETURN LOI=.51

LANDER STAGE Launch Operability Index

- #1 Compartment Completely Closed, Panel Access (3)
- #2 Functional Checks Automated, Leak Checks Manual (1.5)
- #3 Hypergolic Bipropellents (3)
- #4 Expendable (10)
- #5 Single Using Toxic Propellant, Auxiliary Propulsion (4)
- #6 Ordance Multiple Launc Site Installation Clearing Required (4)
- #7 EMA And Active Pneumatics (4)
- #8 Local Shielding of Critical Components (6)
- #9 Pneumatic Storage, Multiple Purge (2)
- #10 Engines Provide Power for Engine Actuator (2)
- #11 Multi-Fluid, Retract At Commit, Service Mast Required (2)
- #12 Autogenous And Ambient Helium-Closed Loop Control Valve (5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 Little Physical Integration (3)
- #17 Special GSE With Maintanance Required (3)
- #18 Pump Fed Expander, LH2 Autogenous, Throttle (4.5)
- LANDER LOI=.44

A7.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	Open Pneumatic System
	 Open pneumatic regulation system solenoid
	valves
1	Open Tank Isolation Valves
	 Open corresponding 3-way solenoid valves
1	Prepressurize Propellant Tanks

-

	 Open LCH4 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	Open Engine Prevalves
1	Open fuel prestart 3-way solenoid valve
	 Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
1	Open start 3-way solenoid valve
1	Fire Ignitor
1	Open GCH4 Autogenous Pressurization Valves
1	Separate From Lander Stage Structure
8	TOTAL NUMBER OF LANDER STAGE ABORT OPERATIONS
-	
# OF FLIGHT OPE	ERATIONS NOMINAL SCENARIO
# OF T ERGITIE OF E	
	TRANSIT TO MOON FLIGHT OPERATIONS
20	Transit Thermal Vent Activities (10 times)
20	Settle Ullage (RCS or Other)
	Operate Active Vent System
	Open Solenoid Vent Valves
	Close Solenoid Vent Valves
	Mid-Course Correction
12	Mig-Course Conection
	 Open Pneumatic System Open pneumatic regulation system solenoid
	Open pheumatic regulation system sectors
	valves
	 Open Tank Isolation Valves
	Open corresponding 3-way solenoid valves
	 Prepressurize Propellant Tanks
	 Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open LO2 pressurant regulation system and
	descent tank pressurization solenoid valves
	 Open Engine Pair Isolation Valves
	Open 3-way solenoid valves
	Open Engine Prevalves (Childown Engine)
	Open fuel prestart 3-way solehold valve
	 Open oxidizer prestart 3-way solenoid valve
	Open Engine Valves
	Open start 3-way solenoid valve
	Fire Ignitor
	Open GH2 Autogenous Pressurization Valves
	Close Engine Valves (Shutdown Engine)
	Close and vent start 3-way solenoid valve
	• Close and vent start 5 way soloriota tarte
	Close Engine Prevalves
	Close and vent fuel prestart 3-way solenoid valve Close and vent fuel prestart 3-way solenoid valve
	Close and vent oxidizer prestart 3-way solenoid valve
	 Close GH2 Autogenous Pressurization Valves
	Close Tank Pressurization System
	 Close and vent LH2 pressurant regulation
	system and descent tank pressurization
	solenoid valves
	 Close and vent LO2 pressurant regulation
	system and descent tank pressurization
	solenoid valves
10	Prepressurize Propellant Tanks
	Open LH2 pressurant regulation system and
	descent tank pressurization solenoid valves
	uescent tank procent and establish

 Open LO2 pressurant regulation system and descent tank pressurization solenoid valves

- Open Engine Pair Isolation Valves
 Open 3-way solenoid valves
- Open 3-way solenoid valves
- · Open Engine Prevalves (Childown Engine)
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
- Open Engine Valves
 - Open start 3-way solenoid valve
- Fire Ignitor
- · Open GH2 Autogenous Pressurization Valves
- Close Engine Valves (Shutdown Engine)
 - Close and vent start 3-way solenoid valve
- Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
- Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves

Descent Burn

- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
- · Open Engine Prevalves (Chilldown Engine)
- Open fuel prestart 3-way solenoid valve
- Open oxidizer prestart 3-way solenoid valve
- Open Engine Valves
 - Open start 3-way solenoid valve
- Fire Ignitor
- Open GH2 Autogenous Pressurization Valves
- Close Engine Valves (Shutdown Engine)
 - Close and vent start 3-way solenoid valve
- Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
- Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close LH2 pressurant regulation system and vent descent tanks by opening relief solenoid valves
 - Close LO2 pressurant regulation system and vent descent tanks by opening relief solenoid valves
- Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Ascent Burn

- Open Pneumatic System
 - Open pneumatic regulation system solenoid valves
- Open Tank Isolation Valves
- Open corresponding 3-way solenoid valves
- Prepressurize Propellant Tanks

13

10

- Open LCH4 pressurant regulation system and descent tank pressurization solenoid valves
- Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Open Engine Pair Isolation Valves
- Open 3-way solenoid valves
- Open Engine Prevalves
 - · Open fuel prestart 3-way solenoid valve
 - · Open oxidizer prestart 3-way solenoid valve
- Open Engine Valves
 - Open start 3-way solenoid valve
- Fire lanitor
- Open GCH4 Autogenous Pressurization Valves
- Separate From Lander Stage Structure
- Close Engine Valves (Shutdown Engine)
- Close and vent start 3-way solenoid valve Close Engine Prevalves
- - · Close and vent fuel prestart 3-way solenoid valve Close and vent oxidizer prestart 3-way solenoid valve
- Close GCH4 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close LCH4 pressurant regulation system and vent ascent tanks by opening relief solenoid valves
 - Close LO2 pressurant regulation system and vent descent tanks by opening relief solenoid valves

TEI Burn

- Prepressurize Propellant Tanks
 - Open LCH4 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - · Open Engine Prevalves
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire lanitor
 - Open GCH4 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - · Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve Close and vent oxidizer prestart 3-way solenoid valve
 - Close GCH4 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LCH4 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
- Close and vent corresponding 3-way solenoid valves **Mid-Course Correction**
- Prepressurize Propellant Tanks
 - Open LCH4 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Engine Prevalves

10

8 5	 Open fuel prestart 3-way solenoid valve Open oxidizer prestart 3-way solenoid valve Open Engine Valves Open start 3-way solenoid valve Fire Ignitor Open GCH4 Autogenous Pressurization Valves Close Engine Valves (Shutdown Engine) Close and vent start 3-way solenoid valve Close and vent start 3-way solenoid valve Close and vent start 3-way solenoid valve Close and vent oxidizer prestart 3-way solenoid valve Close and vent oxidizer prestart 3-way solenoid valve Close GCH4 Autogenous Pressurization Valves Close GCH4 Autogenous Pressurization Valves Close and vent LCH4 pressurant regulation system and descent tank pressurization solenoid valves Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves Close Tank Isolation Valves Close and vent 3-way solenoid valves
# OF LUNAR OPE	RATIONS NOMINAL SCENARIO LANDER STAGE
1	Bleed off Oxidizer Residuals
<u>1</u>	Bleed off Fuel Residuals
L	RETURN STAGE PROPULSION SYSTEM
1	Activate Ascent Tank Vent Control System
22	 Vent tank abort pressurant Lunar Surface Thermal Vent Activities
22	Operate Active Vent System
	Open Solenoid Vent Valves
23	 Close Solenoid Vent Valves
23	
2 5	TOTAL NUMBER OF LUNAR OPERATIONS

A7.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Zero Fault Tolerant for Lander Stage Single Fault Tolerant for Ascent and Post Abort
ABORT REACTION TIME	1.3 sec to achieve 90% thrust from engine start
STAGE SEPARATION	Not Clean, Some Obstruction Creates "Fire-in-the- Hole" Concerns
DEBRIS DAMAGE IMMUNITY	Immune, since Return Stage Protected & Unused
LUNAR LEAKAGE	Moderate relative potential for Lunar leakage with active static seals and large molecule propellant

7.5.0 COMPLEXITY

#OF COMPONENTS	COMPLEXITY CATEGORY	DESCRIPTION RETURN STAGE
2 2 20	3 3 2	LO2 Tanks LCH4 Tanks GHe Solenoid Valves (normally colsed 14, open 6) GCH4 Solenoid Valves
84	2 2 2 2 2 2 2 2 2 2 3 3 2 3 2 3	GO2 Solenoid Valves Pnematic Valves
4	2	3-Way Solenoid Valves w/ vent ports LO2 Fill and Drain Pneumatic Valves
2 2 1	2	CH4 Fill and Drain Pneumatic Valves
1	3	CH4 T-0 Disconnects Burst Disk/Relief Propellant Valves
2 3 8	- 3 1	GHe Tank, 4500 psia GCH4 Check Valves
4 2	2	GHe Regulators, 50 psia GHe Regulators, 310 psia
4	2 2 2 3	Relief Valves, GHe, 55 psia Relief Valves, GHe, 315 psia
2 4 4	3	RL10M-1 Throttling Engine Chambers Oxidizer Turbopumps
4 4	3 3 2	Fuel Turbopumps Engine Turbines
8 4	2	Engine Cooldown vent valves EMA Operated Fuel Throttle Valves EMA Operated OX Valves
4	2	Ignitors Pneumatic Valves
12 12 8	2 2 2 1	3-Way Solenoid Valves with vent ports Engine TVC Hydraulic Actuators
4	- 1 2	Hydraulic Accumulator Hydraulic Relief Valves
4	2 3 _3_	Low pressure pump and recirc chamber High Pressure Pump
161		Return Stage Component Count
3	3	LANDER STAGE GHe Tanks (4500 psia)
10 6	2 1	GHe Solenoid Valves GHe check vales GH2 Solenoid Valves
84	2	GOX Solenoid Valves Relief Valves (GHe, 60 psia)
4 2 4	2 2 2 2 1	Regulators, single stage (GHe, 50 psia)
4 2 8	2	Regulators, single stage (GHe 450 psia) One Dual Set Check valve/RL10 (GH2)
2 2		LH2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves
1	2 2 3 3 2 2 2 3	LH2 T-0 Disconnect LO2 T-0 Disconnect
1 8	2 2	GHe Fill Quick Disconnect Engine/Tank Pre valves
4	2 3 3	3-Way Solenoid Valves with vent ports LH2 Tanks with diffusers and start buckets LOX Tanks with diffusers and start buckets
1	3	

4	3	RL10 Throttling Engine Chambers
4	3	Oxidizer Turbopumps
4	3	Fuel Turbopumps
4	3	Engine Turbines
4	3	High rpm Gear Box
8	3	Engine Cooldown vent valves
4	2	EMA Operated Fuel Throttle Valves
4	2	EMA Operated OX Valves
4	2	Ignitors
12	2	Pneumatically Actuated Engine FeedValves
20	2	3-Way Solenoid Valves with vent ports
8	2	Engine TVC Hydraulic Actuators
4	1	Hydraulic Accumulator
4	2	Hydraulic Relief Valves
4	3	Low pressure pump and recirc chamber
_4	3	High Pressure Pump
171		Lander Stage Component Count

332

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

701	COMPLEXITY RATING FOR TOTAL # OF COMPONENTS
331	COMPLEXITY RATING FOR # OF ACTIVE RETURN STAGE
128	COMPLEXITY RATING FOR # OF UNIQUE COMPONENTS

TOTAL PROPULSION SYSTEM COMPONENT COUNT

OF SUBSYSTEMS

DESCRIPTION

	RETURN STAGE
1	LCH4 Tank Pressurant Regulation and Autogenous
	Pressurization System
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
1	Tanks and Feed System
1	Main Engine System (includes actuator and throttling systems
6	
•	LANDER STAGE
1	LH2 Tank Pressurant Regulation and Autogenous
	Pressurization System
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
1	LH2 Tank Propellant Gaging Systems
1	Tanks and Feed System
1	Main Engine System (includes actuator and throttling systems
7	
•	

1 3 TOTAL PROPULSION SUBSYSTEM COUNT

OF INSTRUMENTATION LOCATIONS

DESCRIPTION

RETURN STAGE

	Pressurization/Feed/Vent Systems
4	Temperature Transducers
14	Pressure Transducers
12	Fluid Level Indicators (3 per tank)
16	Valve Position Indicators (2 per valve)
46	

	Engine Systems (4 RL10M-1's)
16	Temperature Transducers
36	Pressure Transducers
4	Tachometers
8	Thrust Control Indicators (2 per TC)
32	Valve Position Indicators (2 per valve)
96	LANDER STAGE
	Pressurization/Feed/Vent Systems
•	Temperature Trapaducer
8	Temperature Transducers
8	Pressure Transducers
15	Fluid Level Indicators (3 per tank)
24	Valve Position Indicators (2 per valve)
55	
	Engine Systems (4 RL10A-3-3A's)
16	Temperature Transducers
36	Pressure Transducers
4	Tachometers
8	Thrust Control Indicators (2 per TC)
32	Valve Position Indicators (2 per valve)
96	

293 TOTAL INSTRUMENT LOCATIONS COUNT

A7.5 VEHICLE METRICS

92.4 mt	Post TLI Mass
152.3	Propellant Volume (m^3)
-3.5 mt	∆ Habitat - Return Stage Mass
7.3 m	CG Height at Touchdown

A7.6 HARDWARE READINESS (HR)

TRL	X	DIFFICULTY	=	HR	
					RETURN STAGE
6		0.6		3.6	Engines
7		0.9		6.3	Tanks/Press/Feed
6		1		6	Thermal Management
7		1		7	Propellant
					LANDER STAGE
7		1		7	Engines
7		1		7	Tanks/Press/Feed

A7.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS LOGISTICS VOLUME INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY Yes. Limited by boiloff and HLLV Depends on HLLV Between 20 - 35 m³ LO2 production could supply return oxidizer. LO2 for power or crew use and RCS propellant use. Possible CH4 from Mars atmosphere would tend to promote Mars propulsion evolution

TRADE #8 LOX/LH2 PUMP FED RETURN STAGE LOX / LH2 PUMP FED LANDER STAGE

A8.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) ONLY TWO PROPELLANTS, LOX/LH2 (4)
- #4) EXPENDABLE (10)

#5) NO AUXILARY PRÓPULSION (10)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) EMA AND ACTIVE PNEUMATICS (4)

#8) NO HEATSHIELD (10)

#9) PNEUMATIC STORAGE, MULTIPLE PURGE (2)

#10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2)

- #12) AUTOGENOUS AND AMBIENT HELIUM CLOSED LOOP FLOW CONTROL VALVE (5)
- #13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) FEW STATIC SEALS ONLY USED IN FLUID SYSTEMS (7)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED , THROTTLE , RECIRC PUMP(3)

<u>RETURN LOI= 0.48</u>

LANDER STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) LO2/LH2, AND MONOPROPELLANT (3)

#4) EXPENDABLE (10)

#5) SINGLE USING TOXIC PROP, AUXIALLRY PROPULSION (4)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) EMA AND ACTIVE PNEUMATICS (4)

- #8) NO HEATSHIELD (10)
- #9) PNEUMATIC STORAGE, MULTIPLE PURGE (2)

#10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2)

#12) AUTOGENOUS AND AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (5)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED, THROTTLE (4.5)

LANDER STAGE LOI= 0.44

A8.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

7

Prechill Return Stage Prior to Lander Stage Operation

- Open Pneumatic System
 - Open pneumatic regulation system solenoid valves
- Open Tank Isolation Valves
 - Open corresponding 3-way solenoid valves
- Prepressurize Propellant Tanks

APPENDIX A TRADE #8 LOX/LH2 PUMP

5	 Open LH2 pressurant regulation system and descent tank pressurization solenoid valves Open LO2 pressurant regulation system and descent tank pressurization solenoid valves Open Recirc Pump pneumatic valves Open corresponding 3-way solenoid valve Start Recirc Pump, Operate 10 min. prior to Lander Stage Activation Shut down Recirc Pump Close Recirc Pump pneumatic valves Close corresponding 3-way solenoid valve Start Engines Open Engine Prevalves Open fuel prestart 3-way solenoid valve
1 2	 Open oxidizer prestart 3-way solenoid valve Open Engine Valves Open start 3-way solenoid valve Fire Ignitor Fire Pyro stage separation bolts Open GH2 Autogenous Pressurization Valves TOTAL NUMBER OF ABORT OPERATIONS
# OF FLIGHT OPE	RATIONS NOMINAL SCENARIO
20	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) • Settle Ullage (RCS or Other)
0	Operate Active Vent System Open Solenoid Vent Valves Close Solenoid Vent Valves Mid-Course Correction (Performed by RCS) Prechill Return Stage Prior to Lander Stage Operation
7	 Open Pneumatic System Open pneumatic regulation system solenoid valves Open Tank Isolation Valves Open corresponding 3-way solenoid valves Prepressurize Propellant Tanks Open LH2 pressurant regulation system and descent tank pressurization solenoid valves Open LO2 pressurant regulation system and descent tank pressurization solenoid valves Open recirc pump 3-way solenoid valves Open recirc Pump, Operate 10 min. prior to Lander s Stage Activation Shut down Recirc Pump Close Recirc Pump pneumatic valves Close corresponding 3-way solenoid valves
9	 LOI Burn Open Pneumatic System Open pneumatic regulation system solenoid valves Prepressurize Propellant Tanks Open LH2 pressurant regulation system and descent tank pressurization solenoid valves Open LO2 pressurant regulation system and descent tank pressurization solenoid valves Open Engine Prevalves Open fuel prestart 3-way solenoid valve Open Engine Valves Open Engine Valves Open start 3-way solenoid valve

- Fire Ignitor
- Open GH2 Autogenous Pressurization Valves
- Close Engine Valves (Shutdown Engine)
- Close and vent start 3-way solenoid valve
- Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
- Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves

Descent Burn

- Open Engine Prevalves (Childown Engine)
- Open fuel prestart 3-way solenoid valve
- Open oxidizer prestart 3-way solenoid valve
- Open Engine Valves
 - Open start 3-way solenoid valve
- Fire Ignitor
- Open GH2 Autogenous Pressurization Valves
- Close Engine Valves (Shutdown Engine)
- Close and vent start 3-way solenoid valve
- Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves

LUNAR RETURN STAGE OPS

Prechill Return Stage

- Open Pneumatic System
- Open pneumatic regulation system solenoid valves
- Open Tank Isolation Valves
- Open corresponding 3-way solenoid valves
- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Open recirc pump 3-way solenoid valve
- Start Recirc Pump, Operate 10 min. prior to Lander s
 Stage Activation
- Shut down Recirc Pump
- Close Recirc Pump pneumatic valves
 - · Close corresponding 3-way solenoid valve
- Perform Lunar Ascent Burn
 - Open Engine Prevalves
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - Open start 3-way solenoid valve
 - Fire Ignitor
 - Fire Pyro stage separation bolts
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve

A-49

8

7

8

9

- Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Perform TEI Burn
 - Open Engine Prevalves
 - Open fuel prestart 3-way solenoid valve
 - · Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire lanitor
 - Open GH2 Autogenous Pressurization Valves
 - · Close Engine Valves (Shutdown Engine)
 - · Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

TOTAL NUMBER OF FLIGHT OPERATIONS 68

OF LUNAR OPERATIONS

NOMINAL SCENARIO

1 1	LUNAR LANDER STAGE Bleed off Oxidizer Residuals Bleed off Fuel Residuals
	LUNAR RETURN STAGE
1	Safe Return Stage for Lunar Stay Vent Tank Abort Pressure
22	Lunar Surface Thermal Vent Activities Open Solenoid Vent Valves Close Solenoid Vent Valves

TOTAL NUMBER OF LUNAR OPERATIONS 25

VEHICLE DESIGN ISSUES A8.3

INHERENT REDUNDANCY

ABORT REACTION TIME STAGE SEPARATION

DEBRIS DAMAGE IMMUNITY

Zero Fault Tolerant for Lander Stage Single Fault Tolerant for Ascent and Post Abort 1.3 Second With 10 min. prechill Preparation Some Protrusion of engines in lander stage creates "Fire-in-the-Hole" Concerns, structurally flat interface Immune, since Return Stage Protected & Unused

COMPLEXITY A8.4

#OF COMPLEXITY	DESCRIPTION	
COMPONENTS CATEGORY	RETURN STAGE	
3	3	GHe Tanks (4500 psia)

22 8 4 4 2 4 2 8 2 2 1 1 1 8 2 2 8 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	22222212233222233333332222221233	GHe Solenoid Valves (Normally Closed 14, Open 8) GH2 Solenoid Valves GOX Solenoid Valves Relief Valves (GHe, 60 psia) Regulators, single stage (GHe, 50 psia) Regulators, single stage (GHe, 50 psia) Regulators, single stage (GHe 450 psia) Check Valves One Dual Set/RL10 (GH2) LH2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves LH2 T-0 Disconnect GHe Fill Quick Disconnect Pneumatic ISO Valves Recirc Pump Pneumatic ISO Valves Recirc Pumps 3-Way Solenoid Valves with vent ports LH2 Tanks with diffusers and start buckets LOX Tanks with diffusers and start buckets RL10 Throttling Engine Chambers Oxidizer Turbopumps Fuel Turbopumps Engine Turbines High pm Gear Box Engine Cooldown vent valves EMA Operated Fuel Throttle Valves Engine TVC Hydraulic Actuators Hydraulic Relief Valves Low pressure pump and recirc chamber High Pressure Pump
3 10 6 8 4 4 2 4 2 8 2 2 1 1 8 4 4 1 4 4 4	321222212233222233333	LANDER STAGE GHe Tanks (4500 psia) GHe Solenoid Valves GHe check vales GH2 Solenoid Valves GOX Solenoid Valves Relief Valves (GHe, 60 psia) Relief Valves (GHe, 500 psia) Regulators, single stage (GHe, 50 psia) Regulators, single stage (GHe 450 psia) One Dual Set Check valve/RL10 (GH2) LH2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves LO2 Fill and Drain Pneumatic Valves LO2 T-0 Disconnect GHe Fill Quick Disconnect Engine/Tank Pre valves 3-Way Solenoid Valves with vent ports LH2 Tanks with diffusers and start buckets LOX Tanks with diffusers and start buckets RL10 Throttling Engine Chambers Oxidizer Turbopumps Fuel Turbopumps

APPENDIX A TRADE #8 LOX/LH2 PUMP

		Facine Turbines
4	3	Engine Turbines
4	3	High rom Gear Box
8	3	Engine Cooldown vent valves
0	0	EMA Operated Fuel Throttle Valves
4	2	EMA Operated OX Valves
4	2	•
4	2	Ignitors
12	2	Pneumatically Actuated Engine FeedValves
		3-Way Solenoid Valves with vent ports
20	2	
8	2	Engine TVC Hydraulic Actuators
Ā	1	Hydraulic Accumulator
-	ว	Hydraulic Relief Valves
4	2	Low pressure pump and recirc chamber
4	3	Low plessing pump and room enamed
4	3	High Pressure Pump
171		Lander Stage Component Count
		TOTAL PROPULSION SYSTEM COMPONENT COUNT
348		IUTAL PHOPOLOGIN STOTEM COMPORTANT COOM

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

752 382 113	COMPLEXITY F Complexity F Complexity F	RATING FOR	# OF ACTIVE	COMPONENTS RETURN STAGE COMPONENTS
-------------------	--	------------	--------------------	--

OF SUBSYSTEMS

DESCRIPTION

	RETURN STAGE
1	LH2 Tank Pressurant Regulation and Autogenous
•	Pressurization System
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
i	LH2 Tank Propellant Gaging Systems
1	Tanks and Feed System
1	Recirc Pump System
1	Main Engine System (includes actuator and throttling systems
8	
•	LANDER STAGE
1	LH2 Tank Pressurant Regulation and Autogenous
-	Pressurization System
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
1	LH2 Tank Propellant Gaging Systems
1	Tanks and Feed System
1	Main Engine System (includes actuator and throttling systems
7	
15	TOTAL PROPULSION SUBSYSTEM COUNT

# OF INSTRUMENTATION	DESCRIPTION
LOCATIONS	RETURN STAGE
15 8 2 8 <u>26</u> 59	Tank Liquid level sensors Pressure Transducers Tachometers Temperature Transducers Valve Position Indicators

	Engine Systems (4 RL10's)
16	Temperature Transducers
36	Pressure Transducers
4	Tachometers
8	Thrust Control Indicators
32_	Valve Position Indicators
96	
	LANDER STAGE
15	Tank Liquid level sensors
8	Pressure Transducers
8	Temperature Transducers
24_	Valve Position Indicators
55	
00	Engine Systems (4 RL10's)
16	Temperature Transducers
36	Pressure Transducers
4	
	Tachometers
8	Thrust Control Indicators
<u>32</u>	Valve Position Indicators
96	

306 TOTAL INSTRUMENT LOCATIONS COUNT

A8.5 VEHICLE METRICS

93 mt	Post TLI Mass
139	Propellant Volume (m^3)
-7.5 mt	△ Habitat - Return Stage Mass
8.5 m	CG Height at Touchdown

7

7

6

9

7

7

A8.6 HARDWARE READINESS (HR)

1

1

1

1

1

1

TRL X DIFFICULTY = HR

A8.7 EVOLUTION LONGER STAY TIME

7

7

6

9

7

7

LARGER PAYLOADS INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY 6 Month requires extra propellant, MLI & 1 year requires refrigeration, Category 5 1.0 - 1.5 mt Capability Potential Potential Some

TRADE #9 SINGLE STAGE LOX/LH2 VEHICLE PARAMETERS

GROUND SUPPORTABILITY A9.1

RETURN Launch Operability index

- No Compartments (10) #1
- Functional Checks Automated, Leak Checks Manual (1.5) #2
- LH2, LO2 (4) #3
- Expendable (10) #4
- No Auxiliary Propulsion (10) #5
- Ordance Multiple Launc Site Installation Clearing Required (4) #6
- No Actuators (10) #7
- No Heatshield (10) #8
- Pneumatic Storage, Multiple Purges Or Pneumatic Valve Control (2) #9
- #10 No Throttling, Same as Lander System (10)
- #11 Fluids Filled Through Lander Ground Interface (10)
- #12 Autogenous And Ambient Helium-Closed Loop Control Valve (5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 Little Physical Integration (3)#17 No Ground Support Equipment Required (10)
- #18 Same Engine System as Lander (10)

RETURN LOI=.71

LANDER Launch Operability index

- Compartment Completely Closed, Panel Access (3) #1
- Functional Checks Automated, Leak Checks Manual (1.5) #2
- LO2 / LH2 and Hydrazinr Monopropellants (3) #3
- Expendable (10) #4
- Single Using Toxic Propellant, Auxiliary Propulsion (4) #5
- Ordance Multiple Launc Site Installation Clearing Required (4) #6
- EMA And Active Pneumatics (4) #7
- Local Shielding of Critical Components (6) #8
- Pneumatic Storage, Multiple Purges Or Pneumatic Valve Control (2) #9
- #10 Engines Provide Power for Engine Actuator (2)
- #11 Multi-Fluid, Retract At Commit, Service Mast Required (2)
 #12 Autogenous And Ambient Helium-Closed Loop Control Valve (5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 Little Physical Integration (3)
- #17 Special GSE With Maintanance Required (3)
- #18 Pump Fed Expander, LH2 Autogenous, Throttle (4.5)
- LANDER LOI=.42

A9.2 FLIGHT OPERABILITY

OF DESCENT ABORT OPERATIONS

WORST CASE SCENARIO

ABORT TO ORBIT Prepressurize ascent propellant tanks with GHe 1 Shut down engine with detected fault and opposing 1 engine (close six 3-way solenoid valves) Throttle up remaining two engines 1 Open ascent pressurization solenoid valves 1 Open ascent propellant tank pneumatic isolation valves 1

1 1 <u>1</u> 8 TO	Close descent pressurization solenoid valves Close descent propellant tank pneumatic isolation valves Drop landing legs (command pyros to fire) TAL NUMBER OF DESCENT ABORT OPERATIONS
# OF FLIGHT OPERATI	IONS NOMINAL SCENARIO
20	 TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) Settle Ullage (RCS or Other) Operate Active Vent System Open Solenoid Vent Valves
0 11	 Close Solenoid Vent Valves Mid-Course Correction (Performed by RCS) LOI Burn Open Pneumatic System
10	 Open Pneumatic regulation system solenoid valves Open Tank Isolation Valves Open corresponding 3-way solenoid valves Prepressurize Propellant Tanks Open LH2 pressurant regulation system and descent tank pressurization solenoid valves Open LO2 pressurant regulation system and descent tank pressurization solenoid valves Open Engine Prevalves (Chilldown Engine) Open fuel prestart 3-way solenoid valve Open fuel prestart 3-way solenoid valve Open fuel prestart 3-way solenoid valve Open start 3-way solenoid valve Open start 3-way solenoid valve Close Engine Valves Close Engine Valves (Shutdown Engine) Close and vent fuel prestart 3-way solenoid valve Close GH2 Autogenous Pressurization Valves Close and vent fuel prestart 3-way solenoid valve Close and vent fuel prestart 3-way solenoid valve Close GH2 Autogenous Pressurization Valves Close GH2 Autogenous Pressurization Valves Close GH2 Autogenous Pressurization Valves Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valve Close and vent LO2 pressurant regulation system and tank pressurize Propellant Tanks Open LH2 pressurant regulation system and tank pressurization solenoid valves Open LH2 pressurant regulation system and tank pressurization solenoid valves Open LH2 pressurant regulation system and tank pressurization solenoid valves Open LH2 pressurant regulation system and tank pressurization solenoid valves Open LH2 pressurant regulation system and tank pressurization solenoid valve

APPENDIX A TRADE #9 SINGLE STAGE

- Close Engine Prevalves
 - · Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Close Tank Isolation Valves
 - · Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Ascent Burn

- Open Pneumatic System
 - Open pneumatic regulation system solenoid valves
- Open Tank Isolation Valves
- Open corresponding 3-way solenoid valves
- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and ascent tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and ascent tank pressurization solenoid valves
- Open Engine Prevalves (Chilldown Engine)
- Open fuel prestart 3-way solenoid valve
- Open oxidizer prestart 3-way solenoid valve
- Open Engine Valves
- Open start 3-way solenoid valve
- Fire Ignitor
- Open GH2 Autogenous Pressurization Valves
- Close Engine Valves (Shutdown Engine)
 - Close and vent start 3-way solenoid valve
- Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- TEI Burn
 - Open Pneumatic System
 - Open pneumatic regulation system solenoid valves
 - Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - · Open Éngine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - Open start 3-way solenoid valve

11

11

0 64 TC	 Fire Ignitor Open GH2 Autogenous Pressurization Valves Close Engine Valves (Shutdown Engine) Close and vent start 3-way solenoid valve Close and vent fuel prestart 3-way solenoid valve Close and vent oxidizer prestart 3-way solenoid valve Close GH2 Autogenous Pressurization Valves Close Tank Pressurization System Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves Close Tank Isolation Valves Close Tank loolation Valves Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves Close Tank Isolation Valves Close Tank Presponding 3-way solenoid valves Mid-Course Correction (Performed by RCS) DTAL NUMBER OF FLIGHT OPERATIONS
# OF LUNAR OPERAT 1 1	ONS NOMINAL SCENARIO DESCENT PROPULSION SYSTEM Bleed off LO2 Residuals Bleed off LH2 Residuals
2 1 22	ASCENT PROPULSION SYSTEM Activate Ascent Tank Vent Control System • Vent tank abort pressurant Lunar Surface Thermal Vent Activities • Operate Active Vent System
23	 Open Solenoid Vent Valves Close Solenoid Vent Valves
2 5	TOTAL NUMBER OF LUNAR OPERATIONS
VEHICLE DESI	GN ISSUES

A9.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Zero Fault Tolerant for Lunar Landing; Single Fault Tolerant for Crew Return; Zero Fault Tolerant Post- Abort
ABORT REACTION TIME	1.0 sec max. for shutdown of opposing engines and throttle up of remaining engines
	2.4 sec max. to switch from descent tank to ascent tank use.
STAGE SEPARATION	No stage seperation is required. Landing gear is dropped during ascent.
DEBRIS DAMAGE IMMUNITY	Damage to descent stage does affect ascent propulsion system. (May remove engine-out capability for ascent)

A9.4 COMPLEXITY

#OF COMPONENTS	COMPLEXITY CATEGORY	DESCRIPTION COMMON COMPONENTS
6	3	GHe Tanks (4500 psia)
14	2	Solenoid Valves, normally closed (GHe)
2	2	Solenoid Valves, normally closed (GH2)

APPENDIX A TRADE #9 SINGLE STAGE

A	2	Relief Valves (GHe, 60 psia)
4 2	2	Relief Valves (GHe, 500 psia)
4	2	Regulators, single-stage (GHe, 50 psia)
2	2	Regulators, single-stage (GHe, 450 psia)
8	1	Check Valves, one dual set (GH2)
2 2	2	LH2 Fill and Drain Pneumatic Valves
2	2 2 3	LO2 Fill and Drain Pneumatic Valves
1	3	LH2 T-0 Disconnect
1	3	LO2 T-0 Disconnect GHe Fill Quick Disconnect
1	2	3-Way Solenoid Valves w/ vent ports
4	2	Solenoid Valves, normally open (GHe)
4	2	RL-10 Throttling Engine Chambers
4	3	Oxidizer turbopumps
4 4	2 2 3 3 3	Fuel turbopumps
4	3	Engine turbines
4	3	High rom Gear Box
8	2	Hydrogen cooldown vent valves
4	2	EMA Operated Fuel Throttle Valves
4	2	EMA Operated OX Valves
4	2	Igniters
12	2	Pneumatic Valves
12	2	3-Way Solenoid Valves w/ vent ports
8	2	Engine TVC Hydraulic Actuators
4	1	Hydraulic Accumulator Hydraulic Relief Valves
4 4	2	Low pressure pump and recirc chamber
	3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 3	High Pressure Pump
4	<u></u>	
145		DESCENT COMPONENTS
6	3	LH2 Tanks w/ diffusers & start buckets (2.6 m dia.)
2	3 3	LO2 Tanks w/ diffusers & start buckets (2.6 m dia.)
2 2 2 4	3 2 2 2 2 2 2 2 2	3-Way Solenoid Valves w/ vent ports
2	2	Solenoid Valves, normally open (GHe)
4	2	Pneumatic valves, tank isolation
6	2	Solenoid Valves, normally closed (GH2)
6	2	Solenoid Valves, normally closed (GO2)
6 2	2	Burst discs/Relief Valves
30		ASCENT COMPONENTS
	•	LH2 Tanks w/ diffuser & start bucket (4.0 m dia.)
1	3	LO2 Tanks w/ bubbler & start bucket (3.0m dia.)
1	3 2	3-Way Solenoid Valves w/ vent ports
2	2	Solenoid Valves, normally open (GHe)
2 4	2	Pneumatic valves, tank isolation
6	2	Solenoid Valves, normally closed (GH2)
6	2	Solenoid Valves, normally closed (GO2)
2	2	Burst discs/Relief Valves
24		
		TOTAL PROPULSION SYSTEM COMPONENT COUNT
COMPLEXITY	RATING = (Cate	egory #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3
	432	COMPLEXITY RATING FOR TOTAL # OF COMPONENTS
	432 364	CONDIEVITY RATING FOR # OF ACTIVE HEIUHN STAGE
	80*	COMPLEXITY RATING FOR # OF UNIQUE COMPONENTS

# OF SUBSYSTEN	IS DESCRIPTION
1 1 1 1 1 1 7	STAGE MAIN PROPULSION LH2 Tank Pressurant Regulation and Autogenous Pressurization System LO2 Tank Pressurant Regulation System Pneumatic Pressurant Regulation and Pressurization System Tank Vent Control System LH2 Tank Propellant Gaging Systems Tanks and Feed System Main Engine System (includes actuator and throttling systems TOTAL PROPULSION SUBSYSTEM COUNT
# OF INSTRUMENT LOCATIONS	DESCRIPTION
5 13 8 26 16 36 4 8 32 96 12 10 8 24 54 6 10 2 8 6	COMMON SYSTEMS Temperature Transducers Pressure Transducers Valve Position Indicators (2 per valve) ENGINE SYSTEMS (4 RL-10s) Temperature Transducers Pressure Transducers Tachometers Thrust Control Indicators (2 per TC) Valve Position Indicators (2 per valve) DESCENT PROPULSION SYSTEM Temperature Transducers Pressure Transducers Pressure Transducers Valve Position Indicators (2 per valve) Fluid Level Indicators (3 per tank) ASCENT PROPULSION SYSTEM Temperature Transducers Pressure Transducers

208 TOTAL INSTRUMENT LOCATIONS COUNT

A9.5 VEHICLE METRICS

101.4 mt	Post TLI Mass
218 m^3	Propellant Volume
-13.9 mt	∆ Habitat - Lunar Ascent Mass
6.1 m	CG Height at Touchdown

A9.6 HARDWARE READINESS (HR)

TRL	x	DIFFICULTY	=	HR	
					ASCENT STAGE
6		0.6		3.6	Engines
7		0.9		6.3	Tanks/Press/Feed
6		1		6	Thermal Management
9		1		9	Propellant

APPENDIX A TRADE #9 SINGLE STAGE

9	1	9	DESCENT STAGE Engines (Credited with 9 since already accounted with Return stage engines)
9	1	9	Tanks/Press/Feed (Credited with 9 since already accounted with Return stage
7 EV/			

A9.7 EVOLUTION LONGER STAY TIME

LARGER PAYLOADS

INSITU RESOURCE UTILIZATION

PROPELLANT BOILOFF UTILIZATION

MARS COMMONALITY

No. Concept currently exceeds 93 mt limit for 45 day stay, Category 5 No. Concept currently exceeds 93 mt limit for cargo version LO2 production could supply Earth return oxidizer LO2 for power or crew use. LH2 for CO2 reduction or CH4 production. Both for RCS propellant use. Possible

APPENDIX A TRADE #10 1.5 Stage

TRADE #10 1.5 STAGE ALL CRYO VEHICLE

A10.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability index

- #1 No Compartments (10)
- #2 Functional Checks Automated, Leak Checks Manual (1.5)
- #3 LH2, LO2 (4)
- #4 Expendable (10)
- #5 No Auxiliary Propulsion (10)
- #6 Ordance Multiple Launc Site Installation Clearing Required (4)
- #7 No Actuators (10)
- #8 No Heatshield (10)
- #9 Pneumatic Storage, Multiple Purges Or Pneumatic Valve Control (2)
- #10 No Throttling, Same as Lander System (10)
- #11 Fluids Filled Through Lander Ground Interface (10)
- #12 Autogenous And Ambient Helium-Closed Loop Control Valve (5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 Fully Integrated(10)
- #17 No Ground Support Equipment Required (10)
- #18 Same Engine System as Lander (10)

RETURN LOI=.75

LANDER STAGE Launch Operability Index

- #1 Compartment Completely Closed, Panel Access (3)
- #2 Functional Checks Automated, Leak Checks Manual (1.5)
- #3 LO2 / LH2 and Hydrazinr Monopropellants (3)
- #4 Expendable (10)
- #5 Single Using Toxic Propellant, Auxiliary Propulsion (4)
- #6 Ordance Multiple Launc Site Installation Clearing Required (4)
- #7 EMA And Active Pneumatics (4)
- #8 Local Shielding of Critical Components (6)
- #9 Pneumatic Storage, Multiple Purges Or Pneumatic Valve Control (2)
- #10 Engines Provide Power for Engine Actuator (2)
- #11 Multi-Fluid, Retract At Commit, Service Mast Required (2)
- #12 Autogenous And Ambient Helium-Closed Loop Control Valve (5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 No Integration (1)
- #17 Special GSE With Maintanance Required (3)
- #18 Pump Fed Expander, LH2 Autogenous, Throttle (4.5)

LANDER LOI=.41

A10.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO (ENGINE OUT)

1	Shutdown opposing engine
1	Throttle up other engines
1	Open ascent tank feed system
1	open ascent tank pressurization system
1	close descent tank pressurization system
1	close descent feed system
1	fire pyros to drop descent stage
7	TOTAL NUMBER OF ABORT OPERATIONS

# OF FLIGHT OPERATIONS	NOMINAL SCENARIO
20	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) • Settle Ullage (RCS or Other) • Operate Active Vent System • Open Solenoid Vent Valves
0 11	 Close Solenoid Vent Valves Mid-Course Correction (Performed by RCS) LOI Burn Open Pneumatic System Open pneumatic regulation system solenoid
	 valves Open Tank Isolation Valves Open corresponding 3-way solenoid valves Prepressurize Propellant Tanks Open LH2 pressurant regulation system and descent tank pressurization solenoid valves Open LO2 pressurant regulation system and descent tank pressurization solenoid valves Open Engine Prevalves (Chilldown Engine) Open fuel prestant 3-way solenoid valve Open Engine Valves Open start 3-way solenoid valve Open GH2 Autogenous Pressurization Valves Close Engine Valves (Shutdown Engine) Close Engine Prevalves Close and vent start 3-way solenoid valve Close and vent fuel prestart 3-way solenoid valve Close Tank Pressurization System Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
10	 Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves Descent Burn Prepressurize Propellant Tanks Open LH2 pressurant regulation system and tank pressurization solenoid valves Open LO2 pressurant regulation system and tank pressurization solenoid valves Open Engine Prevalves (Chilldown Engine) Open fuel prestart 3-way solenoid valve Open Engine Valves Open start 3-way solenoid valve Fire Ignitor Open GH2 Autogenous Pressurization Valves Close and vent start 3-way solenoid valve Close and vent fuel prestart 3-way solenoid valve Close and vent fuel prestart 3-way solenoid valve Close and vent oxidizer prestart 3-way solenoid valve

12

- Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
- Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Ascent Burn

- Open Pneumatic System
 - Open pneumatic regulation system solenoid valves
- Open Tank Isolation Valves
- Open corresponding 3-way solenoid valves
- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Open Engine Prevalves (Childown Engine)
 - Open fuel prestart 3-way solenoid valve
- Open oxidizer prestart 3-way solenoid valve
- Open Engine Valves
 - Open start 3-way solenoid valve
- Fire Ignitor
- · Fire pyros for disconnects and descent stage
- Open GH2 Autogenous Pressurization Valves
- Close Engine Valves (Shutdown Engine)
 Close and vent start 3-way solenoid valve
- Close and vent start 5-way soleriok
 Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent der prestant 3-way solehold valve
 Close and vent oxidizer prestant 3-way solehold valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
- Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
- Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- TEI Burn
 - · Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Engine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 Open Specific Valves
 - Open Engine Valves
 - Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - Close and vent oxidizer prestart 3-way solenoid valve

10

- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
- Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
- Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Close Tank Isolation Valves
- Close and vent corresponding 3-way solenoid valves
- 1 Mid-Course Correction
 - Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
 - Open Engine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - · Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close Tank Isolation Valves
 - Close and vent corresponding 3-way solenoid valves

7 3 TOTAL NUMBER OF FLIGHT OPERATIONS

OF LUNAR OPERATIONS NOMINAL SCENARIO 26 RETURN STAGE 26 · vent operations LANDER STAGE 1 Bleed off Oxidizer Residuals Bleed off Fuel Residuals 2 TOTAL NUMBER OF LUNAR OPERATIONS

A10.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Zero Fault Tolerant for Lunar Landing; Single Fault
	Tolerant for Ascent, Zero Fault Tolerant Post-Abort 1.3Second With Preparation
ABORT REACTION TIME STAGE SEPARATION	Not Clean, Some Obstruction Creates "Fire-in-the- Donut" Concerns
DEBRIS DAMAGE IMMUNITY	The Return Engines are Exposed at Lunar Landing

A-64

10

APPENDIX A TRADE #10 1.5 Stage

A10.4 COMPLEXITY

#05		
#OF COMPONENTS	COMPLEXITY	
COMPONENTS	CATEGORY	DESCRIPTION
6	3	COMMON COMPONENTS
14	2	GHe Tanks (4500 psia)
2	2	Solenoid Valves, normally closed (GHe)
4	2	Solenoid Valves, normally closed (GH2) Belief Valves (GHa, 60 pairs)
2	2	Relief Valves (GHe, 60 psia) Relief Valves (GHe, 500 psia)
4	2 2 2	Regulators, single-stage (GHe, 50 psia)
2	2	
8	1	Regulators, single-stage (GHe, 450 psia) Check Valves, one dual set (GH2)
2	2	LH2 Fill and Drain Pneumatic Valves
2	2	LO2 Fill and Drain Pneumatic Valves
1	3	LH2 T-0 Disconnect
i	3	LO2 T-0 Disconnect
i	2	GHe Fill Quick Disconnect
4	2	3-Way Solenoid Valves w/ vent ports
4	2	Solenoid Valves, normally open (GHe)
4	3	RL-10 Throttling Engine Chambers
4	3	Oxidizer turbopumps
4	3	Fuel turbopumps
4	ä	Engine turbines
4	3	High rpm Gear Box
8	2	Hydrogen cooldown vent valves
4	2	EMA Operated Fuel Throttle Valves
4	3 3 2 2 2 2 3 3 3 3 3 3 2 2 2 2 2 2 2 2	EMA Operated OX Valves
4	2	Igniters
12	2	Pneumatic Valves
12	2	3-Way Solenoid Valves w/ vent ports
8	2	Engine TVC Hydraulic Actuators
4	1	Hydraulic Accumulator
4		Hydraulic Relief Valves
4	2 3	Low pressure pump and recirc chamber
_4	3	High Pressure Pump
145		
		DESCENT COMPONENTS
6	3	LH2 Tanks w/ diffusers & start buckets (2.6 m dia.)
2	3 2	LO2 Tanks w/ diffusers & start buckets (2.6 m dia.)
2	2	3-Way Solenoid Valves w/ vent ports
2	2	Solenoid Valves, normally open (GHe)
2	2	Pneumatic valves, tank isolation
6	2	Solenoid Valves, normally closed (GH2)
6	2	Solenoid Valves, normally closed (GO2)
2	2	Burst discs/Relief Valves
28		
-		ASCENT COMPONENTS
2	3	Cryogenic disconnects
2	3	Gas phase disconnects
1	3	LH2 Tanks w/ diffuser & start bucket (4.0 m dia.)
1	3	LO2 Tanks w/ bubbler & start bucket (3.0m dia.)
2 2	2	3-Way Solenoid Valves w/ vent ports
2 4	2	Solenoid Valves, normally open (GHe)
	2	Pneumatic valves, tank isolation
6	3 3 2 2 2 2 2 2 2	Solenoid Valves, normally closed (GH2)
6		Solenoid Valves, normally closed (GO2)
2	2	Burst discs/Relief Valves
28		

APPENDIX A TRADE #10 1.5 Stage

201 TOTAL PROPULSION SYSTEM COMPONENT COUNT COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

440	COMPLEXITY RATING FOR TOTAL # OF COMPONENTS
376	COMPLEXITY RATING FOR # OF ACTIVE RETURN STAGE
86	COMPLEXITY RATING FOR # OF UNIQUE COMPONENTS

OF SUBSYSTEMS

DESCRIPTION

1 1 1 1 1 1 7	1.5 STAGE LH2 Tank Pressurant Regulation and Autogenous Pressurization System LO2 Tank Pressurant Regulation System Pneumatic Pressurant Regulation and Pressurization System Tank Vent Control System LH2 Tank Propellant Gaging Systems Tanks and Feed System Main Engine System (includes actuator and throttling systems TOTAL PROPULSION SUBSYSTEM COUNT
# OF INSTRUMEN	τατιών
LOCATIONS	DESCRIPTION
LOCATIONS	
	COMMON SYSTEMS
F	Temperature Transducers
5	Pressure Transducers
13	Valve Position Indicators (2 per valve)
8	
26	ENGINE SYSTEMS (4 RL-10s)
	Temperature Transducers
16	Pressure Transducers
36	Tachometers
4	Thrust Control Indicators (2 per TC)
8	Valve Position Indicators (2 per valve)
32_	Valve Pusiton indicators (= por valve)
96	
	DESCENT PROPULSION SYSTEM
12	Temperature Transducers
10	Pressure Transducers
8	Valve Position Indicators (2 per valve)
24	Fluid Level Indicators (3 per tank)
54	
	ASCENT PROPULSION SYSTEM
6	Temperature Transducers
10	Pressure Transducers
2	Delta P Transducers
2 8	Valve Position Indicators (2 per valve)
6	Fluid Level Indicators (3 per tank)
32	
208	TOTAL INSTRUMENT LOCATIONS COUNT

A10.5 VEHICLE METRICS

2.4 mt∆ Habitat - Lunar Return Mass5.9 mCG Height at Touchdown		Post TLI Mass Propellant Volume (m^3) ∆ Habitat - Lunar Return Mass CG Height at Touchdown
--	--	---

A10.6 HARDWARE READINESS (HR)

TRL	X	DIFFICULTY	=	HR	
					RETURN STAGE
6		0.6		3.6	Engines
7		1		7	Tanks/Press/Feed
6		1		6	Thermal Management
9		1		9	Propellant
					LANDER STAGE
9		1		9	Engines (Credited with 9 since already accounted
7		1		7	with Return stage engines) Tanks/Press/Feed

A10.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY

Limited Depends on HLLV Lunar LOX Possibilities Possible minimal

TRADE #11 CIF5/N2H4 PRESSURE FED RETURN STAGE CIF5/N2H4 PRESSURE FED LANDER STAGE

GROUND SUPPORTABILITY A11.1

RETURN STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) HYPERGOLIC BIPROPELLANTS (1)
- #4) EXPENDABLE (10)
- #5) NO AUXILARY PROPULSION (10)
- #6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)
- #7) ALL EMA ACTUATORS (8)
- #8) NO HEATSHIELD (10)
- #9) NO GROUND PURGE (10)
- #10) MAIN ENGINES GIMBALLED WITH EMA (5)
- #11) FLUIDS (2) ONLY, EXPENDABLE, NO LEAKAGE, LOADED LONG BEFORE COMMIT(10)
- #12) AMBIENT HELIUM CLOSED LOOP FLOW CONTROL VALVE (6)
- #13) NO PRECONDITIONING REQUIRED (10)
- #14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)
- #15) FEW STATIC SEALS ONLY USED IN FLUID SYSTEMS (7)
- #16) LITTLE PHYSICAL INTEGRATION (3)
- #17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)
- #18) PRESSURE FED BIPROPELLANT (9)
- RETURN LOI= .65

LANDER STAGE Launch Operability index

- #1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)
- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) HYPERGOLIC BIPROPELLENTS (1)
- #4) EXPENDABLE (10)
- #5) RCS INTEGRATED WITH MAIN (8.5)
- #6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)
- #7) ALL EMA ACTUATORS (8)
- #8) NO HEATSHIELD (10)
- #9) NO GROUND PURGE (10)
- #10) MAIN ENGINES GIMBALLED WITH EMA (5)
- #11) FLUIDS (2) ONLY, EXPENDABLE, NO LEAKAGE, LOADED LONG BEFORE COMMIT(10)
- #12) AMBIENT HELIUM CLOSED LOOP FLOW CONTROL VALVE (6)
- #13) NO PRECONDITIONING REQUIRED (10)
- #14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)
- #15) FEW STATIC SEALS ONLY USED IN FLUID SYSTEMS (7)
- #16) LITTLE PHYSICAL INTEGRATION (3)
- #17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)
- #18) PRESSURE FED BIPROPELLANT (9)
- LANDER STAGE LOI= .65

A11.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	Activate Engine - Tank Pyro Iso Valves Activate Tank- Pressurization Pyro Iso Valves
1	Open Hypergolic Engine Valves
1	Separate From Lander Stage Structure
	TOTAL NUMBER OF ABORT OPERATIONS
4	I UTAL NUMBER OF ABORT OF ENABORE

# OF FLIGHT OPE	RATIONS	NOMINAL SCENARIO					
0 5	Tran	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities Mid-Course Correction					
-		Activate Tank Pyro Iso Valves					
		Open Tank Pressurization Valves					
		Open Hypergollic Engine Valves					
		Close Engine Valves Close Tank Pressurization Valves					
4		Burn					
-		Open Tank Pressurization Valves					
		Open Hypergollic Engine Valves					
	•	Close Engine Valves					
		Close Tank Pressurization Valves					
4		cent Burn					
		OpenTank Pressurization Valves					
		Open Hypergollic Engine Valves Close Engine Valves					
		Close Tank Pressurization Valves					
		AR RETURN STAGE OPS					
6	Asce	ent Burn					
		Activate Engine - Tank Pyro Iso Valves					
		Activate Tank- Pressurization Pyro Iso Valves					
		Open Hypergolic Engine Valves					
		Separate From Descent Stage Structure Close Engine Valves					
		Close Pressurization Iso valves					
4	TEI						
		Open Tank Pressurization Iso valves					
		Open Hypergolic Engine Valves					
		Close Engine Valves					
4		Close Tank Pressurization valves d-Course Correction					
-		Open Tank Pressurization valves					
		Open Hypergolic Engine Valves					
	•	Close Engine Valves					
	٠	Close Tank Pressurization valves					
26	TOTAL NUMBER OF	FLIGHT OPERATIONS					
# OF LUNAR OPER	RATIONS	NOMINAL SCENARIO					
•	RETURN	+ · · · +· =					
0	No L	unar Operations Until Liftoff					
	LANDER	STAGE					
1	Blee	d off Oxidizer Residuals					
1	Blee	d off Fuel Residuals					
2							
2	TOTAL NUMBER OF	LUNAR OPERATIONS					

A11.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY

Lander Stage: Single Fault Tolerant for feed system component failure. Engine structural failure notcredible. Return Stage: Single Fault Tolerant for Ascent and Post Abort. Engine structural failure not credible. Engine mechanical valves are redundant. ABORT REACTION TIME Less Than 0.5 Second Without Preparation

STAGE SEPARATION

FLAT, Clean, The single Return Stage engines does not protrude down into a hole in the Lander Stage.

DEBRIS DAMAGE IMMUNITY

Immune, since Return Stage Protected & Unused

A11.4 COMPLEXITY

# OF COMPONENT	COMPLEXITY CATEGORY	# x Category	DESCRIPTION BETURN STAGE
	+ -	# x Category 8 8 4 10 3 6 6 6 6 16 4 10 6 <u>3</u> 90	RETURN STAGE 2 Sets of Quad Check Valves 2 Sets of series redundant Pressure Reg. Pressure Reg Iso Valves Pyro Isolation Valves Helium Tank Fuel Tanks Oxidizer Tanks Heat Exchangers Biprop Valves Burst Disc/Relief Valves Fill quick disconnects EMA TVC actuators Engines
8 4 2 5 1 3 3 2 16 2 5 4 8 2 65	1 2 2 3 3 3 3 2 2 2 3 2 3 3 3 3 3	8 8 4 10 3 9 9 6 32 4 10 12 16 <u>6</u> 137	LANDER STAGE 2 Sets of Quad Check Valves Sets of series redundant Pressure Regulators Pressure Reg Iso Valves Pyro Isolation Valves Helium Tank Fuel Tanks Oxidizer Tanks Oxidizer Tanks Heat Exchangers Biprop Valves Burst Disc/Relief Valves Fill quick disconnects EMA TVC actuators EMA THROTTLE VALVES Engines

TOTAL PROPULSION SYSTEM COMPONENT COUNT = 109

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

COMPLEXITY	RATING	FOR	TOTA	L # OF	COMPONENTS	=	227
COMPLEXITY	RATING	FOR	# OF	ACTIVE	RETURN STAGE	=	90
COMPLEXITY	RATING	FOR	# OF	UNIQUE	COMPONENTS *	=	64

# OF SUBSYSTEM	IS DESCRIPTION
1 1 1 	RETURN STAGE Tank Pressurization Tanks and Feed System Thermal Control -Electrical Heaters Main Engine
•	LANDER STAGE
1	Tank Pressurization
1	Tanks and Feed System
1	Thermal Control -Electrical Heaters
1	Main Engine
4	
8	TOTAL PROPULSION SUBSYSTEM COUNT
# OF INSTRUMENT	TATION
LOCATIONS	DESCRIPTION
5 7 20 34	RETURN STAGE Temperature Transducers Pressure Transducers Thrust Control Indicators Valve Position Indicators

	LANDER STAGE
6	Tank Liquid level sensors
8	Pressure Transducers
7	Temperature Transducers
4	Thrust Control Indicators
36	Valve Position Indicators
61	

95 TOTAL INSTRUMENT LOCATIONS COUNT

A11.5 VEHICLE METRICS

90.7 mt	Post TLI Mass
46.1	Propellant Volume (m^3)
2.5 mt	∆ Habitat - Return Stage Mass
4.8m	CG Height at Touchdown

A11.6 HARDWARE READINESS (HR)

IRL	X	DIFFICULTY	=	HR	
					RETURN STAGE
5		0.65		3.25	Engines
5		0.65		3.25	Tanks/Press/Feed
5		1		5	Thermal Management
5		0.65		3.25	Propellant
					LANDER STAGE
7		1		7	Engines
7		1		7	Tank/Press/Feed
5		1		5	Thermal Management
6		.65		3.25	Propellant

APPENDIX A TRADE #11 CIF5/N2H4

A11.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY Unlimited Except By Heater Power Yes None None High performance, small aeroshell package

TRADE #12 OPTIMIZED IME RETURN STAGE OPTIMIZED IME LANDER STAGE

A12.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) ONLY TWO PROPELLANTS, LOX/LH2 (4)

#4) EXPENDABLE (10)

#5) NO AUXILARY PRÓPULSION (10)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) ALL EMA (8)

#8) NO HEATSHIELD (10)

#9) NO PNEUMATIC SYSTEM (10)

#10) DIFFERENTIAL THROTTLING - FIXED MAIN ENGINES (10)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2)

#12) AUTOGENEOUS - FIXED ORIFICE CONTROL (8)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) ENGINES ARE INTEGRATED WITH SYSTEM, POSSIBLE POWER INTEG. (7)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER/PRE-BURNER CYCLE PUMP FED, THROTTLE (3.5)

RETURN LOI=.60

LANDER STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) ONLY TWO PROPELLANTS, LOX/LH2 (4)

#4) EXPENDABLE (10)

#5) RCS INTEGRATED WITH LANDER STAGE (8.5)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) ALL EMA (8)

#8) NO HEATSHIELD (10)

#9) NO PNEUMATIC SYSTEM (10)

#10) DIFFERENTIAL THROTTLING - FIXED MAIN ENGINES (10)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2)

#12) AUTOGENEOUS - FIXED ORIFICE CONTROL (8)

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) ENGINES ARE INTEGRATED WITH SYSTEM, POSSIBLE POWER INTEG. (7)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER/PRE-BURNER CYCLE PUMP FED, THROTTLE (3.5)

LANDER STAGE LOI=.58

A12.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

WORST CASE SCENARIO

1	Open Tank Iso Valves
1	Open Pump Iso Valves
1	Open Manifold Iso Valves
1	Open Engine Valves
1	Fire Igniter
1	Open Autogeneous Pressurization Valves

1	Separate From Lander Stage Structure			
7	TOTAL NUMBER OF ABORT OPERATIONS			
# OF FLIGHT OPE	RATIONS NOMINAL SCENARIO			
20 11	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) Mid-Course Correction • Open Tank Iso Valves • Open Pump Iso Valves • Open Manifold Iso Valves • Open Engine Valves] • Fire Igniter			
11	 Open Autogeneous Pressurization Valves Close Engine Valves Close Tank Iso Valves Close Pump Iso Valves Close Manifold Iso Valves Close GH2 Autogenous Pressurization Valves LOI Burn 			
	 Open Tank Iso Valves Open Pump Iso Valves Open Manifold Iso Valves Open Engine Valves] Fire Igniter Open Autogeneous Pressurization Valves Close Engine Valves 			
11	 Close Tank Iso Valves Close Pump Iso Valves Close Manifold Iso Valves Close GH2 Autogenous Pressurization Valves Descent Burn Open Tank Iso Valves Open Pump Iso Valves Open Manifold Iso Valves Open Engine Valves] Fire Igniter Open Autogeneous Pressurization Valves Close Engine Valves Close Tank Iso Valves 			
12	 Close Manifold Iso Valves Close GH2 Autogenous Pressurization Valves LUNAR RETURN STAGE OPS Perform Lunar Ascent Burn Open Tank Iso Valves Open Pump Iso Valves Open Manifold Iso Valves Open Engine Valves] Fire Igniter Fire Pyro Stage Separation Bolts Open Autogeneous Pressurization Valves Close Engine Valves Close Tank Iso Valves Close Pump Iso Valves Close Manifold Iso Valves Close GH2 Autogenous Pressurization Valves 			
11	Perform TEI Bum			

- Open Tank Iso Valves
- Open Pump Iso Valves
- Open Manifold Iso Valves
- Open Engine Valves]
- Fire Igniter
- Open Autogeneous Pressurization Valves
- Close Engine Valves
- Close Tank Iso Valves
- Close Pump Iso Valves
- Close Manifold Iso Valves
- Close GH2 Autogenous Pressurization Valves
- **Mid-Course Correction**
 - Open Tank Iso Valves
 - Open Pump Iso Valves
 - Open Manifold Iso Valves
 - Open Engine Valves]
 - Fire Igniter
 - Open Autogeneous Pressurization Valves

 - Close Engine Valves
 Close Tank Iso Valves
 - Close Pump Iso Valves
 - Close Manifold Iso Valves
 - Close GH2 Autogenous Pressurization Valves

TOTAL NUMBER OF FLIGHT OPERATIONS 87

OF LUNAR OPERATIONS

NOMINAL SCENARIO

1 1	LUNAR LANDER STAGE Bleed off Oxidizer Residuals Bleed off Fuel Residuals
	LUNAR RETURN STAGE
1	Safe Return Stage for Lunar Stay
	 Vent Tank Abort Pressure
22	Lunar Surface Thermal Vent Activities
	 Open Solenoid Vent Valves
	 Close Solenoid Vent Valves

25 TOTAL NUMBER OF LUNAR OPERATIONS

A12.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Return and Lander Stages: Single Fault Tolerant for
	feed system component failure. Engine structural
	failure not credible. Single Fault Tolerant Post-Abort
ABORT REACTION TIME	1.5 to 2.0 Seconds for Pump Ramping
STAGE SEPARATION	Clean, The Return Stage Does Not Protrude Down Into
	A Hole in The Lander Stage.
DEBRIS DAMAGE IMMUNITY	Immune, since Return Stage Protected & Unused
LEAKAGE POTENTIAL	LH2, NOT hermetically sealed

11

APPENDIX A TRADE #12 LOX/LH2 IME

A12.4 COMPLEXITY

#OF COMPONENTS	COMPLEXITY CATEGORY	#x Category	DESCRIPTION RETURN_STAGE
8 8 1 1 1 4 4 4 4 6 2 2 2 2 2 4 2 2 2 12 12 3 83	2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 3 2 2 3 48	16 16 2 2 2 2 8 8 8 8 12 4 4 6 6 8 6 6 6 6 6 2 4 2 4 9 181	GH2 Solenoid Valves GO2 Solenoid Valves GD2 Relief Valve GD2 Relief Valve GD2 Relief Valve GD2 Burst Disc GD2 Burst Disc LH2 EMA Valves LOX EMA Valves LOX EMA Valves LDX Solenoid Valves GH2 Solenoid Valves GH2 Solenoid Valves 3-Way Solenoid Valves Way Solenoid Valves LH2 Tanks LOX Tanks Modulating Valves Oxidizer Turbopumps Heat Exchangers Engine Valves Engine Throttling Valves Engine Chambers
8 8 1 1 1 1 4 4 4 4 6 2 2 4 2 4 2 4 2 2 4 2 2 16 16 16 4 94	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{c} 16\\ 16\\ 2\\ 2\\ 2\\ 2\\ 2\\ 8\\ 8\\ 12\\ 4\\ 12\\ 6\\ 8\\ 6\\ 8\\ 6\\ 32\\ 32\\ 12\\ 206 \end{array} $	LANDER_STAGE GH2 Solenoid Valves GO2 Solenoid Valves GH2 Relief Valve GO2 Relief Valve GO2 Relief Valve GO2 Burst Disc GO2 Burst Disc LH2 EMA Valves LOX EMA Valves LM2 Solenoid Valves GH2 Solenoid Valves Solenoid Valve

TOTAL PROPULSION SYSTEM COMPONENT COUNT = 177 COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

COMPLEXITY RATING FOR TOTAL # OF COMPONENTS = 387 COMPLEXITY RATING FOR # OF ACTIVE RETURN STAGE = 181 COMPLEXITY RATING FOR # OF UNIQUE COMPONENTS* = 96

# OF SUBSYSTEMS	
# 01 00001012103	DESCRIPTION
4	RETURN STAGE
1	LH2 Tank Autogenous Pressurization System
	LO2 Tank Autogeneous Pressurization System
1	Tank Vent Control System
1	Tanks and Feed System Turbo-Pump System
1	Main Engine System (includes actuator and throttling systems
6	main engine cyclon (moldocs doldalor and imothing systems
	LANDER STAGE
1	LH2 Tank Autogenous Pressurization System
1	LO2 Tank Autogeneous Pressurization System
1	Tank Vent Control System
	Tanks and Feed System
1	Turbo-Pump System
<u> </u>	Main Engine System (includes actuator and throttling systems
0	
12 TOTAL P	ROPULSION SUBSYSTEM COUNT
# OF INSTRUMENTATION	
LOCATIONS	DESCRIPTION
	RETURN STAGE
8	Pressure Transducers
4	Tachometers
8	Temperature Transducers
<u></u>	Valve Position Indicators
30	Engine Systems
6	Temperature Transducers
3	Pressure Transducers
12	Thrust Control Indicators
24	Valve Position Indicators
45	
^	LANDER STAGE
8 10	Pressure Transducers
<u>76</u>	Temperature Transducers Valve Position Indicators
94	valve Fostion mucators
-	Engine Systems (4 RL10's)
8	Temperature Transducers
4	Pressure Transducers
16	Thrust Control Indicators
<u>32</u>	Valve Position Indicators
60	

295 TOTAL INSTRUMENT LOCATIONS COUNT

A12.5 VEHICLE METRICS

70.1 mt	Post TLI Mass
127.1 m3	Propellant Volume (m^3)
5.5 mt	∆ Habitat - Return Stage Mass
7.0 m	CG Height at Touchdown

APPENDIX A TRADE #12 LOX/LH2 IME

A12.6 HARDWARE READINESS (HR)

TRL	X DIFFICULTY	=	HR	RETURN STAGE
4 7 7 9	.7 1 1 1		2.8 7 7 9	Engines Tanks/Press/Feed Thermal Management Propellant
4 7 7 9	.7 1 1 1		2.8 7 7 9	LANDER STAGE Engines Tanks/Press/Feed Thermal Management Propellant

A12.7 EVOLUTION

LONGER STAY TIME	6 Month requires extra propellant, MLI & 1 year requires refrigeration, Category 5
LARGER PAYLOADS	High Performance Provides ≥2.5 mt yes, use LO2 manuf. from lunar soil
PROPELLANT BOILOFF UTILIZATION	Yes, Use for power or RCS
MARS COMMONALITY	High Isp performance, however boiloff in Mars atmosphere is high and large aeroshell is required due to LH2 tankage.

TRADE #13 PRESSURE FED LH2/LOX RETURN STAGE LOX / LH2 PUMP FED LANDER STAGE

A13.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) ONLT TWO PROPELLANTS, LOX/LH2 (4)
- #4) EXPENDABLE (10)

#5) NO AUXILARY PROPULSION (10)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) ALL EMA ACTUATORS (8)

#8) NO HEATSHIELD (10)

#9) NO GROUND PURGE (10)

#10) MAIN ENGINES GIMBALLED WITH EMA (5)

#11) MULTI-FLUID LH2/LO2 T-0 INTERFACE, NOLEAKAGE, RETRACT AT COMMIT (2)

- #12) COLD HELIUM, HEAT EXCHANGER CLOSED LOOP FLOW CONTROL VALVE (4)
- #13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITHOUT REMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) PRESSURE FED LH2/LOX (9)

RETURN LOI= .59

LANDER STAGE Launch Operability index

#1) COMPARTMENT COMPLETELY CLOSED, PANEL ACCESS (3)

- #2) FUNCTIONAL CHECKS AUTOMATED, LEAK CHECKS MANUAL (1.5)
- #3) LO2/LH2, AND MONOPROPELLANT (3)

#4) EXPENDABLE (10)

#5) SINGLE USING TOXIC PROP, AUXIALLRY PROPULSION (4)

#6) ORDANANCE MULTIPLE LAUNCH SITE INSTALLATION CLEARING REQ (4)

#7) EMA AND ACTIVE PNEUMATICS (4)

#8) NO HEATSHIELD (10)

#9) PNEUMATIC STORAGE, MULTIPLE PURGE (2)

#10) MAIN ENGINES GIMBALLED WITH HYD ACT., ENGINE PROVIDES POWER (2)

#11) MULTI FLUID LH2/LO2 T-0 INTERFACE, NO LEAKAGE, RETRACT AT COMMIT (2)

#12) AUTOGENOUS AND AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE (5)

INCORT CACE SCENADIO

#13) NO PRECONDITIONING REQUIRED (10)

#14) ACCESS WITH OUTREMOVAL OF OTHERS, SOME SUPPORT EQUIP (7)

#15) STATIC AND DYNAMIC SEALS (3)

#16) LITTLE PHYSICAL INTEGRATION (3)

#17) SPECIAL GSE WITH MAINTANANCE REQUIRED (3)

#18) EXPANDER CYCLE PUMP FED , THROTTLE (4.5)

LANDER STAGE LOI= .44

A13.2 FLIGHT OPERABILITY

OF ABORT OPERATIONS

1	Activate Engine - Tank Pyro Iso Valves
1	Activate Tank- Pressurization Pyro Iso Valves
1	Open Engine Valves
1	Open TankPressurization Iso Valves
1	Fire Ignitors
1	Separate From Lander Stage Structure
6	TOTAL NUMBER OF ABORT OPERATIONS

OF FLIGHT OPERATIONS

NOMINAL SCENARIO

TRANSIT TO MOON FLIGHT OPERATIONS

Transit Thermal Vent Activities (2 times)

- Mid-Course Correction
 - Open Pneumatic System
 - Open pneumatic regulation system solenoid valves
 - Open Tank Isolation Valves
 - Open corresponding 3-way solenoid valves
 - Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Open Engine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 - · Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- LOI Burn
 - Open Pneumatic System
 - Open pneumatic regulation system solenoid valves
 - Open Tank Isolation Valves
 - Open corresponding 3-way solenoid valves
 - Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and descent tank pressurization solenoid valves
 - Open Engine Prevalves (Chilldown Engine)
 Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
 - Open Engine Valves
 - · Open start 3-way solenoid valve
 - Fire Ignitor
 - Open GH2 Autogenous Pressurization Valves
 - Close Engine Valves (Shutdown Engine)
 - · Close and vent start 3-way solenoid valve
 - Close Engine Prevalves
 - Close and vent fuel prestart 3-way solenoid valve
 Close and vent oxidizer prestart 3-way solenoid valve
 - Close GH2 Autogenous Pressurization Valves
 - Close Tank Pressurization System

4 11

4

11

APPENDIX A TRADE #13 LO2/LH2 PRES. FED

 Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves

 Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves

10

- Prepressurize Propellant Tanks
 - Open LH2 pressurant regulation system and tank pressurization solenoid valves
 - Open LO2 pressurant regulation system and tank pressurization solenoid valves
- Open Éngine Prevalves (Chilldown Engine)
 - Open fuel prestart 3-way solenoid valve
 - Open oxidizer prestart 3-way solenoid valve
- Open Engine Valves
- Open start 3-way solenoid valve
- Fire Ignitor

Descent Burn

- Open GH2 Autogenous Pressurization Valves
- Close Engine Valves (Shutdown Engine)
 - · Close and vent start 3-way solenoid valve
- Close Engine Prevalves
 - · Close and vent fuel prestart 3-way solenoid valve
- Close and vent oxidizer prestart 3-way solenoid valve
- Close GH2 Autogenous Pressurization Valves
- Close Tank Pressurization System
 - Close and vent LH2 pressurant regulation system and descent tank pressurization solenoid valves
 - Close and vent LO2 pressurant regulation system and descent tank pressurization solenoid valves
- Close Tank Isolation Valves
- Close and vent corresponding 3-way solenoid valves

LUNAR RETURN STAGE OPS

Ascent Burn

- Activate Engine Tank Pyro Iso Valves
- Activate Tank- Pressurization Pyro Iso Valves
- Open Tank Pressurization Iso Valves
- Open Engine Valves
- Fire Ignitors
- Separate From Descent Stage Structure
- Close Engine Valves
- Close Pressurization Iso valves
- TEI Burn
 - Open Tank Pressurization Iso valves
 - Open Engine Valves
 - Fire Ignitors
 - Close Engine Valves
 - Close Tank Pressurization valves
 - 1 Mid-Course Correction
 - Open Tank Pressurization valves
 - Open Engine Valves
 - Fire Ignitors
 - Close Engine Valves
 - Close Tank Pressurization valves

.

8

5

5

58 TOTAL NUMBER OF FLIGHT OPERATIONS

APPENDIX A TRADE #13 LO2/LH2 PRES. FED

#

OF LUNAR OPERATIONS	NOMINAL SCENARIO
~	RETURN STAGE Cryo vent cycles
23	
	LANDER STAGE Bleed off Oxidizer Residuals
1	Bleed off Fuel Residuals
2	
25 TOTAL	NUMBER OF LUNAR OPERATIONS

A13.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Lander Stage: Zero Fault Tolerant for engine failure except during terminal phase of descent, one fault tolerant for feed system component failure. Return Stage: Single Fault Tolerant for Ascent and Post Abort. Engine structural filure not credible. Engine mechanical valves are redundant.
ABORT REACTION TIME	Less Than 0.5 Second Without Preparation

ABORT REACTION TIME

STAGE SEPARATION

Not Clean, Some Obstruction Creates "Fire-in-the-Hole" Concerns. The ascent engine protrudes down into a hole in the Lander Stage .

Immune, since Return Lander Protected & Unused DEBRIS DAMAGE IMMUNITY

LEAKAGE POTENTIAL

HIGH Potential Due to LH2 Presence

A13.4 COMPLEXITY

#OF COMPONENTS 8 2 2 4 2 2 2 2 8 2 2 2 8 2 2 2 2 2 2 2	COMPLEXITY CATEGORY 1 2 2 2 3 3 3 2 2 2 2 2 2 3 3 3 2 2 2 2	# x Category 8 4 4 8 6 6 6 16 4 4 6 3 75	DESCRIPTION RETURN LANDER 2 Sets of Quad Check Valves 1 Set of series redundant Pressure Regulators Pressure Reg Iso Valves Pyro Isolation Valves Helium Tanks Fuel Tanks Oxidizer Tanks Biprop Valves Burst Disc/Relief Valves Fill quick disconnects EMA TVC actuators Engine
3 10 6 8 4 4 2 4	3 2 1 2 2 2 2 2 2	9 20 6 16 8 8 4 8	LANDER STAGE GHe Tanks (4500 psia) GHe Solenoid Valves GHe check vales GH2 Solenoid Valves GOX Solenoid Valves Relief Valves (GHe, 60 psia) Relief Valves (GHe, 500 psia) Regulators, single stage (GHe, 50 psia)

#

2	2	4	Regulators, single stage (GHe 450 psia)
8	1	8	One Dual Set Check valve/RL10 (GH2)
2	2	4	LH2 Fill and Drain Pneumatic Valves
2	2	4	LO2 Fill and Drain Pneumatic Valves
1	3	3	LH2 T-0 Disconnect
1	3	3	LO2 T-0 Disconnect
1	2	2	GHe Fill Quick Disconnect
8	2	16	Engine/Tank Pre valves
4	2	8	3-Way Solenoid Valves with vent ports
6	3	18	LH2 Tanks with diffusers and start buckets
2	2 3 3	6	LOX Tanks with diffusers and start buckets
4	3	12	RL10 Throttling Engine Chambers
4		12	Oxidizer Turbopumps
4	3 3 3	12	Fuel Turbopumps
4	3	12	Engine Turbines
4	3	12	High rpm Gear Box
8	3	24	Engine Cooldown vent valves
4	2	8	EMA Operated Fuel Throttle Valves
4	2	8	EMA Operated OX Valves
4	2	8	Ignitors
12	2	24	Pneumatically Actuated Engine FeedValves
20	2	40	3-Way Solenoid Valves with vent ports
8	2	16	Engine TVC Hydraulic Actuators
4	1	4	Hydraulic Accumulator
4	2	8	Hydraulic Relief Valves
4	3	12	Low pressure pump and recirc chamber
_4	<u>3</u>	12	High Pressure Pump
174	80	391	

TOTAL PROPULSION SYSTEM COMPONENT COUNT = 211

COMPLEXITY RATING = (Category #1 Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3

COMPLEXITY	RATING	FOR	TOTA	L # OF	COMPONENTS	= 466
					RETURN STAGE	
COMPLEXITY	RATING	FOR	# OF	UNIQUE	COMPONENTS	= 108

OF SUBSYSTEN	AS DESCRIPTION
	RETURN LANDER
1	Tank Pressurization
1	Tanks and Feed System
1	Thermal Control -Electrical Heaters
1	Main Engines
4	·
	LANDER STAGE
1	LH2 Tank Pressurant Regulation/Autogenous PressSystem
1	LO2 Tank Pressurant Regulation System
1	Pneumatic Pressurant Regulation and Pressurization System
1	Tank Vent Control System
1	LH2 Tank Propellant Gaging Systems
1	Tanks and Feed System
1	Main Engine System (includes actuator and throttling systems
7	
11	TOTAL PROPULSION SUBSYSTEM COUNT

APPENDIX A TRADE #13 LO2/LH2 PRES. FED

/----

# OF INSTRUMENTAT	ION DESCRIPTION
5 9 <u>48</u> 62	RETURN LANDER Temperature Transducers Pressure Transducers Valve Position Indicators (2 per Prop Feed Valve only)
11 9 24 24	LANDER LANDER Pressurization/Feed/Vent Systems Temperature Transducers Pressure Transducers Valve Position Indicators (2 per prop prevalve and f/d) Liquid level sensors (3 per tank)
64	Engine Systems
16 36 4 8 <u>32</u> 96	Temperature Transducers Pressure Transducers Tachometers Thrust Control Indicators (2 per TC) Valve Position Indicators (2 per valve)
222 T	OTAL INSTRUMENT LOCATIONS COUNT

A13.5 VEHICLE METRICS

99.6 mt	Post TLI Mass
189.4 m3	Propellant Volume (m^3)
-16.4 mt	∆ Habitat - Return Stage Mass
8.4 m	CG HEIGHT @ TD

A13.6 HARDWARE READINESS (HR)

TRL	X DIFFICULTY	=	HR	RETURN STAGE
6 7 7 9	.8 1 1 1		4.8 7 7 9	Engines Tanks/Press/Feed Thermal Management Propellant LANDER STAGE
7 7 7 9	1 1 1 1		7 7 9	Engines Tanks/Press/Feed Thermal Management Propellant

A13.7 EVOLUTION

LONGER STAY TIME LARGER PAYLOADS INSITU RESOURCE UTILIZATION PROPELLANT BOILOFF UTILIZATION MARS COMMONALITY	significant modifications None Yes, use LO2 from lunar soil Use for power or eclss none, low performance, large aeroshell required.
--	--

TRADE #14 OPTIMIZED IME STAGE 1/2

A14.1 GROUND SUPPORTABILITY

RETURN STAGE Launch Operability Index

- #1 Comprartment Completely Closed, Panel Access (3)
- #2 Functional Checks Automated, Leak Checks Manual (1.5)
- #3 LH2, LO2 (4)
- #4 Expendable (10)
- #5 No Auxiliary Propulsion (10)
- #6 Ordance Multiple Launch Site Installation Clearing Required (4)
- #7 All EMA(8)
- #8 No Heatshield (10)
- #9 No Pneumatic System (10)
- #10 Differential Throttling Fixed Main Engines(10)
- #11 Multi-Fluid LH2/LO2 T-0 Interface, No Leakage, Retract At Commit(2)
- #12 Autogenous Closed Loop Flow Control Valve (5.5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Dynamic Seals Used (3)
- #16 Return Stage fully integrated into Lander Stage, RCS integrated (10)
- #17 Special GSE With Maintenance Required(3)
- #18 Same Engine System as Lander (10)
- RETURN LOI=.78

LANDER STAGE Launch Operability index

- #1 Comprartment Completely Closed, Panel Access (3)
- #2 Functional Checks Automated, Leak Checks Manual (1.5)
- #3 LH2, LO2 (4)
- #4 Expendable (10)
- #5 No Auxiliary Propulsion (10)
- #6 Ordance Multiple Launc Site Installation Clearing Required (4)
- #7 All EMA(8)
- #8 No Heatshield (10)
- #9 No Pneumatic System (10)
- #10 Differential Throttling Fixed Main Engines(10)
- #11 Multi-Fluid LH2/LO2 T-0 Interface, No Leakage, Retract At Commit2)
- #12 Autogenous Closed Loop Flow Control Valve (5.5)
- #13 No Preconditioning Required (10)
- #14 Access without Removal Of Others, Some Support Equip (7)
- #15 Extensive Use Of Static Seals In All Fluid Systems, Few Dynamic Seals Used (3)
- #16 Integration of power and RCS (7)
- #17 Special GSE With Maintenance Required(3)
- #18 Pump fed cryogenic engine (4.5)
- LANDER LOI= .59

A14.2 FLIGHT OPERABILITY

#OF ABORT OPERATIO	NS WORST CASE SCENARIO
1	Isolate Landing Stage Prop Tanks
1	Separate From Landing Stage Prop Tanks
1	Open Tank Iso Valves
1	Open Pump Iso Valves
1	Open Manifold Iso Valves
1	Open Engine Valves
1	Fire Igniter
1	Open Autogeneous Pressurization Valves
8 TOTA	L NUMBER OF ABORT OPERATIONS

# OF FLIGHT OPERATIONS	NOMINAL SCENARIO
20 11	TRANSIT TO MOON FLIGHT OPERATIONS Transit Thermal Vent Activities (10 times) Mid-Course Correction • Open Tank Iso Valves • Open Pump Iso Valves • Open Manifold Iso Valves
11	 Open Engine Valves Fire Igniter Open Autogenous Pressurization Valves Close Engine Valves Close Tank Iso Valves Close Pump Iso Valves Close Manifold Iso Valves Close Autogenous Pressuirzation Valves LOI Burn
	 Open Tank Iso Valves Open Pump Iso Valves Open Manifold Iso Valves Open Engine Valves Fire Igniter Open Autogenous Pressurization Valves Close Engine Valves Close Tank Iso Valves Close Pump Iso Valves Close Manifold Iso Valves Close Autogenous Pressuirzation Valves
11	 Close Autogenous Pressuitzation Values Descent Burn Open Tank Iso Valves Open Pump Iso Valves Open Manifold Iso Valves Open Engine Valves Fire Igniter Open Autogenous Pressurization Valves Close Engine Valves Close Tank Iso Valves Close Pump Iso Valves Close Manifold Iso Valves Close Autogenous Pressuitzation Valves
11	LUNAR RETURN STAGE OPS Ascent Burn Isolate Landing Stage Prop Tanks Separate From Landing Stage Prop Tanks Open Manifold Iso Valves Open Engine Valves Fire Igniter Open Autogenous Pressurization Valves Close Engine Valves Close Tank Iso Valves Close Pump Iso Valves Close Autogenous Pressuirzation Valves Close Autogenous Pressuirzation Valves
11	TEI Burn Isolate Landing Stage Prop Tanks Separate From Landing Stage Prop Tanks Open Manifold Iso Valves

- S
- Open Manifold Iso Valves
 Open Engine Valves
 Fire Igniter

11	 Open Autogenous Pressurization Valves Close Engine Valves Close Tank Iso Valves Close Pump Iso Valves Close Manifold Iso Valves Close Autogenous Pressuirzation Valves Mid-Course Correction Open Tank Iso Valves Open Pump Iso Valves Open Pump Iso Valves Open Engine Valves Fire Igniter Open Autogenous Pressurization Valves Close Engine Valves Close Engine Valves Close Engine Valves Close Tank Iso Valves Close Engine Valves Close Tank Iso Valves Close Tank Iso Valves Close Tank Iso Valves Close Tank Iso Valves Close Autogenous Pressurization Valves
86 TOTAL NU	IMBER OF FLIGHT OPERATIONS
# OF LUNAR OPERATIONS 1 1 1 1 4 1 22 23	NOMINAL SCENARIO LANDER STAGE PROPULSION SYSTEM Bleed off LO2 Residuals Bleed off LH2 Residuals Isolate Lander Stage Propellant Tanks Separate From Lander Stage Propellant Tanks RETURN STAGE PROPULSION SYSTEM Safe Return Stage For Lunar Stay Lunar Surface Thermal Vent Activities

27 TOTAL NUMBER OF LUNAR OPERATIONS

A14.3 VEHICLE DESIGN ISSUES

INHERENT REDUNDANCY	Return and Lander Stages: Single fault tolerant for feed system component failure. Engine structural failure not credible. One Fault Tolerant Post Abort
ABORT REACTION TIME	1.5 to 2.0 seconds for pump ramping 2.4 sec max. to switch from descent tank to ascent tank.
STAGE SEPARATION	Descent tank seperation is required. Landing gear is also dropped during ascent.
DEBRIS DAMAGE IMMUNITY	Damage to Lander Stage does affect Return Stage propulsion system. (May remove engine-out capability for ascent)
Lunar Leakage Potential	LH2, Not hermetically sealed

APPENDIX A TRADE #14 STAGE 1/2

A14.4 COMPLEXITY

# OF	COMPLEXITY	1	
COMPONENTS	CATEGORY	#x Cat	DESCRIPTION
			COMMON COMPONENTS
4	2	8	Autogenous Pressurization System Solenoid Valves
2	2	4	LH2 Fill and Drain Pneumatic Valves
2 2	2	4	LO2 Fill and Drain Pneumatic Valves
1	3	3	LH2 T-0 Disconnect
1	3	3	LO2 T-0 Disconnect
4	3	12	Engine Chambers
	2	32	Engine Solenoid Valves
16	2	32	Engine Throtlle Valves
16	2	8	Igniters
4	2		Turbo-Pumps
4	2 2 2 2	8	
4	2	8	Turbo-Pump Isolation Valves
4	2	8	Manifold Isolation Valves
2	2	4	Gaseous Cryo Three Way Valves
6	2	12	Gaseous Cryo Solenoid Valves
4	2	<u>8</u>	Modulating Valves
74	33	154	
			MONIENTO
-			MPONENTS
6	3	18	LH2 Tanks
2	3	6	LO2 Tanks
4	2	8	Tank iso Valves (normally open)
2	2	4	Tank iso Valve (normally closed)
4	2	8	Tank Separation mechanism
8	2 2 2	16	Tank Solenoid Vent Valves
6 2 2_	2	12	Autogenous Press. System Solenoid Valves
2	2	4	Tank Press System EMA valves (normally open)
2	2	4	Burst discs/Relief Valves
36	20	80	
•••			
			OMPONENTS
1	3	3	LH2 Tanks
1	3	3	LO2 Tanks
4	2	8	Tank iso Valve (normally closed)
8	2 2 2	16	Tank Solenoid Vent Valves
4	2	8	Autogenous Press. System Solenoid Valves
2	2	4	Burst discs/Relief Valves
20	14	42	
TOTA	L PROPULSIC	N SYSTE	M COMPONENT COUNT = 130
COMPLEXITY	RATING = (Ca	ategory #1	Count) X 1 + (Category #2 Count) X 2 + (Category #3 Count) X 3
COMI	PLEXITY RA	TING FO	R TOTAL # OF COMPONENTS = 276
COM	PLEXITY RA	TING FO	R # OF ACTIVE RETURN STAGE = 154
COMI	PLEXITY RA	TING FO	R # OF UNIQUE COMPONENTS = 67
# OF SUBSYS	STEMS		DESCRIPTION
# OF SUBS 13	SI ENIS		
		STAG	E MAIN PROPULSION
1		L	H2 Tank Autogenous Pressurization System
1		L	O2 Tank Pressurant Regulation System
1			Fank Vent Control System
1			Tanks and Feed System
			Furbo-pump System
i			Main Engine System
<u>+</u> 6		•	
v			· · · · · · · · · · · · · · · · · · ·

TOTAL PROPULSION SUBSYSTEM COUNT

6

# OF INSTRUMENTA LOCATIONS	ATION DESCRIPTION
	COMMON SYSTEMS
8	Temperature Transducers
14	Pressure Transducers
4	Tachometers
<u> </u>	Valve Position Indicators (2 per valve)
62	
	ENGINE SYSTEMS
8	Temperature Transducers
4	Pressure Transducers
16	Thrust Control Indicators
32	Valve Position Indicators (2 per valve)
60	
••	LANDER STAGE PROPULSION SYSTEM
8	Temperature Transducers
4	Pressure Transducers
44	Valve Position Indicators
56	
50	
	RETURN STAGE PROPULSION SYSTEM
2	Temperature Transducers
4	Pressure Transducers
32	Valve Position Indicators
38	
046	

216 TOTAL INSTRUMENT LOCATIONS COUNT

A14.5 VEHICLE METRICS

67.9 mt	Post TLI Mass
121.7 m^3	Propellant Volume
8.4 mt	∆ Habitat - Return Stage Mass
5.9 m	CG HEIGHT @ TD

A14.6 HARDWARE READINESS (HR)

TRL	X	DIFFICULTY	=	HR	
					RETURN STAGE
4		0.7		2.8	Engines/Press/Feed
7		1		7	Tanks
6		1		6	Thermal Management
9		1		9	Propellant
					LANDER STAGE
9		1		9	Engines (Credited with 9 since already accounted
					with Return stage engines)
9		1		9	Tanks/Press/Feed (Credited with 9 since already
					accounted with Return stage

A14.7 EVOLUTION

LONGER STAY TIME	Requires mods for 6 months, Category 5
LARGER PAYLOADS	Yes
INSITU RESOURCE UTILIZATION	Yes, Use Lunar soil to make LO2
PROPELLANT BOILOFF UTILIZATION	Yes, Use for power, eclss
MARS COMMONALITY	High performance, but high boiloff in mars atmosphere, and large aeroshell required

APPENDIX B

This appendix contains the listing of the computer model used to calculate the performance parameters utilized in the trade study. The commercial software, *TK Solver*, was used to run the performance computer model. The detailed output data sheets for each of the 14 trade study propulsion systems is presented in order following the performance model listing. The detailed output data sheets contain the general and specific inputs and outputs for each trade.

TWO STAGE PERFORMANCE MODEL (TK SOLVER SOFTWARE)

RULES

"---DESCENT STAGE MASS BREAKDOWN---PRPSYS1=FESYS1+TNKST1+TNKS1+ENGS1+PTNK1+73 TNKST1=.3*TNKS1 SPPT1=STRUCT1+PROT1+POWER1+AV1+LGEAR LGEAR=(VEHCL-MBURN1-BOIL1)*.03 PSYS1=PTNK1+HEMASS1 GROWTH1=GROWTH%*(PRPSYS1+SPPT1) STAGE1=PRPSYS1+SPPT1+GROWTH1+FLUIDS1+HEMASS1+200

"---ASCENT STAGE MASS BREAKDOWN---PRPSYS2=FESYS2+TNKST2+TNKS2+ENGS2+PTNK2 TNKST2=.3*TNKS2 SPPT2=STRUCT2+PROT2+POWER2+AV2+ECLSS PSYS2=PTNK2+HEMASS2 GROWTH2=GROWTH%*(PRPSYS2+SPPT2) STAGE2=PRPSYS2+SPPT2+GROWTH2+FLUIDS2+HEMASS2+CREWMOD

"---PROPELLANT STUFF---PROP1=MBURN1+RESID1 PROP2=MBURN2+RESID2 RESID1=MBURN1*RESERVE RESID2=MBURN2*RESERVE TOTPROP=FU1+FU2+OX1+OX2

"---BOILOFF STUFF---BOILFU1=54509*4*NFUTNK1*1.3*ATOTFU1/FUVAP1 BOILOX1=54509*4*NOXTNK1*1.3*ATOTOX1/OXVAP1 BOIL1=BOILFU1+BOILOX1 BOILFU2=HTRATEF*STIME*NFUTNK2*1.3*ATOTFU2/FUVAP2 BOILOX2=HTRATEO*STIME*NOXTNK2*1.3*ATOTOX2/OXVAP2 BOIL2=BOILFU2+BOILOX2

"---ROCKET EQUATION STUFF---EXP(DELV1/(ISP1*G))=(FU1+OX1-BOIL1+STAGE1+STAGE2+PAYLOAD+FU2+OX2)/(STAGE1+STAGE2+PAYLOAD+FU1+OX1-BOIL1-MBURN1+FU2+OX2) EXP(DELV2/(ISP2*G))=(FU2+OX2-BOIL2+STAGE2+RETCARGO)/(STAGE2+RETCARGO+FU2+OX2-BOIL2-MBURN2)

"---VEHICHLE CALC VEHCL=STAGE1+STAGE2+PAYLOAD+TOTPROP

"---DESCENT TANKS---FU1=PROP1/(1+MR1)+BOILFU1+APRSFU1 OX1=PROP1*MR1/(MR1+1)+BOILOX1 CALL PROPTNK(FU1,FURAD1,FURHO1,PPRES1,NFUTNK1,METSIG1,METRHO1,TMIN1;FUVOL1, LENFU1,ATOTFU1,FUTNK1,FUTNKV1) CALL PROPTNK(OX1,OXRAD1,OXRHO1,PPRES1,NOXTNK1,METSIG1,METRHO1,TMIN1;OXVOL1, LENOX1,ATOTOX1,OXRHO1,PPRES1,NOXTNK1,METSIG1,METRHO1,TMIN1;OXVOL1, LENOX1,ATOTOX1,OXTNK1,OXTNKV1) ML11=(NOXTNK1*ATOTOX1*.493)+(NFUTNK1*ATOTFU1*.766) TNKS1=(OXTNK1*NOXTNK1)+(FUTNK1*NFUTNK1)+ML11

"---ASCENT TANKS----FU2=PROP2/(1+MR2)+BOILFU2 OX2=PROP2*MR2/(MR2+1)+BOILOX2

CALL OTNK(FU2,FURAD2,FURHO2,PPRES2,NFUTNK2,METSIG2,METRHO2;FUVOL2,LENFU2, ATOTFU2,FUTNK2,FUTNKV2)

CALL OTNK(OX2,OXRAD2,OXRHO2,PPRES2,NOXTNK2,METSIG2,METRHO2;OXVOL2,LENOX2, ATOTOX2,OXTNK2,OXTNKV2)

MLI2=0

TNKS2=(OXTNK2*NOXTNK2)+(FUTNK2*NFUTNK2)+MLI2

"---PRESSURIZATION STUFF

CALL PRESS(FUVOL1,OXVOL1,PPRES1,.1,TEMPFU1,TEMPOX1;PTNK1,HEMASS1) CALL PRESS(FUVOL2,OXVOL2,PPRES2,1,TEMPFU2,TEMPOX2;PTNK2,HEMASS2) CALL AUTOPRS(FUTNKV1,2,PPRES1,TEMPFU1,NFUTNK1;APRSFU1)

"---STRUCTURE CALCS CALL STRUCT(LENFU1, LENOX1, DIA1;STRUCT1) CALL STRUCT(LENFU2, LENOX2, DIA2;STRUCT2)

G

SUBROUTINES (Procedures)

PROPTNK	Procedure	8;5	PROPTNK - CALCS TANK STUFF
PRESS	Procedure	6;2	PRESS - PRESSURIZATION STUFF
STRUCT	Procedure	3;1	STRUC - STRUCTURE ESTIMATOR
AUTOPRS	Procedure	5;1	AUTOPRS - AUTOGENOUS STUFF
OTNK	Procedure	7;5	OTNK - CALCS O-WRAP TANK STUFF

PROCEDURE:

PROPTNK - CALCS TANK STUFF

Parameter Variables: Input Variables: Output Variables: Statements: "-----CONSTANTS SF=1.9 ALRHO=METRHO ALSIG=METSIG ACCEL=4 KT=1.2

PROP,TNKRAD,PROPRHO,PPRES,NUMTNKS,METSIG,METRHO,TMIN PROPVOL,TNKLEN,ATOT,TNKMASS,TNKVOL S

"---TANK CALCS PROPVOL=PROP/PROPRHO TNKVOL=PROPVOL*1.05/NUMTNKS DOMVOL=(4*PI()*TNKRAD^3)/3 CYLLEN=(TNKVOL-DOMVOL)/(PI()*TNKRAD^2) TNKLEN=2*TNKRAD+CYLLEN TOTPRES=PPRES+PROPRHO*G*TNKLEN*ACCEL TWALL=SF*TOTPRES*TNKRAD/ALSIG TDOM=SF*TOTPRES*TNKRAD/(2*ALSIG) IF TWALL<TMIN THEN TWALL=TMIN IF TDOM<TMIN THEN TDOM=TMIN ACYL=2*PI()*TNKRAD*CYLLEN ADOM=4*PI()*TNKRAD^2 ATOT=ACYL+ADOM MDOM=ADOM*TDOM*ALRHO MCYL=ACYL*TWALL*ALRHO TNKMASS=KT*(MDOM+MCYL)

PROCEDURE:

PROCEDURE:

PRESS - PRESSURIZATION STUFF

Parameter Variables:FUVOL,OXVOL,PPRES,FACT,TEMPFU,TEMPOXInput Variables:FUVOL,OXVOL,PPRES,FACT,TEMPFU,TEMPOXOutput Variables:PTNK,HEMASSStatements:PROPVOL=(FACT*FUVOL+OXVOL)*1.05TEND=300*(400/4000)^{((1.66-1)/1.66)}HEMASSFU=PPRES*FUVOL*FACT/(TEMPFU*2077)HEMASSOX=PPRES*OXVOL/(TEMPOX*2077)RESIDHE=400*(PROPVOL/9)/(2077*TEND)HEMASS=HEMASSFU+HEMASSOX+RESIDHEVM3=HEMASS*300*2077/(2.75E7)PTNK=1.5*(2.75E7*VM3)*4/1000000

STRUC - STRUCTURE ESTIMATOR

Parameter Variables: Input Variables: LENFU,LENOX,DIA Output Variables: STRUCT Statements: IF LENOX<LENFU THEN LEN=LENFU ELSE LEN=LENOX AM2=PI()*DIA*LEN MLB=1.27*(AM2*10.76)^1.1506 STRUCT=.45359*MLB

PROCEDURE: AUTOPRS - AUTOGENOUS STUFF Parameter Variables: Input Variables: Input Variables: TNKVOL,MW,TNKPRES,TEMP,NUMTNKS

Output Variables: PRESM Statements: M1=MW*TNKPRES*TNKVOL/(1.206*TEMP*6870) PRESM=M1*NUMTNKS

G

PROCEDURE:

OTNK - CALCS O-WRAP TANK STUFF

Parameter Variables: Input Variables: Output Variables: Statements: "-----CONSTANTS SF=1.9 ALRHO=METRHO ALSIG=METSIG ACCEL=4 KT=1.2 TMIN=,001143

PROP,TNKRAD,PROPRHO,PPRES,NUMTNKS,METSIG,METRHO PROPVOL,TNKLEN,ATOT,TNKMASS,TNKVOL

"---TANK CALCS PROPVOL=PROP/PROPRHO TNKVOL=PROPVOL*1.05/NUMTNKS DOMVOL=(4*PI()*TNKRAD^3)/3 CYLLEN=(TNKVOL-DOMVOL)/(PI()*TNKRAD^2) TNKLEN=2*TNKRAD+CYLLEN TOTPRES=PPRES+PROPRHO*G*TNKLEN*ACCEL ACYL=2*PI()*TNKRAD*CYLLEN ADOM=4*PI()*TNKRAD^2 ATOT=ACYL+ADOM

LINMASS=ATOT*8.89E-4*ALRHO IF TOTPRES*SF<5.5E6 THEN TOTPRES=5.5E6/SF WMASS=TOTPRES*TNKVOL*SF*4.017/1.1E6 TNKMASS=LINMASS+WMASS

B-5 C-3

APPENDIX B Trade #1 NTO/MMH

MMH/NTO PRESS TRADE #1 (O-WRAP TANKS FOR ASCENT)

				VARIABLES REQUIRING INITIAL GUESSES
				DESCENT USED PROPELLANT MASS
	MBURN1	45687.874	kg	ASCENT USED PROPELLANT MASS
	MBURN2	18378.824	kg	
	BOILFU1	150.24829	kg	DESCENT FUEL BOILOFF
	BOILOX1	103.7 9 954	kg	DESCENT OX BOILOFF
	BOILFU2	.00342781	kg	ASCENT FUEL BOILOFF
	BOILOX2	.00252214	kg	ASCENT OX BOILOFF
	LGEAR	1515.8767	kg	LANDING GEAR MASS
	APRSFU1	427.83002	kg	AUTOGENOUS FU PRESSURE MASS
				VEHICLE STUFF
	TOTTODOD	66670.582	kg	VEHICLE TOTAL PROPELLANT
	TOTPROP VEHCL	96471.144	kg	TLI MASS
	VEHCL	204/1.144	^8	
				GLOBAL INPUTS
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE			PROPELLANT RESERVE FRACTION
				DESCENT INPUTS (1)
294	FESYS1		kg	DESCENT FEED SYSTEM MASS
	ENGS1		kg	DESCENT ENGINE(S) MASS TOTAL
873			kg	DESCENT RCS SYSTEM WET MASS
270	RCSSYS1		ља kg	DESCENT PROTECTION MASS
425	PROT1			DESCENT POWER MASS
154	POWER1		kg	DESCENT AVIONICS MASS
105	AV1		kg ka	NON-PROPULSION FLUIDS MASS
1050	FLUIDS1		kg	DESCENT DELTA V
2780	DELV1		m/s	DESCENT ISP
440	ISP1		sec	DESCENT MIXTURE RATIO
6	MR1			DESCENT FUEL DENSITY
70.8	FURHO1		kg/m^3	DESCENT FUEL DENSITY
1141	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
9.4	DIA1			DESCENT STAGE DIA
6	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.25	FURAD1		m	DESCENT FUEL TANK RAD
2	NOXTNK1			DESCENT NUMBER OF OX TANKS
1.25	OXRAD1		m	DESCENT OX TANK RAD
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL RHO
.001143	TMIN1		M	DESCENT TANK MINIMUM THICKNESS
400900	FUVAP1		J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
21	TEMPFUI		DEG K	DESCENT FUEL TEMPERATURE
91	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
				ASCENT INPUTS (2)
150	EE CVC2		kg	ASCENT FEED SYSTEM MASS
153	FESYS2			ASCENT ENGINE(S) MASS TOTAL
258	ENGS2		kg ka	ASCENT PROTECTION MASS
169	PROT2		kg ka	ASCENT POWER MASS
1278	POWER2		kg	ASCENT FOWER MASS

APPENDIX B Trade #1 NTO/MMH

131	AV2		kg	ASCENT AVIONICS MASS
238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
320	ISP2			
			sec	ASCENT ISP
1.91	MR2			ASCENT MIXTURE R ATIO
880	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1447	OXRHO2		kg/m^3	ASCENT OXIDIZER DENSITY
250	PPRES2		PSI	ASCENT PROP TANK PRESSURE
3.863	DIA2			ASCENT STAGE DIA
2	NFUTNK2			ASCENT NUMBER FUEL TANKS
.75	FURAD2		m	ASCENT FUEL TANK RAD
2	NOXTNK2			ASCENT NUMBER OX TANKS
.8	OXRAD2		m	ASCENT OX TANK RAD
1.13E9	METSIG2			ASCENT TANK METAL SIGMA
4456	METRHO2		kg/m^3	ASCENT TANK METAL SIGMA
.000635	TMIN2		M	ASCENT TANK METAL KNO ASCENT TANK MINIMUM THICKNESS
1E10	FUVAP2			
1E10	OXVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
			J/kg	ASCENT OX LATENT HEAT OF VAP
300	TEMPFU2		DEG K	
300	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
49	STIME		Day	STAYTIME
	HTRATEF			
14190.5	HTRATEO			
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	4760.9403	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	686.79037	kg	DESCENT TANK STRUCTURE
	TNKS1	2289.3012	kg	DESCENT PROPELLANT TANKS
	SPPT1	4738.1443	kg	DESCENT SUPPORT MASS
	STRUCT1	2538.2676	kg	DESCENT STRUCTURE MASS
	STAGE1	12794.638	kg	DESCENT STAGE MASS
	GROWTH1	1899.8169	kg	DESCENT GROWTH BUDGET
	PTNK1	544.84867	kg	DESCENT PRESSURANT TANK MASS
	HEMASS1	145.73602		
	PSYS1	690.58469	kg	DESCENT HELIUM MASS
	19191	090.38409	kg	DESCENT PRESSURIZATION SYSTEM MASS
				ASCENT STACE DDE AKDOURT (2)
	PRPSYS2	1288.4248	ka	ASCENT STAGE BREAKDOWN (2)
	TNKST2		kg	ASCENT PROPULTION SYSTEM MASS
	TNKS2	164.4531	kg	ASCENT TANK STRUCTURE
		548.177	kg	ASCENT PROPELLANT TANKS
	HEMASS2	44.079259	kg	ASCENT HELIUM MASS
	PTNK2	164.79472	kg	ASCENT PRESSURANT TANK MASS
	PSYS2	208.87398	kg	ASCENT PRESSURIZATION SYSTEM MASS
	SPPT2	2323.1125	kg	ASCENT SUPPORT
	STRUCT2	507.11246	kg	ASCENT STRUCTURE MASS
	STAGE2	12005.924	kg	ASCENT STAGE MASS
	GROWTH2	722.30745	kg	ASCENT GROWTH BUDGET
			U	· · · · · · · · · · · · · · · · · · ·
				DESCENT PROPELLANT STUFF
	RESID1	1370.6362	kg	DESCENT RESIDUALS
	PROP1	47058.51	kg	DESCENT TOTAL PROP
	BOIL1	254.04784	kg	DESCENT PROP BOILOFF
			~D	South Thor BUILDIT
				ASCENT PROPELLANT STUFF
	RESID2	551.36471	kg	ASCENT RESIDUALS
	PROP2	18930.188	kg	ASCENT TOTAL PROP
	BOIL2	.00594995	kg kg	ASCENT PROP BOILOFF
			™R	ajcent raur duiluff

FU1 OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 ML11	7300.7226 40439.665 103.11755 35.442301 363.62953 227.24224 18.045571 18.607208 4.509547 35.417899 4.6239626 36.316518 198.58875	kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT FUEL TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK LENGTH DESCENT OX TANK AREA/TANK DESCENT MLI MASS
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 ML12 FUTNKV2 OXTNKV2	6505.2228 12424.972 7.3922987 8.5867115 145.80846 128.28004 2.6961723 12.705414 2.7754403 13.950886 0 3.8809568 4.5080235	kg m^3 m3 kg m m^2 m m^2 kg M^3 M^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

LOX/N2H4 2-STAGE PRESS TRADE #2 (O-WRAP LOX, TI N2H4 ASCENT TANKS)

				VARIABLS REQUIRING INITIAL GUESSES
	MBURN1	45002.286	kg	DESCENT USED PROPELLANT MASS
	MBURN2	16711.449	kg	ASCENT USED PROPELLANT MASS
	BOILFU1	133.05216	kg	DESCENT FUEL BOILOFF
	BOILOX1	76.295498	kg	DESCENT OX BOILOFF
	BOILFU2	.00419835	kg	ASCENT FUEL BOILOFF
	BOILOX2	104.03918	kg	ASCENT OX BOILOFF
	LGEAR	1493.1296	kg	LANDING GEAR MASS
	APRSFU1	420.47995	kg	AUTOGENOUS FU PRESSURE MASS
			-	
				VEHICHLE STUFF
	TOTPROP	64299.019	kg	VEHICLE TOTAL PROPELLANT
	VEHCL	94982.619	kg	TLI MASS
	VENCE	J4702.017	~8	
				CLODAL DEPUTC
•	00000000			GLOBAL INPUTS
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		0	PROPELLANT RESERVE FRACTION
.05				TROPELENT RESERVET RACTION
				DECCENT DIFE (1)
004	FF03201			DESCENT INPUTS (1)
294	FESYS1		kg	DESCENT FEED SYSTEM MASS
873	ENGS1		kg	DESCENT ENGINE(S) MASS TOTAL
270	RCSSYS1		kg	DESCENT RCS SYSTEM WET MASS
425	PROT1		kg	DESCENT PROTECTION MASS
154	POWER1		kg	DESCENT POWER MASS
105	AV1		kg	DESCENT AVIONICS MASS
1050	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
2780	DELV1		rs m/s	DESCENT DELTA V
440	ISP1		-	
			sec	DESCENT ISP
6	MR1			DESCENT MIXTURE RATIO
70.8	FURHO1		kg/ m^3	DESCENT FUEL DENSITY
1141	OXRHO1		kg/m^ 3	DESCENT OXIDIZER DENSITY
50	PPRES1		PŜI	DESCENT PROP TANK PRESSURE
9.4	DIA1		m	DESCENT STAGE DIA
4	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.35	FURAD1		m	DESCENT FUEL TANK RAD
1	NOXTNK1			DESCENT NUMBER OF OX TANKS
2	OXRAD1		m	DESCENT OX TANK RAD
_	••••••		111	
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL RHO
.001143	TMIN1		Μ	DESCENT TANK MINIMUM THICKNESS
400900	FUVAP1		J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
21	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
91	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
			220 A	
				ASCENT INPUTS (2)
152	FERVED		le a	
153	FESYS2		kg	ASCENT FEED SYSTEM MASS
258	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS

APPENDIX B Trade #2 LOX/N2H4

				TOT OF MASS
238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
348	ISP2		sec	ASCENT ISP
.77	MR2			ASCENT MIXTURE R ATIO
	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1031			kg/m^3	ASCENT OXIDIZER DENSITY
1141	OXRHO2		PSI	ASCENT PROP TANK PRESSURE
250	PPRES2		m	ASCENT STAGE DIA
3.863	DIA2		111	ASCENT NUMBER FUEL TANKS
2	NFUTNK2			ASCENT FUEL TANK RAD
.75	FURAD2		m	ASCENT POEL TANK KAD ASCENT NUMBER OX TANKS
2	NOXTNK2			ASCENT OX TANK RAD
.8	OXRAD2		m	ASCENT TANK METAL SIGMA
1.13E9	METSIG2			ASCENT TANK METAL SIGMA
4456	METRHO2		kg/m^3	ASCENT TANK METAL RHO
.000635	TMIN2		М	ASCENT TANK MINIMUM THICKNESS
1E10	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
198340	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
300	TEMPFU2		DEG K	ASCENT FUEL TEMPERATURE
	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
91 40			Day	STAYTIME
49	STIME		Duj	
21176.7	HTRATEF			
14190.5	HTRATEO			
				DESCENT STAGE BREAKDOWN (1)
		1660 0000	ka	DESCENT PROPULSION SYSTEM MASS
	PRPSYS1	4568.0933	kg	DESCENT TANK STRUCTURE
	TNKST1	644.3621	kg	DESCENT PROPELLANT TANKS
	TNKS1	2147.8737	kg	DESCENT SUPPORT MASS
	SPPT1	5306.3278	kg	DESCENT SUFFORT MASS
	STRUCT1	3129.1982	kg	DESCENT STRUCTURE MASS
	STAGE1	13242.636	kg	DESCENT STAGE MASS
	GROWTH1	1974.8842	kg	DESCENT GROWTH BUDGET
	PTNK1	535.85756	kg	DESCENT PRESSURANT TANK MASS
	HEMASS1	143.33108	kg	DESCENT HELIUM MASS
	PSYS1	679.18864	kg	DESCENT PRESSURIZATION SYSTEM MASS
			-	
				ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	1503.3281	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	177.42272	kg	ASCENT TANK STRUCTURE
	TNKS2	591.40908	kg	ASCENT PROPELLANT TANKS
	HEMASS2	86.528734	kg	ASCENT HELIUM MASS
		323.49632	kg	ASCENT PRESSURANT TANK MASS
	PTNK2	410.02506	kg	ASCENT PRESSURIZATION SYSTEM MASS
	PSYS2	2435.3683	kg	ASCENT SUPPORT
	SPPT2			ASCENT STRUCTURE MASS
	STRUCT2	619.36829	kg	ASCENT STAGE MASS
	STAGE2	12440.964	kg	ASCENT GROWTH BUDGET
	GROWTH2	787.73928	kg	ASCENT OROW III DODODI
				DESCENT PROPELLANT STUFF
			-	DESCENT PROPERANT STOLL
	RESID1	1350.0686	kg	DESCENT RESIDUALS
	PROP1	46352.355	kg	DESCENT TOTAL PROP
	BOIL1	209.34766	kg	DESCENT PROP BOILOFF
				ASCENT PROPELLANT STUFF
	RESID2	501.34348	kg	ASCENT RESIDUALS
	PROP2	17212.793	kg	ASCENT TOTAL PROP
	BOIL2	104.04338	kg	ASCENT PROP BOILOFF
			0	

FN 14		-	DESCENT TANKS
FU1	7175.2971	kg	DESCENT FUEL MASS
OX1	39806.885	kg	DESCENT OX MASS
FUVOL1	101.346	m^3	DESCENT FUEL VOLUME
OXVOLI	34.887717	m^3	DESCENT OX VOLUME
OXTNK1	601.4124	kg	DESCENT OX TANK MASS
FUTNK1	343.99779	kg	DESCENT FUEL TANK MASS
FUTNKV1	26.603326	M^3	DESCENT FUEL TANK VOLUME
OXTNKV1	36.632103	M^3	DESCENT OX TANK VOLUME
LENFU1	5.5464207	m	DESCENT FUEL TANK LENGTH
ATOTFU1	47.046405	m^2	DESCENT FUEL TANK AREA/TANK
LENOX1	4.2484235	m	DESCENT OX TANK LENGTH
ATOTOX1	53.387264	m^2	DESCENT OX TANK AREA/TANK
MLI1	170.47011	kg	DESCENT MLI MASS
		•	
			ASCENT TANKS
FU2	9724.7459	kg	ASCENT TANKS ASCENT FUEL MASS
FU2 OX2	9724.7459 7592.0903	kg kg	
		kg kg m^3	ASCENT FUEL MASS
OX2	7592.0903	kġ	ASCENT FUEL MASS ASCENT OX MASS
OX2 FUVOL2	7592.0903 9.4323433	kg m^3 m^3	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME
OX2 FUVOL2 OXVOL2	7592.0903 9.4323433 6.6538916	kg m^3 m^3 kg	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME
OX2 FUVOL2 OXVOL2 OXTNK2	7592.0903 9.4323433 6.6538916 115.37826	kg m^3 m^3	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2	7592.0903 9.4323433 6.6538916 115.37826 150.22741	kg m^3 m^3 kg kg	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2	7592.0903 9.4323433 6.6538916 115.37826 150.22741 3.3022476	kg m^3 m^3 kg kg m	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2	7592.0903 9.4323433 6.6538916 115.37826 150.22741 3.3022476 15.561473	kg m^3 m^3 kg kg m m^2	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2	7592.0903 9.4323433 6.6538916 115.37826 150.22741 3.3022476 15.561473 2.2707548	kg m^3 m^3 kg kg m m^2 m m^2	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2	7592.0903 9.4323433 6.6538916 115.37826 150.22741 3.3022476 15.561473 2.2707548 11.414058	kg m^3 m^3 kg kg m m^2 m	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2	7592.0903 9.4323433 6.6538916 115.37826 150.22741 3.3022476 15.561473 2.2707548 11.414058 60.197744	kg m^3 m/3 kg kg m m^2 m m^2 kg	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK

CIF5/N2H4 PRESS TRADE #3

				VARIABLES REQUIRING INITIAL GUESSES
	MBURN1	41305.216	kg	DESCENT USED PROPELLANT MASS
	MBURN2	14894.951	kg	ASCENT USED PROPELLANT MASS
	BOILFU1	123.92497	kg	DESCENT FUEL BOILOFF
	BOILOX1	71.997319	kg	DESCENT OX BOILOFF
	BOILFU2	.00223418	kg	ASCENT FUEL BOILOFF
	BOILOX2	.00190672	kg	ASCENT OX BOILOFF
		1370.4646	kg	LANDING GEAR MASS
	LGEAR			AUTOGENOUS FU PRESSURE MASS
	APRSFU1	386.04855	kg	AUTOOLITOUSTUTINESSURE MILLOS
				VEHICHLE STUFF
				VEHICLE TOTAL PROPELLANT
	TOTPROP	58468.147	kg	
	VEHCL	87183.291	kg	TLI MASS
				GLOBAL INPUTS
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		- 0	PROPELLANT RESERVE FRACTION
.05	ALCERCE D			
				DESCENT INPUTS (1)
294	FESYS1		kg	DESCENT FEED SYSTEM MASS
873	ENGS1		kg	DESCENT ENGINE(S) MASS TOTAL
	RCSSYS1		kg	DESCENT RCS SYSTEM WET MASS
270				DESCENT PROTECTION MASS
425	PROT1		kg	DESCENT POWER MASS
154	POWER1		kg	DESCENT AVIONICS MASS
105	AV1		kg	NON-PROPULSION FLUIDS MASS
1050	FLUIDS1		kg	
2780	DELV1		m/s	DESCENT DELTA V
440	ISP1		sec	DESCENT ISP
6	MR1			DESCENT MIXTURE RATIO
70.8	FURHO1		kg/m^3	DESCENT FUEL DENSITY
1141	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
9.4	DIA1		m	DESCENT STAGE DIA
4	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.35	FURAD1		m	DESCENT FUEL TANK RAD
1	NOXTNK1			DESCENT NUMBER OF OX TANKS
2	OXRAD1		m	DESCENT OX TANK RAD
2 3.1E8	METSIG1			DESCENT TANK METAL SIGMA
			kg/m^3	DESCENT TANK METAL RHO
2710	METRHO1		M M	DESCENT TANK MILITAL MIC DESCENT TANK MINIMUM THICKNESS
.001143	TMIN1			DESCENT FUEL LATENT HEAT OF VAP
400900	FUVAP1		J/kg	DESCENT OUL ATENT HEAT OF VAD
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
21	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
91	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
				ASCENT INPUTS (2)
153	FESYS2		kg	ASCENT FEED SYSTEM MASS
150	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS
* J *				

APPENDIX B Trade #3 CIF5/N2H4

000	501.00		-	
238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
353	ISP2		sec	ASCENT ISP
2.5	MR2			ASCENT MIXTURE R ATIO
1031	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1793	OXRHO2		kg/m^3	ASCENT OXIDIZER DENSITY
350	PPRES2		PŠI	ASCENT PROP TANK PRESSURE
4.2	DIA2		m	ASCENT STAGE DIA
2	NFUTNK2			ASCENT NUMBER FUEL TANKS
.77	FURAD2		m	ASCENT FUEL TANK RAD
2	NOXTNK2			ASCENT NUMBER OX TANKS
- .87	OXRAD2		m	ASCENT OX TANK RAD
.07 3.1E8	METSIG2		111	
2710	METSIG2 METRHO2		1	ASCENT TANK METAL SIGMA
			kg/m^3	ASCENT TANK METAL RHO
.001143	TMIN2		M	ASCENT TANK MINIMUM THICKNESS
1E10	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
1E10	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
300	TEMPFU2		DEG K	
300	TEMPOX2		DEG K	
49	STIME		Day	STAYTIME
21176.7	HTRATEF			
14190.5	HTRATEO			
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	4245.1627	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	579.97784	kg	DESCENT TANK STRUCTURE
	TNKS1	1933.2595	kğ	DESCENT PROPELLANT TANKS
	SPPT1	4937.9781	kg	DESCENT SUPPORT MASS
	STRUCT1	2883.5135	kg	DESCENT STRUCTURE MASS
	STAGE1	12401.349	kg	DESCENT STAGE MASS
	GROWTH1	1836.6282	kg	DESCENT GROWTH BUDGET
	PTNK1	491.92537	kg	DESCENT PRESSURANT TANK MASS
	HEMASS1	131.5801	kg	DESCENT HELIUM MASS
	PSYS1	623.50548	kg	DESCENT PRESSURIZATION SYSTEM MASS
		025.505 10	~6	DECENTI INECCENZATION OTOTEM MASS
				ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	854.68615	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	92.782671	kg	ASCENT TANK STRUCTURE
	TNKS2	309.27557	kg	ASCENT PROPELLANT TANKS
	HEMASS2	40.022444	kg	ASCENT HELIUM MASS
	PTNK2	149.62791		ASCENT PRESSURANT TANK MASS
	PSYS2	189.65035	kg ka	
	SPPT2	2183.4575	kg	ASCENT PRESSURIZATION SYSTEM MASS
	STRUCT2		kg	ASCENT SUPPORT
		367.45753	kg	ASCENT STRUCTURE MASS
	STAGE2	11313.795	kg	ASCENT STAGE MASS
	GROWTH2	607.62874	kg	ASCENT GROWTH BUDGET
				DESCENT PROPELLANT STUFF
	RESID1	1239.1565	ka	DESCENT PROPELLANT STUFF DESCENT RESIDUALS
	PROP1	42544.373	kg ka	
	BOIL1		kg	DESCENT TOTAL PROP
	BUILI	195.92229	kg	DESCENT PROP BOILOFF
				ASCENT PROPELLANT STUFF
	RESID2	446.84853	ka	ASCENT RESIDUALS
	PROP2	15341.8	kg ka	
	BOIL2	.0041409	kg ka	ASCENT TOTAL PROP
	BUILZ	.0041409	kg	ASCENT PROP BOILOFF

APPENDIX B Trade #3 ClF5/N2H4

FU1 OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1	6587.741 36538.602 93.04719 32.023315 526.60886 311.88794 24.424887 33.624481 5.1659441	kg m^3 m^3 kg M^3 M^3 m	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT OX TANK VOLUME DESCENT FUEL TANK LENGTH
ATOTFU1	43.819088	m^2	DESCENT FUEL TANK AREA/TANK DESCENT OX TANK LENGTH
LENOX1 ATOTOX1	4.0090845 50.379641	m m^2	DESCENT OX TANK AREA/TANK
MLI1	159.09885	kg	DESCENT MLI MASS
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 ML12 FUTNKV2 OXTNKV2	4383.3736 10958.43 4.2515748 6.1117849 89.855694 64.782091 1.7116671 8.2811346 1.9293946 10.546786 0 2.2320767 3.208687	kg m^3 m^3 kg kg m^2 m m^2 kg M^3 M^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

M20/NTO 2 STAGE PRESS TRADE #4 (O-WRAP ASCENT TANKS)

				VARIABLES REQUIRING INITIAL GUESSES
	MBURN1	44632.53	kg	DESCENT USED PROPELLANT MASS
	MBURN2	17134.78	kg	ASCENT USED PROPELLANT MASS
	BOILFU1	132.13932	kg	DESCENT FUEL BOILOFF
	BOILOX1	75.865624	kg	DESCENT OX BOILOFF
	BOILFU2	.00163958	kg	ASCENT FUEL BOILOFF
	BOILOX2	.00213666	kg	ASCENT OX BOILOFF
	LGEAR	1480.8615	kg	LANDING GEAR MASS
	APRSFU1	417.03636	kg	AUTOGENOUS FU PRESSURE MASS
				VEHICHLE STUFF
	TOTPROP	64245.375	kg	VEHICLE TOTAL PROPELLANT
	VEHCL	94202.584	kg	TLI MASS
				GLOBAL INPUTS
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		~8	PROPELLANT RESERVE FRACTION
.05	NEGER VE			TROI ELENITI RESERVE TRACTION
				DESCENT INPUTS (1)
294	FESYS1		kg	DESCENT FEED SYSTEM MASS
873	ENGS1		kg	DESCENT ENGINE(S) MASS TOTAL
270	RCSSYS1		kg	DESCENT RCS SYSTEM WET MASS
425	PROT1		kg	DESCENT PROTECTION MASS
154	POWER1		kg	DESCENT POWER MASS
105	AV1		kg	DESCENT AVIONICS MASS
1050	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
2780	DELV1		m/s	DESCENT DELTA V
440	ISP1		sec	DESCENT ISP
6	MR1		500	DESCENT MIXTURE RATIO
70.8	FURHO1		kg/m^3	
1141	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
9.4	DIA1		m	DESCENT STAGE DIA
4	NFUTNK1		111	DESCENT NUMBER OF FUEL TANKS
1.35	FURAD1		m	DESCENT FUEL TANK RAD
1.55	NOXTNK1		111	DESCENT FOEL TANK RAD DESCENT NUMBER OF OX TANKS
2	OXRAD1		-	
2 3.1E8	METSIG1		m	DESCENT OX TANK RAD
2710	METSIO1 METRHO1		1	DESCENT TANK METAL SIGMA
.001143			kg/m^3	DESCENT TANK METAL RHO
	TMIN1		M	DESCENT TANK MINIMUM THICKNESS
400900	FUVAPI		J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
21	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
91	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
				ASCENT INPUTS (2)
130	FESYS2		kg	ASCENT FEED SYSTEM MASS
150	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS
			0	

APPENDIX B Trade #4 NTO/MMH HI-EFF

238 202 2801 331 1.33 976 1447 350 2 3.863 .8 2 .8 1.13E9 4456 .000635 1E10 1E10 300 300 49 10002 14190.5	ECLSS FLUIDS2 DELV2 ISP2 MR2 FURHO2 OXRHO2 PPRES2 NFUTNK2 DIA2 FURAD2 NOXTNK2 OXRAD2 METSIG2 METRHO2 TMIN2 FUVAP2 OXVAP2 TEMPFU2 TEMPFU2 TEMPFU2 STIME HTRATEF HTRATEF		kg kg m/sec sec kg/m^3 PSI m m m m kg/m^3 M J/kg J/kg J/kg DEG K DEG K DEG K DEG K	ECLSS MASS ASCENT NON-PROPULSION FLUIDS MASS ASCENT DELTA V ASCENT DELTA V ASCENT SP ASCENT MIXTURE R ATIO ASCENT FUEL DENSITY ASCENT FUEL DENSITY ASCENT OXIDIZER DENSITY ASCENT PROP TANK PRESSURE ASCENT NUMBER FUEL TANKS ASCENT STAGE DIA ASCENT FUEL TANK RAD ASCENT FUEL TANK RAD ASCENT TANK METAL SIGMA ASCENT TANK METAL RHO ASCENT TANK METAL RHO ASCENT TANK MINIMUM THICKNESS ASCENT FUEL LATENT HEAT OF VAP ASCENT FUEL TEMPERATURE ASCENT OX TEMPERATURE STAYTIME
14190.5	PRPSYS1 TNKST1 TNKS1 SPPT1 STRUCT1 STAGE1 GROWTH1 PTNK1 HEMASS1 PSYS1	4535.6028 637.87821 2126.2607 5269.3706 3104.5092 13158.124 1960.9947 531.4639 142.15586 673.61976	kg kg kg kg kg kg kg	DESCENT STAGE BREAKDOWN (1) DESCENT PROPULSION SYSTEM MASS DESCENT TANK STRUCTURE DESCENT PROPELLANT TANKS DESCENT SUPPORT MASS DESCENT STRUCTURE MASS DESCENT STAGE MASS DESCENT GROWTH BUDGET DESCENT PRESSURANT TANK MASS DESCENT HELIUM MASS DESCENT PRESSURIZATION SYSTEM MASS
	PRPSYS2 TNKST2 TNKS2 HEMASS2 PTNK2 PSYS2 SPPT2 STRUCT2 STAGE2 GROWTH2	1150.4719 151.82265 506.07551 56.859184 212.57374 269.43293 2278.0496 462.04956 11799.085 685.70429	kg kg kg kg kg kg kg kg kg	ASCENT STAGE BREAKDOWN (2) ASCENT PROPULTION SYSTEM MASS ASCENT TANK STRUCTURE ASCENT PROPELLANT TANKS ASCENT HELIUM MASS ASCENT PRESSURIZATION SYSTEM MASS ASCENT PRESSURIZATION SYSTEM MASS ASCENT SUPPORT ASCENT STRUCTURE MASS ASCENT STAGE MASS ASCENT GROWTH BUDGET
	RESID1 PROP1 BOIL1 RESID2 PROP2 BOIL2	1338.9759 45971.506 208.00495 514.0434 17648.823 .00377623	kg kg kg kg kg	DESCENT PROPELLANT STUFF DESCENT RESIDUALS DESCENT TOTAL PROP DESCENT PROP BOILOFF ASCENT PROPELLANT STUFF ASCENT RESIDUALS ASCENT TOTAL PROP ASCENT PROP BOILOFF

FU1 OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 ML11	7116.5337 39480.014 100.51601 34.601239 593.81542 340.77812 26.385453 36.331301 5.508368 46.723631 4.2244864 53.086462 169.33283	kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT OX TANK VOLUME DESCENT FUEL TANK AREA/TANK DESCENT OX TANK LENGTH DESCENT OX TANK AREA/TANK DESCENT OX TANK AREA/TANK DESCENT MLI MASS
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2 FUTNKV2 OXTNKV2	7574.6039 10074.223 7.7608647 6.9621446 120.23138 132.80638 2.5598005 12.86696 2.3512438 11.81864 0 4.074454 3.6551259	kg m^3 m^3 kg m m^2 m m^2 kg M^3 M^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

LOX/CH4 PRESS TRADE #5

.....

				VARIABLES REQUIRING INITIAL GUESSES
	MBURN1	47783.879	kg	DESCENT USED PROPELLANT MASS
	MBURN2	17812.893	kg	ASCENT USED PROPELLANT MASS
	BOILFU1	139.91926	kg	DESCENT FUEL BOILOFF
	BOILOX1	104.21532		DESCENT OX BOILOFF
	-		kg	ASCENT FUEL BOILOFF
	BOILFU2	86.075487	kg	
	BOILOX2	150.1401	kg	ASCENT OX BOILOFF
	LGEAR	1585.42	kg	LANDING GEAR MASS
	APRSFU1	446.38537	kg	AUTOGENOUS FU PRESSURE MASS
				VEHICHLE STUFF
	TOTPROP	68491.411	kg	VEHICLE TOTAL PROPELLANT
	VEHCL	100875.35	kg	TLI MASS
	VENCE	100075.55	~ð	
				GLOBAL INPUTS
-				
.2	GROWTH%		-	GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		-0	PROPELLANT RESERVE FRACTION
.05	KESEK VE			
				DESCENT INPUTS (1)
•••			1	DESCENT FEED SYSTEM MASS
2 94	FESYS1		kg	
873	ENG\$1		kg	DESCENT ENGINE(S) MASS TOTAL
270	RCSSYS1		kg	DESCENT RCS SYSTEM WET MASS
425	PROT1		kg	DESCENT PROTECTION MASS
154	POWER1		kg	DESCENT POWER MASS
105	AV1		kg	DESCENT AVIONICS MASS
1050	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
	DELV1		m/s	DESCENT DELTA V
2780				DESCENT ISP
440	ISP1		sec	
6	MR1			DESCENT MIXTURE RATIO
70.8	FURHO1		kg/m^3	DESCENT FUEL DENSITY
1141	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
9.4	DIA1		m	DESCENT STAGE DIA
4	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.35	FURAD1		m	DESCENT FUEL TANK RAD
2	NOXTNK1			DESCENT NUMBER OF OX TANKS
			m	DESCENT OX TANK RAD
1.35	OXRAD1		111	
3.1E8	METSIG1		1	DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL RHO
.001143	TMINI		Μ	DESCENT TANK MINIMUM THICKNESS
400900	FUVAP1		J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAPI		J/kg	DESCENT OX LATENT HEAT OF VAP
21	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
91	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
<i>~</i> •				
				ASCENT INPUTS (2)
160	TTONCO		ka	ASCENT FEED SYSTEM MASS
153	FESYS2		kg	
258	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS
. –			-	

APPENDIX B Trade #5 LOX/CH4 PRESS

238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
350	ISP2		sec	ASCENT ISP
2.77	MR2			ASCENT MIXTURE R ATIO
422	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1141	OXRHO2		kg/m^3	ASCENT OXIDIZER DENSITY
250	PPRES2		PSI	ASCENT PROP TANK PRESSURE
5.31	DIA2		m	ASCENT STAGE DIA
2	NFUTNK2		•••	ASCENT NUMBER FUEL TANKS
1.1	FURAD2		-	ASCENT FUEL TANK RAD
2	NOXTNK2		m	
1.1	OXRAD2		_	ASCENT NUMBER OX TANKS
			m	ASCENT OX TANK RAD
3.1E8	METSIG2			ASCENT TANK METAL SIGMA
2710	METRHO2		kg/m^3	ASCENT TANK METAL RHO
.001143	TMIN2		M	ASCENT TANK MINIMUM THICKNESS
510000	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
198340	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
111	TEMPFU2		DEG K	
91	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
49	STIME		Day	STAYTIME
21176.7	HTRATEF		•	
14190.5	HTRATEO			
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	4906.1442	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	714.71237	kg	DESCENT TANK STRUCTURE
	TNKS1	2382.3746	kg	DESCENT PROPELLANT TANKS
	SPPT1	5585.157		DESCENT FROFELLANT TANKS DESCENT SUPPORT MASS
	STRUCT1	3315.737	kg	DESCENT SUPPORT MASS DESCENT STRUCTURE MASS
	STAGE1	13991.773	kg	
			kg	DESCENT STAGE MASS
	GROWTH1	2098.2602	kg	DESCENT GROWTH BUDGET
	PTNK1	569.05724	kg	DESCENT PRESSURANT TANK MASS
	HEMASS1	152.21132	kg	DESCENT HELIUM MASS
	PSYS1	721.26857	kg	DESCENT PRESSURIZATION SYSTEM MASS
	DDDQVQQ	0010 007		ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	2210.327	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	246.01329	kg	ASCENT TANK STRUCTURE
	TNKS2	820.04429	kg	ASCENT PROPELLANT TANKS
	HEMASS2	196.13476	kg	ASCENT HELIUM MASS
	PTNK2	733.26942	kg	ASCENT PRESSURANT TANK MASS
	PSYS2	929.40419	kg	ASCENT PRESSURIZATION SYSTEM MASS
	SPPT2	2429.6963	kg	ASCENT SUPPORT
	STRUCT2	613.69631	kg	ASCENT STRUCTURE MASS
	STAGE2	13392.163	kg	ASCENT STAGE MASS
	GROWTH2	928.00466	kg	ASCENT GROWTH BUDGET
			-	
				DESCENT PROPELLANT STUFF
	RESID1	1433.5164	kg	DESCENT RESIDUALS
	PROP1	49217.396	kg	DESCENT TOTAL PROP
	BOIL1	244.13458	kg	DESCENT PROP BOILOFF
			0	
				ASCENT PROPELLANT STUFF
	RESID2	534.38678	kg	ASCENT RESIDUALS
	PROP2	18347.279	kg	ASCENT TOTAL PROP
	BOIL2	236.21558	kg	ASCENT PROP BOILOFF
			~ 6	

APPENDIX B Trade #5 LOX/CH4 PRESS

FUI OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 MLI1	7617.3611 42290.554 107.58985 37.064465 360.86141 368.27754 28.242335 19.458844 5.8326828 49.474566 4.2985967 36.461987 187.54159	kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT FUEL TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK LENGTH DESCENT OX TANK AREA/TANK DESCENT OX TANK AREA/TANK
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2 FUTNKV2 OXTNKV2	4952.7278 13630.767 11.736322 11.946334 165.6532 162.95574 2.3542328 16.271289 2.3832375 16.471755 162.82641 6.161569 6.2718254	kg m^3 m^3 kg kg m m^2 m m^2 kg M^3 M^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

MMH/NTO PUMP TRADE #6

				VARIABLES REQUIRING INITIAL GUESSES
	MBURN1	43806.688	kg	DESCENT USED PROPELLANT MASS
	MBURN2	16269.779	kg	ASCENT USED PROPELLANT MASS
	BOILFU1	130.10051	kg	DESCENT FUEL BOILOFF
	BOILOX1	97.360836	kg	DESCENT OX BOILOFF
	BOILFU2	.00380066	kg	ASCENT FUEL BOILOFF
	BOILOX2			
		.00185311	kg	ASCENT OX BOILOFF
	LGEAR	1453.4609	kg	LANDING GEAR MASS
	APRSFU1	409.34515	kg	AUTOGENOUS FU PRESSURE MASS
				VEHICHLE STUFF
	TOTPROP	62515.574	kg	VEHICLE TOTAL PROPELLANT
	VEHCL	92482.845	kg	TLI MASS
		2 .02.0.10	~0	10/ 10/00
.2	GROWTH%			GLOBAL INPUTS
				GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		.0	PROPELLANT RESERVE FRACTION
				DESCENT NIDI TO (1)
294	FESYS1		1	DESCENT INPUTS (1)
873			kg	DESCENT FEED SYSTEM MASS
	ENGS1		kg	DESCENT ENGINE(S) MASS TOTAL
270	RCSSYS1		kg	DESCENT RCS SYSTEM WET MASS
425	PROT1		kg	DESCENT PROTECTION MASS
154	POWER1		kg	DESCENT POWER MASS
105	AV1		kg	DESCENT AVIONICS MASS
1050	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
2780	DELV1		m/s	DESCENT DELTA V
440	ISP1		sec	DESCENT ISP
6	MR1		su	
70.8	FURHO1			DESCENT MIXTURE RATIO
1141			kg/m^3	
	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
9.4	DIA1		m	DESCENT STAGE DIA
4	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.35	FURAD1		m	DESCENT FUEL TANK RAD
2	NOXTNK1			DESCENT NUMBER OF OX TANKS
1.35	OXRAD1		m	DESCENT OX TANK RAD
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL SIGMA
.001143	TMIN1		M	
400900	FUVAP1			DESCENT TANK MINIMUM THICKNESS
198340			J/kg	DESCENT FUEL LATENT HEAT OF VAP
	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
21	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
91	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
				ASCENT INPUTS (2)
153	FESYS2		kg	ASCENT FEED SYSTEM MASS
816	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2			
1278			kg	ASCENT POWER MASS
121	AV2		kg	ASCENT AVIONICS MASS

APPENDIX B Trade #6 NTO/MMH, PUMP

			• -	
238	ECLSS		kg	ECLSS MASS ASCENT NON-PROPULSION FLUIDS MASS
202	FLUIDS2		kg	ASCENT NON-FROPOLSION PLOIDS MINSO
2801	DELV2		m/sec	ASCENT DELTA V
344	ISP2		sec	ASCENT ISP
1.02	MR2			ASCENT MIXTURE R ATIO
880	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1447	OXRHO2		kg/m^3	ASCENT OXIDIZER DENSITY
50	PPRES2		PŠI	ASCENT PROP TANK PRESSURE
4.828	DIA2		m	ASCENT STAGE DIA
	NFUTNK2			ASCENT NUMBER FUEL TANKS
2	FURAD2		m	ASCENT FUEL TANK RAD
1				ASCENT NUMBER OX TANKS
2	NOXTNK2		m	ASCENT OX TANK RAD
.85	OXRAD2		111	ASCENT TANK METAL SIGMA
1.13E9	METSIG2		1	ASCENT TANK METAL RHO
4456	METRHO2		kg/m^3	ASCENT TANK MINIMUM THICKNESS
.000635	TMIN2		M	ASCENT FUEL LATENT HEAT OF VAP
1E10	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAL
1E10	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
300	TEMPFU2		DEG K	ASCENT FUEL TEMPERATURE
300	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
49	STIME		Day	STAYTIME
21176.7	HTRATEF			
14190.5	HTRATEO			
1117010				
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	4551.6228	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	643.80881	kg	DESCENT TANK STRUCTURE
	TNKS1	2146.0294	kg	DESCENT PROPELLANT TANKS
	SPPT1	5186.9204	kg	DESCENT SUPPORT MASS
	STRUCT1	3049.4595	kg	DESCENT STRUCTURE MASS
	STAGE1	13075.819	kg	DESCENT STAGE MASS
		1947.7086	kg	DESCENT GROWTH BUDGET
	GROWTH1		kg	DESCENT PRESSURANT TANK MASS
	PTNK1	521.78457	kg	DESCENT HELIUM MASS
	HEMASS1	139.56684 661.35141	kg	DESCENT PRESSURIZATION SYSTEM MASS
	PSYS1	001.55141	ĸg	DESCRIPTINGSONIALITION
				ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	1217.1173	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	49.984997	kg	ASCENT TANK STRUCTURE
		166.61666	kg	ASCENT PROPELLANT TANKS
	TNKS2	8.4298034	kg	ASCENT HELIUM MASS
	HEMASS2	Q1 127 0 0 0 0	-0	ASCENT PRESSURANT TANK MASS
	PTNK2	31.515663	kg	ASCENT PRESSURIZATION SYSTEM MASS
	PSYS2	39.945466	kg	ASCENT SUPPORT
	SPPT2	2328.7348	kg	ASCENT SUFFORT ASCENT STRUCTURE MASS
	STRUCT2	512.73478	kg	ASCENT STRUCTURE MASS
	STAGE2	11891.452	kg	ASCENT STAGE MASS ASCENT GROWTH BUDGET
	GROWTH2	709.17042	kg	ASCENT GROW IN BUDGET
				DESCENT PROPELLANT STUFF
	RESID1	1314.2006	kg	DESCENT RESIDUALS
	PROP1	45120.889	kg	DESCENT TOTAL PROP
	BOIL1	227.46135	kg	DESCENT PROP BOILOFF
				ASCENT PROPELLANT STUFF
		100 00000		
	RESID2	488.09338	kg	ASCENT RESIDUALS ASCENT TOTAL PROP
	PROP2	16757.873	kg	AUCENT DOOD DON OFF
	BOIL2	.00565377	kg	ASCENT PROP BOILOFF

FU1 OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 ML11	6985.2869 38772.408 98.662245 33.981077 318.55771 333.59368 25.898839 17.840065 5.4233781 46.002721 4.0158678 34.063796 174.53924	kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT FUEL TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK LENGTH DESCENT OX TANK AREA/TANK DESCENT MLI MASS
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2 FUTNKV2 OXTNKV2	8295.9804 8461.898 9.4272505 5.8478908 34.879876 48.428452 2.2420799 14.087403 1.9192712 10.250266 0 4.9493065 3.0701427	kg m^3 m^3 kg m m^2 m %g M^3 M^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

APPENDIX B Trade #7 LOX/CH4, PUMP

LOX/CH4 2 STAGE PUMP TRADE #7

				VARIABLES REQUIRING INITIAL GUESSES
		43755.936	kg	DESCENT USED PROPELLANT MASS
	MBURN1			ASCENT USED PROPELLANT MASS
	MBURN2	15714.032	kg	DESCENT FUEL BOILOFF
	BOILFU1	129.97522	kg	
	BOILOX1	97.273366	kg	DESCENT OX BOILOFF
	BOILFU2	70.288148	kg	ASCENT FUEL BOILOFF
	BOILOX2	143.28634	kg	ASCENT OX BOILOFF
	LGEAR	1451.7769	kg	LANDING GEAR MASS
	APRSFU1	408.87249	kg	AUTOGENOUS FU PRESSURE MASS
	AFK5101	400.07277	-0	
				VEHICHLE STUFF
		62103.762	kg	VEHICLE TOTAL PROPELLANT
	TOTPROP		kg	TLI MASS
	VEHCL	92375.749	rg	1LI MASS
				GLOBAL INPUTS
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
	RETCARG		kg	ASCENT CARGO
200	RESERVE		0	PROPELLANT RESERVE FRACTION
.03	KESEK VE			
				DESCENT INPUTS (1)
			ka	DESCENT FEED SYSTEM MASS
294	FESYS1		kg	DESCENT ENGINE(S) MASS TOTAL
873	ENGS1		kg	DESCENT RCS SYSTEM WET MASS
270	RCSSYS1		kg	DESCENT RCS STSTEM WET MASS
425	PROT1		kg	DESCENT PROTECTION MASS
154	POWER1		kg	DESCENT POWER MASS
105	AV1		kg	DESCENT AVIONICS MASS
1050	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
2780	DELV1		m/s	DESCENT DELTA V
440	ISP1		sec	DESCENT ISP
	MR1			DESCENT MIXTURE RATIO
6	FURHO1		kg/m^3	DESCENT FUEL DENSITY
70.8			kg/m^3	DESCENT OXIDIZER DENSITY
1141	OXRHO1		PSI	DESCENT PROP TANK PRESSURE
50	PPRES1		m	DESCENT STAGE DIA
9.4	DIA1		111	DESCENT NUMBER OF FUEL TANKS
4	NFUTNK1			DESCENT FUEL TANK RAD
1.35	FURAD1		m	DESCENT NUMBER OF OX TANKS
2	NOXTNK1			DESCENT NUMBER OF OA TAIRS
1.35	OXRAD1		m	DESCENT OX TANK RAD
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^ 3	DESCENT TANK METAL RHO
.001143	TMIN1		M	DESCENT TANK MINIMUM THICKNESS
400900	FUVAP1		J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
21	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
91	IENTUAT		22011	
				ASCENT INPUTS (2)
			k-	ASCENT FEED SYSTEM MASS
153	FESYS2		kg	ASCENT ENGINE(S) MASS TOTAL
581	ENGS2		kg	ASCENT PROTECTION MASS
169	PROT2		kg	
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS

APPENDIX B Trade #7 LOX/CH4, PUMP

238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
358	ISP2		sec	ASCENT ISP
3.5	MR2			ASCENT MIXTURE R ATIO
422	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1141	OXRHO2		kg/m^3	ASCENT OXIDIZER DENSITY
50	PPRES2		PŠI	ASCENT PROP TANK PRESSURE
5.311	DIA2		m	ASCENT STAGE DIA
2	NFUTNK2			ASCENT NUMBER FUEL TANKS
1	FURAD2		m	ASCENT FUEL TANK RAD
2	NOXTNK2		111	
1.1	OXRAD2		-	ASCENT NUMBER OX TANKS
3.1E8	METSIG2		m	ASCENT OX TANK RAD
2710	METRHO2		Ing /m A2	ASCENT TANK METAL SIGMA
.001143	TMIN2		kg/m^3	ASCENT TANK METAL RHO
511000	FUVAP2		M	ASCENT TANK MINIMUM THICKNESS
			J/kg	ASCENT FUEL LATENT HEAT OF VAP
198340	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
111	TEMPFU2		DEG K	
91	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
49	STIME		Day	STAYTIME
21176.7	HTRATEF			
14190.5	HTRATEO			
				DECCENT CTACE DDE AMDONDA (1)
	PRPSYS1	4547.1333	ka	DESCENT STAGE BREAKDOWN (1)
	TNKST1	642.912	kg kg	DESCENT PROPULSION SYSTEM MASS DESCENT TANK STRUCTURE
	TNKS1	2143.04	kg	
	SPPT1	5181.8576		DESCENT PROPELLANT TANKS
	STRUCT1	3046.0806	kg ka	DESCENT SUPPORT MASS
	STAGE1	13064.195	kg	DESCENT STRUCTURE MASS
	GROWTH1	1945.7982	kg ka	DESCENT STAGE MASS
	PTNK1	521.18133	kg	DESCENT GROWTH BUDGET
	HEMASS1	139.40548	kg	DESCENT PRESSURANT TANK MASS
	PSYS1	660.58682	kg	DESCENT HELIUM MASS
	13131	000.36062	kg	DESCENT PRESSURIZATION SYSTEM MASS
				ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	1391.0803	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	122.94341	kg	ASCENT TANK STRUCTURE
	TNKS2	409.81138	kg	ASCENT PROPELLANT TANKS
	HEMASS2	33.254566	kg	ASCENT HELIUM MASS
	PTNK2	124.32552	kg	ASCENT PRESSURANT TANK MASS
	PSYS2	157.58009	kg	ASCENT PRESSURIZATION SYSTEM MASS
	SPPT2	2397.7009	kg	ASCENT SUPPORT
	STRUCT2	581.70093	kg	ASCENT STRUCTURE MASS
	STAGE2	12207.792	kg	ASCENT STAGE MASS
	GROWTH2	757.75625	kg	ASCENT GROWTH BUDGET
	DEGIE :			DESCENT PROPELLANT STUFF
	RESID1	1312.6781	kg	DESCENT RESIDUALS
	PROP1	45068.614	kg	DESCENT TOTAL PROP
	BOIL1	227.24858	kg	DESCENT PROP BOILOFF
				ASCENT PROPELLANT STUFF
	RESID2	471.42096	kg	ASCENT RESIDUALS
	PROP2	16185.453	kg	ASCENT RESIDUALS ASCENT TOTAL PROP
	BOIL2	213.57449	kg	ASCENT PROP BOILOFF
			~D	NOCLIVITINOI DOILOFF

FUI OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 ML11	6977.2211 38727.514 98.548321 33.94173 318.02844 333.15245 25.868934 17.819408 5.418155 45.958417 4.01226 34.033193 174.37332	kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT FUEL TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK AREA/TANK DESCENT OX TANK AREA/TANK
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 ML12 FUTNKV2 OXTNKV2	3667.0555 12731.972 8.6897049 11.158608 79.299291 53.080699 2.1188266 13.31298 2.2744449 15.719835 145.0514 4.5620951 5.8582693	kg m^3 m^3 kg kg m m^2 m m^2 kg M^3 M^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

LOX/LH2 2 STAGE PUMP FED TRADE #8

				VARIABLES REQUIRING INITIAL GUESSES
	MBURN1	44270.297	kg	DESCENT USED PROPELLANT MASS
	MBURN2	13672.666	kg	ASCENT USED PROPELLANT MASS
	BOILFU1	131.24506	kg	DESCENT FUEL BOILOFF
	BOILOX1	98.159843	kg	DESCENT OX BOILOFF
	BOILFU2	301.64549		ASCENT FUEL BOILOFF
			kg	
	BOILOX2	110.48031	kg	ASCENT OX BOILOFF
	LGEAR	1468.8429	kg	LANDING GEAR MASS
	APRSFU1	413.66282	kg	AUTOGENOUS FU PRESSURE MASS
	APRSFU2	144.01163	kg	AUTOGENOUS FU PRESSURE MASS
			-	
				VEHICHLE STUFF
	TOTPROP	60880.457	kg	VEHICLE TOTAL PROPELLANT
	VEHCL	93461.133	kg	TLI MASS
	. 21102	JJ401.1JJ	~6	
•	00000000			GLOBAL INPUTS
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		0	PROPELLANT RESERVE FRACTION
.05				TROPELEART RESERVE TRACTION
204	ETCN/C1			DESCENT INPUTS (1)
294	FESYS1		kg	DESCENT FEED SYSTEM MASS
873	ENGS1		kg	DESCENT ENGINE(S) MASS TOTAL
270	RCSSYS1		kg	DESCENT RCS SYSTEM WET MASS
425	PROT1		kg	DESCENT PROTECTION MASS
154	POWER1		kg	DESCENT POWER MASS
105	AV1		kg	DESCENT AVIONICS MASS
1050	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
2780	DELV1		m/s	DESCENT DELTA V
440	ISP1		sec	DESCENT ISP
6	MR1		sec	
70.8			1-1-42	DESCENT MIXTURE RATIO
	FURHO1		kg/m^3	
1141	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
9.4	DIA1		m	DESCENT STAGE DIA
4	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.35	FURAD1		m	DESCENT FUEL TANK RAD
2	NOXTNK1			DESCENT NUMBER OF OX TANKS
1.35	OXRAD1		m	DESCENT OX TANK RAD
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL SIGNA DESCENT TANK METAL RHO
.001143	TMINI		M	
400900	FUVAP1			DESCENT TANK MINIMUM THICKNESS
			J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
21	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
91	TEMPOX1		DEG K	DESCENT OX TEMPERATURE
0 04				ASCENT INPUTS (2)
294	FESYS2		kg	ASCENT FEED SYSTEM MASS
873	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
			0	

APPENDIX B Trade #8 LOX/LH2, PUMP

3

131	AV2		kg	ASCENT AVIONICS MASS
238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
444	ISP2		sec	ASCENT ISP
	MR2			ASCENT MIXTURE R ATIO
6			kg/m^3	ASCENT FUEL DENSITY
70.8	FURHO2		kg/m^3	ASCENT OXIDIZER DENSITY
1141	OXRHO2		PSI	ASCENT PROP TANK PRESSURE
50	PPRES2			ASCENT STAGE DIA
6.7	DIA2		m	ASCENT NUMBER FUEL TANKS
4	NFUTNK2			ASCENT FUEL TANK RAD
1	FURAD2		m	ASCENT POEL TANK KAD
1	NOXTNK2			ASCENT OX TANK RAD
1.35	OXRAD2		m	ASCENT ON TAINE RAD
3.1E8	METSIG2			ASCENT TANK METAL SIGMA
2710	METRHO2		kg/m^3	ASCENT TANK METAL RHO
.001143	TMIN2		М	ASCENT TANK MINIMUM THICKNESS
400900	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
198340	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
21	TEMPFU2		DEG K	ASCENT FUEL TEMPERATURE
9 1	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
49	STIME		Day	STAYTIME
21176.7	HTRATEF		•	
14190.5	HTRATEO			
14190.5	IIIKAILO			
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	4592.6727	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	652.01023	kg	DESCENT TANK STRUCTURE
		2173.3674	kg	DESCENT PROPELLANT TANKS
	TNKS1	5233.1902	kg	DESCENT SUPPORT MASS
	SPPT1	3080.3473	kg	DESCENT STRUCTURE MASS
	STRUCT1		kg	DESCENT STAGE MASS
	STAGE1	13182.076 1965.1726	kg	DESCENT GROWTH BUDGET
	GROWTH1	527.29501		DESCENT PRESSURANT TANK MASS
	PTNK1		kg ka	DESCENT HELIUM MASS
	HEMASS1	141.04077	kg ka	DESCENT PRESSURIZATION SYSTEM MASS
	PSYS1	668.33577	kg	DESCENTIALSSORMERITORSSIS
				ASCENT STAGE BREAKDOWN (2)
			1	ASCENT PROPULTION SYSTEM MASS
	PRPSYS2	2511.7952	kg	ASCENT TANK STRUCTURE
	TNKST2	269.98196	kg	ASCENT PROPELLANT TANKS
	TNKS2	899.93986	kg	ASCENT FROMELLANT TANKS
	HEMASS2	46.775107	kg	ASCENT PRESSURANT TANK MASS
	PTNK2	174.87342	kg	ASCENT PRESSURANT TANK MASS ASCENT PRESSURIZATION SYSTEM MASS
	PSYS2	221.64852	kg	
	SPPT2	3091.392	kg	ASCENT SUPPORT
	STRUCT2	1275.392	kg	ASCENT STRUCTURE MASS
	STAGE2	14398.6	kg	ASCENT STAGE MASS
	GROWTH2	1120.6374	kg	ASCENT GROWTH BUDGET
				DESCENT PROPELLANT STUFF
	RESID1	1328.1089	kg	DESCENT RESIDUALS
	PROP1	45598.406	kg	DESCENT TOTAL PROP
	BOIL1	229.4049	kg	DESCENT PROP BOILOFF
			-	_
				ASCENT PROPELLANT STUFF
	RESID2	410.17997	kg	ASCENT RESIDUALS
	PROP2	14082.846	kg	ASCENT TOTAL PROP
	BOIL2	412.1258	kg	ASCENT PROP BOILOFF
	DUIL2	712.1230	0	

FU22457.4922kgDESCENT MELTMASSFU22457.4922kgASCENT FUEL MASSOX212181.491kgASCENT OX MASSFUVOL234.710342m^3ASCENT FUEL VOLUMEOXVOL210.676153m^3ASCENT OX VOLUMEOXTNK2162.34107kgASCENT OX TANK MASSFUTNK2116.10959kgASCENT FUEL TANK MASSLENFU23.566936mASCENT FUEL TANK LENGTHATOTFU222.41172m^2ASCENT FUEL TANK AREA/TANKLENOX22.8578828mASCENT OX TANK LENGTHATOTOX224.24142m^2ASCENT OX TANK AREA/TANKMLI2273.16044kgASCENT MLI MASSFUTNKV29.1114648M*3ASCENT FUEL TANK VOLUME	FU1 OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 ML11	7058.9659 39182.508 99.702908 34.340498 323.40481 337.62573 26.172013 18.028761 5.4710895 46.407423 4.0488247 34.343346 176.05488	kg m^3 m^3 kg kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT OX TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK AREA/TANK DESCENT OX TANK AREA/TANK DESCENT MLI MASS
MLI2 273.16044 kg ASCENT MLI MASS FUTNKV2 9.1114648 M^3 ASCENT FUEL TANK VOLUME	FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2	2457.4922 12181.491 34.710342 10.676153 162.34107 116.10959 3.566936 22.41172 2.8578828	kg m^3 m^3 kg kg m m^2 m	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH
	FUTNKV2	273.16044 9.1114648	kg M^3	ASCENT MLI MASS

SINGLE STAGE PERFORMANCE MODEL-TRADE #9 (with 4 RL-10A-4 Engines) • NON-STACKED DESCENT TANKS • STACKED ASCENT TANKS

SEPERATE ASCENT/DESCENT TANKS

370107	MBURN1 MBURN2 BOIL1 BOIL2 VOLPOX1 VOLPFU1 VOLPOX2 VOLPFU2 LGEAR H2AUTO1 H2AUTO2 VEHCL PROPVOL THROTTL MFRAC THRUST TWDESCE TWASCEN TWDMOON TWAMOON TWAMOON TWAMOON TWAMOON TWAMOON TWAMOON TWAMOON TWAMOON	47141.272 20864.882 260.28107 370.92332 1.7460658 .50576301 .77984653 .50576301 1607.5227 443.92618 201.75431 101429.57 221.57094 5.3229283 .76408346 .69829556 .85469218 2.2554217 5.1692542 6461.4756 3267.1632 980.14895 730.14445 2089.8704 587.98834 189.17516 71323.223 7397.1445 24056.344 25106.344 25106.344 25384.088 22650.821 2771.724	kg kg kg m^3 mm^3 kg kg mm N kg kg k	VARIABLES REQUIRING INITIAL GUESSES PROPELLANT MASS FOR 1ST BURN (GUESS) PROPELLANT MASS FOR 2ND BURN (GUESS) MASS OF DESCENT PROP BOILED OFF (GUESS) MASS OF ASCENT PROP BOILED OFF (GUESS) DESCENT VOLUME OF OX He PRES (GUESS) ASCENT VOLUME OF FOU He PRES (GUESS) ASCENT VOLUME OF FU He PRES (GUESS) MASS OF LANDING GEAR MASS OF DESCENT AUTOGENOUS H2 MASS OF ASCENT AUTOGENOUS H2 MASS OF ASCENT AUTOGENOUS H2 TOTAL VEHICLE CALC TOTAL VEHICLE MASS TOTAL VEHICLE PROP & HE VOLUME THROTTLING RANGE REQUIRED TO HOVER VEHICLE MASS FRACTION TOTAL STAGE ENGINE THRUST DESCENT FINAL VEH THRUST TO WEIGHT ASCENT THRUST TO WEIGHT RATIO DESCENT LUNAR THRUST TO WEIGHT RATIO ASCENT LUNAR THRUST TO WEIGHT RATIO ASCENT LUNAR THRUST TO WEIGHT RATIO MASS OF PROPULSION SYSTEM TOTAL PROP TANK MASS TANK SUPPORT STRUCTURAL MASS DRY MASS OF ALL OX TANKS DRY MASS OF ALL OX TANKS DRY MASS OF ALL OX TANKS DRY MASS OF STAGE SUPPORT DY MASS OF STAGE SUPPORT DAL PROPELLANT MASS DRY MASS OF STAGE SUPPORT DRY MASS OF STAGE W/CREW MODULE MASS OF STAGE W/FLUID 1 MASS OF STAGE W/FLUID 2 GROWTH BUDGET MASS
4.7	DIASTAG LENCYL1 ASURF1 ASURF2 ASURFTO	4.7125112 139.16503 51.254858 190.41989	m m m^2 m^2 m^2	STAGE STRUCTURE CALCULATIONS DESCENT STAGE MAX DIAMETER LENGTH OF DESCENT CYLIND SURFACE AREA OF DESCENT STAGE SURFACE AREA OF ASCENT TANKS TOTAL VEHICLE SIDEWALL SURFACE INPUT 'UNMAN or'MAN FOR DESCNT STRUCT
'MAN 'MAN	DESIGN1 DESIGN2 STRUCT1 STRUCT2 TOTSTRU	2594.2758 822.0373 3416.3131	kg kg kg	INPUT UNMAN OF MAN FOR ASCNT STRUCT STRUCTURAL MASS FOR DESCENT STAGE STRUCTURAL MASS FOR ASCENT STAGE DESCENT + ASCENT STRUCTURAL MASS

				TOTAL STAGE MASS INPUTS
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
200	RETCARG		kg	ASCENT PAYLOAD MASS
294	FEEDSYS		kg	
873	ENGS			DRY MASS OF PROPULSION FEED SYSTEM
			kg	DRY MASS OF ALL ENGINES + ACTUATORS
270	RCSSYS		kg	WET MASS OF DESCENT RCS (N2H4)
1432	POWER		kg	DRY POWER MASS
236	AVIONIC		kg	MASS OF STAGE AVIONICS
238	ECLSS		kg	MASS OF ECLSS
7426	CREWMOD		kg	TOTAL MASS OF CREW MODULE
1050	FLUIDS1		kg	NON-PROP FLUID MASS AT DESCENT
202	FLUIDS2		kg	NON-PROP FLUID MASS AT DESCENT NON-PROP FLUID MASS AT ASCENT
.2	GROWTH%		rg	
. 40				PERCENT GROWTH BUDGET/100
	DEATDI			ROCKET EQUATION CALC
	RESID1	1414.2381	kg	MASS OF RESIDUAL PROP FOR 1ST BURN
	RESID2	625.94646	kg	MASS OF RESIDUAL PROP FOR 2ND BURN
	NONUSE1	23477.744	kg	MASS OF PROP NOT USED IN 1ST BURN
	NONUSE2	625.94646	kg	MASS OF PROP NOT USED IN 2ND BURN
.03	RESERVE		0	RESERVE & RESIDUAL PERCENTAGE/100
2780	DELV1		m/s	DELTA V FOR 1ST BURN
2801	DELV2			
449			m/s	DELTA V FOR 2ND BURN
	ISP		sec	ENGINE ISP
6	MIXRATI			ENGINE MIXTURE RATIO
9.81	G		m/s^2	EARTH GRAVITY ACCELERATION
1.622	GMOON		m/s^2	LUNAR GRAVITY ACCELERATION
				PROP INPUTS
198340	OXVAP		J/kg	HEAT OF VAPORIZATION FOR OX
400900	FUVAP		J/kg	HEAT OF VAPORIZATION FOR FUEL
1141	OXRHO		kg/m^3	DENSITY OF OX
70.8	FUELRHO		kg/m^3	DENSITY OF FUEL
21	FUTEMP			
91	OXTEMP		K	FUEL PROPELLANT SAT. TEMP (15 psi)
71	UNTENIP		K	OX PROPELLANT SAT. TEMP (15 psi)
40	000 4 3 20073 4			BOILOFF CALC
49	STAYTIM		day	NO. OF MISSION DAYS
4	TRIPTIM		day	NO. OF TRIP DAYS TO MOON
54508.9	OXRATE		J/day*m^	2 HEAT XFER FOR LO2
54508.9	FURATE		J/dav*m^	2 HEAT XFER FOR LH2
21176.7	QMOONFU		J/dav*m^	2 LUNAR HEAT XFER RATE THRU FUEL TNK
14190.5	QMOONOX		I/dav*m^	2 LUNAR HEAT XFER RATE THRU OX TANK
32705.34	HEATRAT			2HEAT XFER RATE THRU 2" OF MLI
'NO	VCSOX1		J/uay m	
'NO	VCSFUI			VCS FOR DESCENT OX TNKS? ('YES or 'NO)
'NO				VCS FOR DESCENT FU TNKS? ('YES or 'NO)
	VCSOX2			VCS FOR ASCENT OX TNKS? ('YES or 'NO)
'NO	VCSFU2			VCS FOR ASCENT FU TNKS? ('YES or 'NO)
	BOILOX1	105.7871	kg	MASS OF DESCENT OX BOILOFF
	BOILFU1	154.49396	kg	MASS OF DESCENT FUEL BOILOFF
	BOILOX2	218.3462	kg	MASS OF ASCENT OX BOILOFF
	BOILFU2	152.57712	kg	MASS OF ASCENT FUEL BOILOFF
	-		0	
				PROTECTION CALC
2	METMASS		kg/m^2	
.273	FOAMMAS			METEORIOD SHIELD BLANKET MASS/m^2
.273	MLI20L		kg/m^2	FOAM INSULATION MASS/m^2
			kg/m^2	MLI BLANKET MASS FOR 20 LAYERS
2.344	MLI88L		kg/m^2	MLI BLANKET MASS FOR 88 LAYERS
2.637	MLII13L		kg/m^2	MLI BLANKET MASS FOR 113 LAYERS

APPENDIX B Trade #9 SINGLE STAGE

Frade #9 SIN	NGLE STAGE			
2.93	MLIMASS FOAM ML11 ML12OX ML12FU ML12 PROT1 PROT2 PROTECT MVCSOX1 MVCSFU1 MVCSOX2 MVCSFU2 MVCSTOT	59.653984 144.2206 84.65807 158.61561 243.27368 380.17548 87.133259 467.30874 0 0 0 0 0	kg/m^2 kg kg kg kg kg kg kg	MLI BLANKET MASS FOR 2" (100 LAYERS) TOTAL DESCENT FOAM MASS TOTAL DESCENT MLI MASS TOTAL ASCENT OX MLI MASS TOTAL ASCENT FU MLI MASS TOTAL ASCENT FU MLI MASS PROT MASS FOR DESCENT TANKS & HE PROTECTION MASS FOR ASCENT TANKS TOTAL PROTECTION MASS MASS OF DESCENT OX VCS MASS OF DESCENT FU VCS MASS OF ASCENT FU VCS MASS OF ASCENT FU VCS TOTAL MASS OF VEHICLE VCS USED
	MFUEL1 MOX1 OXVOL1 FUVOL1 VPROP1 MFUEL2 MOX2 OXVOL2 FUVOL2 VPROP2	7534.9215 41280.869 38.083739 112.02678 150.11052 3424.4498 18437.302 17.009366 50.913616 67.922982	kg m^3 m^3 m^3 kg kg m^3 m^3 m^3	PROP MASS & VOL CALC MASS OF FUEL IN DESCENT TANKS MASS OF OX IN DESCENT TANKS VOLUME OF DESCENT OX TANKS VOLUME OF DESCENT FUEL TANKS TOTAL VOLUME OF DESCENT PROP MASS OF FUEL IN ASCENT TANKS MASS OF OX IN ASCENT TANKS VOLUME OF ASCENT OX TANK VOLUME OF ASCENT FUEL TANK TOTAL VOLUME OF ASCENT PROP
1 2 6 1 1.25 1.25 1.5 2 344732 .6 .75	ERATIO NTNKOX1 NTNKFU1 NTNKFU2 OXRAD1 FURAD1 OXRAD2 FURAD2 TNKPRES GLOAD1 GLOAD2		m m m Pa	PROP TANK INPUTS ELLIPSE RATIO FOR TANK DOME (HEIGHT/RA No. OF DESCENT OX TANKS No. OF DESCENT FUEL TANKS No. OF ASCENT FUEL TANKS DESCENT OX TANK RADIUS DESCENT FUEL TANK RADIUS ASCENT FUEL TANK RADIUS ASCENT FUEL TANK RADIUS ASCENT FUEL TANK RADIUS PROP TANK PRESSURE G LOADS ON PRESSURIZED DESCENT TANKS G LOADS ON ASCENT TANKS - PRESSURIZED
	DOMEOX1 DOMEFU1 LENOX1 LENFU1 SRADOX1 SRADFU1 TWOX1 TWFU1 ASUROX1 ASUROX1 ASURFU1 OXTNK1 FUTNK1	8.1812309 8.1812309 2.2125112 2.1369849 .00288356 .0026559 37.011976 36.418794 259.91912 241.93035	m^3 m^3 m m m m m^2 m^2 kg kg	DESCENT PROP TANK CALC DESCENT OX TANK DOME VOLUME (EACH) DESCENT FUEL TANK DOME VOLUME (EACH) LENGTH OF DESCENT OX TANKS LENGTH OF DESCENT FUEL TANKS SPHERE RADIUS OF OX TANK (IF LENOX1<0) SPHERE RADIUS OF FU TANK (IF LENFU1<0) DESCENT OX TANK WALL THICKNESS DESCENT FUEL TANK WALL THICKNESS SURFACE AREA OF DESCENT OX TANK (EA) SURFACE AREA OF DESCENT FUEL TNK (EA) MASS OF DESCENT FUEL TANKS (EACH)
	DOMEOX2 DOMEFU2	14.137167 33.510322	m^3 m^3	ASCENT PROP TANK CALC ASCENT OX TANK DOME VOLUME (EACH) ASCENT FUEL TANK DOME VOLUME (EACH)

APPENDIX B Trade #9 SINGLE STAGE

	LENOX2 LENFU2 SRADOX2 SRADFU2 TWOX2 TWFU2 ASUROX2 ASURFU2 OXTNK2 FUTNK2	.40633303 1.3849101 .00343221 .00426013 32.103932 67.668777 210.30621 638.28833	m m m m m^2 m^2 kg kg	LENGTH OF ASCENT OX TANK LENGTH OF ASCENT FUEL TANK SPHERE RADIUS OF OX TANK (IF LENOX2<0) SPHERE RADIUS OF FU TANK (IF LENFU2<0) ASCENT OX TANK WALL THICKNESS ASCENT FUEL TANK WALL THICKNESS SURFACE AREA OF ASCENT OX TANK (EACH) SURFACE AREA OF ASCENT FUEL TANK (EA) MASS OF ASCENT OX TANK (EACH) MASS OF ASCENT FUEL TANK (EACH)
1.66 2077 298 3450000 33100000 344732.5 2	GAM R ENDTEMP INITTEM ENDPRES INITPRE PROPPRE MW	121.27715	K K Pa Pa Pa	PRESS SYSTEM INPUTS RATIO OF SPECIFIC HEATS FOR HE IDEAL GAS CONSTANT FOR HE FINAL HE PRESSURANT TEMP INITIAL HE PRESSURANT PRESSURE INITIAL HE PRESSURANT PRESSURE PROPELLANT TANK PRESSURE MOLECULAR WEIGHT OF H2
	VPRES1 HeMASS1 MHeOX1 MHeFU1 PCONOX1 PCONFU1 PTNK1 VPRES2 HeMASS2 MHeOX2 MHeFU2 PCONOX2 PCONFU2 PCONFU2 PTNK2	2.2518288 120.42332 93.376123 27.047199 69.461463 44.270896 374.29602 1.2856095 68.751839 41.70464 27.047199 31.023619 20.120111 213.69232	Pa kg kg kg m^3 kg kg kg kg	DESCENT PRESS SYSTEM CALC VOLUME OF DESCENT HE PRESSURANT MASS OF DESCENT HE PRESSURANT MASS OF HE PRESS FOR DESCENT OX MASS OF HE PRESS FOR DESCENT FUEL DESCENT OX PROP TANK CONDITION DESCENT FUEL PROP TANK CONDITION MASS OF DESCENT PRESSURANT TANK ASCENT PRESS SYSTEM CALC VOLUME OF ASCENT HE PRESSURANT MASS OF ASCENT HE PRESSURANT MASS OF ASCENT HE PRESSURANT MASS OF HE PRESS FOR ASCENT OX MASS OF HE PRESS FOR ASCENT FUEL ASCENT OX PROP TANK CONDITION DESCENT FUEL PROP TANK CONDITION MASS OF ASCENT PRESSURANT TANK

1.5 STAGE CRYO TRADE #10

				VARIABLES REQUIRING INITIAL GUESSES
	MOT TONI	41395.858	kg	DESCENT USED PROPELLANT MASS
	MBURN1	13636.392	kg	ASCENT USED PROPELLANT MASS
	MBURN2	141.28485	kg	DESCENT FUEL BOILOFF
	BOILFU1	93.205892	kg	DESCENT OX BOILOFF
	BOILOXI	172.46337	kg	ASCENT FUEL BOILOFF
	BOILFU2		kg	ASCENT OX BOILOFF
	BOILOX2	121.08961	kg	I ANDING GEAR MASS
	LGEAR	1373.472		AUTOGENOUS FU PRESSURE MASS
	APRSFU1	387.95941	kg ka	AUTOGENOUS FU PRESSURE MASS
	APRSFU2	135.63793	kg	AUTOOM.COUTOTAL
				VEHICHLE STUFF
		67724 060	ka	VEHICLE TOTAL PROPELLANT
	TOTPROP	57734.858	kg ka	TLI MASS
	VEHCL	87412.748	kg	
				GLOBAL INPUTS
	~~ ~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			GROWTH FRACTION
.2	GROWTH%		ka	DESCENT PAYLOAD MASS
5000	PAYLOAD		kg	CREW MODULE MASS
7426	CREWMOD		kg	GRAVITY
9.81	G		m/s^2	ASCENT CARGO
200	RETCARG		kg	PROPELLANT RESERVE FRACTION
.03	RESERVE			PROPELLANT RESERVET REPORT
				DESCENT INPUTS (1)
			h-~	DESCENT FEED SYSTEM MASS
100	FESYS1		kg	DESCENT ENGINE(S) MASS TOTAL
0	ENGS1		kg	DESCENT RCS SYSTEM WET MASS
270	RCSSYS1		kg	DESCENT PROTECTION MASS
425	PROT1		kg	DESCENT POWER MASS
154	POWER1		kg	DESCENT AVIONICS MASS
105	AV1		kg	NON-PROPULSION FLUIDS MASS
1050	FLUIDS1		kg	DESCENT DELTA V
2780	DELV1		m/s	DESCENT DELTA V
440	ISP1		sec	DESCENT ISP
6	MR1			DESCENT MIXTURE RATIO
70.8	FURHO1		kg/m^3	DESCENT FUEL DENSITY
1141	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
6	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.2	FURAD1		m	DESCENT FUEL TANK RAD
2	NOXTNK1			DESCENT NUMBER OF OX TANKS
1.35	OXRAD1		m	DESCENT OX TANK RAD
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL RHO
.001143	TMIN1		M	DESCENT TANK MINIMUM THICKNESS
400900	FUVAP1		J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
21	TEMPOX1		DEG K	
91	I LIME OAT			
				ASCENT INPUTS (2)
294	FESYS2		kg	ASCENT FEED SYSTEM MASS
873	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS
171			-	

000	FOI 00			
238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
444	ISP2		SEC	ASCENT ISP
6	MR2			ASCENT MIXTURE R ATIO
70.8	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1141	OXRHO2		kg/m^3	ASCENT OXIDIZER DENSITY
50	PPRES2		PSI	ASCENT PROP TANK PRESSURE
1	NFUTNK2			ASCENT NUMBER FUEL TANKS
1.9	FURAD2		m	ASCENT FUEL TANK RAD
1	NOXTNK2		***	ASCENT NUMBER OX TANKS
î	OXRAD2		~	ASCENT OX TANK RAD
3.1E8	METSIG2		m	
2710			1 (42	ASCENT TANK METAL SIGMA
	METRHO2		kg/m^3	ASCENT TANK METAL RHO
.001143	TMIN2		M	ASCENT TANK MINIMUM THICKNESS
400900	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
198340	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
21	TEMPFU2		DEG K	
91	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
49	STIME		Day	STAYTIME
21176.7	HTRATEF		,	
14190.5	HTRATEO			
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	3282.4697	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	603.59597	kg	DESCENT TANK STRUCTURE
	TNKS1	2011.9866	kg	DESCENT PROPELLANT TANKS
	SPPT1	4157.472	kg	DESCENT SUPPORT MASS
2100	STRUCT1		kg	DESCENT STRUCTURE MASS
	STAGE1	10310.035	kg	DESCENT STAGE MASS
	GROWTH1	1487.9883	kg	DESCENT GROWTH BUDGET
	PTNK1	493.88713	kg	DESCENT PRESSURANT TANK MASS
	HEMASS1	132.10483	kg	DESCENT HELIUM MASS
	PSYS1	625.99197	kg	DESCENT PRESSURIZATION SYSTEM MASS
	10101	023.77177	~ 8	DESCENT FRESSORIZATION STSTEM MASS
				ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	2362.9209	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	237.02815	kg	ASCENT TANK STRUCTURE
	TNKS2	790.09382	kg	ASCENT PROPELLANT TANKS
	HEMASS2	45.150313	kg	ASCENT HELIUM MASS
	PTNK2	168,79896	kg	ASCENT PRESSURANT TANK MASS
	PSYS2	213.94927	kg	ASCENT PRESSURIZATION SYSTEM MASS
	SPPT2	3216	kg	ASCENT SUPPORT
1400	STRUCT2	5210	kg	ASCENT STRUCTURE MASS
1400	STAGE2	14367.855		
	GROWTH2	1115.7842	kg	ASCENT STAGE MASS
	GROW INZ	1113.7042	kg	ASCENT GROWTH BUDGET
				DESCENT PROPELLANT STUFF
	RESID1	1241.8757	kg	DESCENT RESIDUALS
	PROP1	42637.734	kg	DESCENT TOTAL PROP
	BOIL1	234.49074	kg	DESCENT PROP BOILOFF
			~	
	DEGIDA	400 00		ASCENT PROPELLANT STUFF
	RESID2	409.09175	kg	ASCENT RESIDUALS
	PROP2	14045.483	kg	ASCENT TOTAL PROP
	BOIL2	293.55298	kg	ASCENT PROP BOILOFF

APPENDIX B Trade #10 1.5 STAGE

FUI OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1	6620.3491 36639.835 93.507755 32.112038 293.71003 206.55723 16.363857 16.85882 4.4172066 33.304953 3.8444878 32.610099	kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 ka	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT FUEL TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK LENGTH DESCENT OX TANK AREA/TANK DESCENT MLI MASS	
MLI1 FU2 OX2 FUVOL2 OXVOL2	185.22312 2314.5989 12160.075 32.692075 10.657384	kg kg m^3 m^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME	
OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2 FUTNKV2 OXTNKV2	215.54205 384.85965 4.2934038 51.254879 4.2286349 26.569297 189.69212 34.326679 11.190253	kg m m^2 m m^2 kg M^3 M^3	ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME	
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2 FUTNKV2	12160.075 32.692075 10.657384 215.54205 384.85965 4.2934038 51.254879 4.2286349 26.569297 189.69212 34.326679	kg m^3 m^3 kg kg m m^2 m m^2 kg M^3	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK AREA/TA ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TAN ASCENT MLI MASS ASCENT FUEL TANK VOLUME	NK K

ALL CIF5/N2H4 PRESS TRADE #11

	MBURN1	50329.319	ka	VARIABLES REQUIRING INITIAL GUESSES
	MBURN2	14893.083	kg	DESCENT USED PROPELLANT MASS
	BOILFU1		kg	ASCENT USED PROPELLANT MASS
	BOILOX1	.0012113	kg	DESCENT FUEL BOILOFF
		.00158544	kg	DESCENT OX BOILOFF
	BOILFU2	.00222856	kg	ASCENT FUEL BOILOFF
	BOILOX2	.00190232	kg	ASCENT OX BOILOFF
	LGEAR	1225.7951	kg	LANDING GEAR MASS
				VEHICHLE STUFF
	TOTPROP	67179.081	kg	VEHICLE TOTAL PROPELLANT
	VEHCL	91189.159	kg	TLI MASS
			Ū	
				GLOBAL INPUTS
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		ĸg	
				PROPELLANT RESERVE FRACTION
294	FESYS1		ka	DESCENT INPUTS (1)
300	ENGS1		kg	DESCENT FEED SYSTEM MASS
270	RCSSYS1		kg	DESCENT ENGINE(S) MASS TOTAL
425	PROT1		kg	DESCENT RCS SYSTEM WET MASS
154			kg	DESCENT PROTECTION MASS
105	POWER1		kg	DESCENT POWER MASS
1050	AV1		kg	DESCENT AVIONICS MASS
	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
2780	DELV1		m/s	DESCENT DELTA V
353	ISP1		sec	DESCENT ISP
2.5	MR1			DESCENT MIXTURE RATIO
1031	FURHO1		kg/m^3	DESCENT FUEL DENSITY
1793	OXRHO1		kg/m^3	DESCENT OXIDIZER DENSITY
350	PPRES1		PŠI	DESCENT PROP TANK PRESSURE
6	DIA1		m	DESCENT STAGE DIA
3	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1	FURAD1		m	DESCENT FUEL TANK RAD
3	NOXTNK1			DESCENT NUMBER OF OX TANKS
1	OXRAD1		m	DESCENT OX TANK RAD
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL SIGNA
.001143	TMIN1		M	DESCENT TANK MINIMUM THICKNESS
1E10	FUVAP1		J/kg	DESCENT FUEL LATENT HEAT OF VAP
1E10	OXVAPI		J/kg	DESCENT OX LATENT HEAT OF VAP
300	TEMPFU1		DEG K	DESCENT FUEL TEMPERATURE
300	TEMPOX1		DEG K	DESCENT FOEL TEMPERATURE
			DLUK	DESCENT OX TEMPERATURE
				ASCENT INPUTS (2)
153	FESYS2		ka	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
150	ENGS2		kg ka	ASCENT FEED SYSTEM MASS
169	PROT2		kg ka	ASCENT ENGINE(S) MASS TOTAL
1278	POWER2		kg ka	ASCENT PROTECTION MASS
131	AV2		kg	ASCENT POWER MASS
238	ECLSS		kg	ASCENT AVIONICS MASS
230	10033		kg	ECLSS MASS

APPENDIX B Trade #11 ALL CIF5/N2H4

202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
353	ISP2		sec	ASCENT ISP
2.5	MR2			ASCENT MIXTURE R ATIO
	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1031	OXRHO2		kg/m^3	ASCENT OXIDIZER DENSITY
1793	PPRES2		PSI	ASCENT PROP TANK PRESSURE
350			m	ASCENT STAGE DIA
4.346	DIA2		111	ASCENT NUMBER FUEL TANKS
2	NFUTNK2			ASCENT FUEL TANK RAD
.8	FURAD2		m	ASCENT NUMBER OX TANKS
2	NOXTNK2			ASCENT OX TANK RAD
.9	OXRAD2		m	ASCENT TANK METAL SIGMA
3.1E8	METSIG2			ASCENT TANK METAL SIGNA
2710	METRHO2		kg/ m^3	ASCENT TANK METAL RHO
.001143	TMIN2		Μ	ASCENT TANK MINIMUM THICKNESS
1E10	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
1E10	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
300	TEMPFU2		DEG K	ASCENT FUEL TEMPERATURE
300	TEMPOX2		DEG K	ASCENT OX TEMPERATURE
49	STIME		Day	STAYTIME
	HTRATEF			
21176.7 14190.5	HTRATEO			
14190.5	HIKAILO			
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	2441.6462	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	292.8602	kg	DESCENT TANK STRUCTURE
	TNKS1	976.20066	kg	DESCENT PROPELLANT TANKS
	SPPT1	2818.7649	kg	DESCENT SUPPORT MASS
	STRUCT1	908.9698	kg	DESCENT STRUCTURE MASS
		7697.7272	kg	DESCENT STAGE MASS
	STAGE1	1052.0822	kg	DESCENT GROWTH BUDGET
	GROWTH1	505.58533	kg	DESCENT PRESSURANT TANK MASS
	PTNK1			DESCENT HELIUM MASS
	HEMASS1	135.23387	kg	DESCENT PRESSURIZATION SYSTEM MASS
	PSYS1	640.8192	kg	DESCRITTADO CALIFICIÓN DE L
				ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	854.34884	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	92,709161	kg	ASCENT TANK STRUCTURE
	TNKS2	309.03054	kg	ASCENT PROPELLANT TANKS
	HEMASS2	40.017423	kg	ASCENT HELIUM MASS
		149.60914	kg	ASCENT PRESSURANT TANK MASS
	PTNK2			ASCENT PRESSURIZATION SYSTEM MASS
	PSYS2	189.62656	kg ha	ASCENT SUPPORT
	SPPT2	2182.5955	kg	ASCENT STRUCTURE MASS
	STRUCT2	366.59551	kg	ASCENT STAGE MASS
	STAGE2	11312.351	kg	ASCENT GROWTH BUDGET
	GROWTH2	607.38887	kg	ASCENT OKOW III DODOLI
				DESCENT PROPELLANT STUFF
	DECIDI	1509.8796	kg	DESCENT RESIDUALS
	RESID1			DESCENT TOTAL PROP
	PROP1	51839.199	kg ka	DESCENT PROP BOILOFF
	BOIL1	.00279674	kg	DEGENTING DELIGIT
				ASCENT PROPELLANT STUFF
	RESID2	446.79248	kg	ASCENT RESIDUALS
		15339.875	kg	ASCENT TOTAL PROP
	PROP2	.00413088	kg	ASCENT PROP BOILOFF
	BOIL2	00061400	~R	

FU1 OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 ML11	14811.201 37028.001 14.365859 20.651423 190.09317 135.30705 5.0280507 7.2279979 2.2671449 14.24489 2.9674099 18.644785 0	kg kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT FUEL VOLUME DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT FUEL TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK AREA/TANK DESCENT OX TANK AREA/TANK
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2	4382.8237 10957.056 4.2510415 6.1110182 89.788956 64.726313 1.643338 8.260317 1.8607762	kg kg m^3 m^3 kg kg m m^2 m	DESCENT MLI MASS ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH
ATOTOX2 MLI2 FUTNKV2 OXTNKV2	10.52244 0 2.2317968 3.2082846	m^2 kg M^3 M^3	ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

LOX/LH2 2 STAGE PUMP TRADE #12

	MBURN1 MBURN2 BOILFU1 BOILOX1 BOILFU2 BOILOX2 LGEAR APRSFU1 APRSFU2 APRSOX2 APRSOX1	31514.965 10843.647 97.357378 76.544764 187.14654 130.74176 1174.936 142.91249 53.811084 65.584758 188.55871	kg kg kg kg kg kg kg kg	VARIABLES REQUIRING INITIAL GUESSES DESCENT USED PROPELLANT MASS ASCENT USED PROPELLANT MASS DESCENT FUEL BOILOFF DESCENT OX BOILOFF ASCENT FUEL BOILOFF LANDING GEAR MASS AUTOGENOUS FU PRESSURE MASS AUTOGENOUS FU PRESSURE MASS
	TOTPROP VEHCL	44572.028 70853.402	kg kg	VEHICHLE STUFF VEHICLE TOTAL PROPELLANT TLI MASS
.2 5000 7426 9.81 200 .03	GROWTH% PAYLOAD CREWMOD G RETCARG RESERVE		kg kg m/s^2 kg	GLOBAL INPUTS GROWTH FRACTION DESCENT PAYLOAD MASS CREW MODULE MASS GRAVITY ASCENT CARGO PROPELLANT RESERVE FRACTION
150 600 270 425 154 105 1050 2780 480 6 70.8 1141 25 9.4 4 1.35 2 1.35 3.1E8 2710 .001143 400900 198340 21 91	FESYS1 ENGS1 RCSSYS1 PROT1 POWER1 AV1 FLUIDS1 DELV1 ISP1 MR1 FURHO1 OXRHO1 PPRES1 DIA1 NFUTNK1 FURAD1 NOXTNK1 OXRAD1 METSIG1 METRHO1 TMIN1 FUVAP1 OXVAP1 TEMPFU1 TEMPFU1		kg kg kg kg kg kg m/s sec kg/m^3 PSI m m m m kg/m^3 M J/kg J/kg DEG K DEG K	DESCENT INPUTS (1) DESCENT FEED SYSTEM MASS DESCENT ENGINE(S) MASS TOTAL DESCENT RCS SYSTEM WET MASS DESCENT PROTECTION MASS DESCENT POWER MASS DESCENT POWER MASS DESCENT AVIONICS MASS NON-PROPULSION FLUIDS MASS DESCENT DELTA V DESCENT DELTA V DESCENT MIXTURE RATIO DESCENT FUEL DENSITY DESCENT FUEL DENSITY DESCENT FUEL DENSITY DESCENT PROP TANK PRESSURE DESCENT STAGE DIA DESCENT NUMBER OF FUEL TANKS DESCENT NUMBER OF OX TANKS DESCENT TANK METAL SIGMA DESCENT TANK METAL SIGMA DESCENT TANK METAL RHO DESCENT TANK MINIMUM THICKNESS DESCENT OX LATENT HEAT OF VAP DESCENT OX LATENT HEAT OF VAP DESCENT OX TEMPERATURE DESCENT OX TEMPERATURE
100 481	FESYS2 ENGS2		kg kg	ASCENT INPUTS (2) ASCENT FEED SYSTEM MASS ASCENT ENGINE(S) MASS TOTAL

APPENDIX B Trade #12 LOX/LH2 IME

169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS
238	ECLSS			
202			kg	ECLSS MASS
	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2801	DELV2		m/sec	ASCENT DELTA V
480	ISP2		sec	ASCENT ISP
6	MR2			ASCENT MIXTURE R ATIO
70.8	FURHO2		kg/m^3	ASCENT FUEL DENSITY
1141	OXRHO2			
25			kg/m^3	ASCENT OXIDIZER DENSITY
	PPRES2		PSI	ASCENT PROP TANK PRESSURE
6.518	DIA2		m	ASCENT STAGE DIA
2	NFUTNK2			ASCENT NUMBER FUEL TANKS
1.35	FURAD2		m	ASCENT FUEL TANK RAD
2	NOXTNK2			ASCENT NUMBER OX TANKS
.75	OXRAD2		m	ASCENT OX TANK RAD
3.1E8	METSIG2			ASCENT TANK METAL SIGMA
2710			1 - (- 47	
	METRHO2		kg/m^3	ASCENT TANK METAL RHO
.001143	TMIN2		Μ	ASCENT TANK MINIMUM THICKNESS
400900	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
198340	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
21	TEMPFU2		DEG K	ASCENT FUEL TEMPERATURE
91	TEMPOX2		DEG K	
49	STIME		Day	STAYTIME
21176.7	HTRATEF		Day	STATTIME
14190.5	HTRATEO			
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	2068.3365	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	287.38534	kg	DESCENT TANK STRUCTURE
	TNKS1	957.95113	kg	DESCENT PROPELLANT TANKS
	SPPT1	4043.429	kg	DESCENT SUPPORT MASS
	STRUCT1	2184.493	kg	DESCENT STRUCTURE MASS
	STAGE1	8584.1186	kg	DESCENT STAGE MASS
	GROWTH1	1222.3531		
0		1222.3331	kg	DESCENT GROWTH BUDGET
	PTNK1		kg	DESCENT PRESSURANT TANK MASS
0	HEMASS1	-	kg	DESCENT HELIUM MASS
	PSYS1	0	kg	DESCENT PRESSURIZATION SYSTEM MASS
				ASCENT STAGE BREAKDOWN (2)
	PRPSYS2	1287.0107	kg	ASCENT PROPULTION SYSTEM MASS
	TNKST2	162.92556	kg	ASCENT TANK STRUCTURE
	TNKS2	543.08519	kg	ASCENT PROPELLANT TANKS
0	HEMASS2		kg	ASCENT HELIUM MASS
0	PTNK2			ASCENT PRESSURANT TANK MASS
Ū	PSYS2	0	kg	
	SPPT2		kg	ASCENT PRESSURIZATION SYSTEM MASS
		2937.3686	kg	ASCENT SUPPORT
	STRUCT2	1121.3686	kg	ASCENT STRUCTURE MASS
	STAGE2	12697.255	kg	ASCENT STAGE MASS
	GROWTH2	844.87587	kg	ASCENT GROWTH BUDGET
				DESCENT PROPELLANT STUFF
	RESID1	945.44895	kg	DESCENT RESIDUALS
	PROP1	32460.414	kg	DESCENT TOTAL PROP
	BOIL1	173.90214	kg	DESCENT PROP BOILOFF
				ASCENT PROPELLANT STUFF
	RESID2	325.30941	kg	ASCENT RESIDUALS
		-	-0	

APPENDIX B Trade #12 LOX/LH2 IME

			ASCENT TOTAL PROP
PROP2	11168.956	kg	
BOIL2	317.8883	kg	ASCENT PROP BOILOFF
			DESCENT TANKS
		-	
FU1	4877.4719	kg	DESCENT FUEL MASS
OX1	28088.316	kg	DESCENT OX MASS
FUVOL1	68.890846	m^3	DESCENT FUEL VOLUME
OXVOL1	24.617279	m^3	DESCENT OX VOLUME
OXTNK1	129.20539	kg	DESCENT OX TANK MASS
FUTNK1	141.91409	kg	DESCENT FUEL TANK MASS
FUTNKV1	18.083847	M^3	DESCENT FUEL TANK VOLUME
OXTNKV1	12.924072	M^3	DESCENT OX TANK VOLUME
LENFU1	4.0584457	m	DESCENT FUEL TANK LENGTH
ATOTFU1	34.424955	m^2	DESCENT FUEL TANK AREA/TANK
LENOX1	3.1572619	m	DESCENT OX TANK LENGTH
ATOTOX1	26.780843	m^2	DESCENT OX TANK AREA/TANK
MLI1	131.88397	kg	DESCENT MLI MASS
•·	-	•	
			ASCENT TANKS
FU2	1836.5228	kg	ASCENT FUEL MASS
OX2	9769.7177	kg	ASCENT OX MASS
FUVOL2	25.939588	m^3	ASCENT FUEL VOLUME
OXVOL2	8.5624169	m^3	ASCENT OX VOLUME
OXTNK2	59.786548	kg	ASCENT OX TANK MASS
FUTNK2	109.02511	kg	ASCENT FUEL TANK MASS
LENFU2	3.2785099	m	ASCENT FUEL TANK LENGTH
ATOTFU2	27.809305	m^2	ASCENT FUEL TANK AREA/TANK
LENOX2	3.0438018	m	ASCENT OX TANK LENGTH
ATOTOX2	14.343578	 m^2	ASCENT OX TANK AREA/TANK
MLI2	205.46187	kg	ASCENT MLI MASS
FUTNKV2	13.618284	M^3	ASCENT FUEL TANK VOLUME
OXTNKV2	4.4952689	M^3	ASCENT OX TANK VOLUME
UATINK V2	4,4732007	174 5	

TRADE #13: LOX/LH2 TWO STAGE PRESS

				VARIABLES REQUIRING INITIAL GUESSES
	MBURN1	44824.379	kg	DESCENT USED PROPELLANT MASS
	MBURN2	14282.153	kg	ASCENT USED PROPELLANT MASS
	BOILFUI	132.61295	kg	DESCENT FUEL BOILOFF
				DESCENT OX BOILOFF
	BOILOX1	76.088665	kg	
	BOILFU2	250.81274	kg	ASCENT FUEL BOILOFF
	BOILOX2	164.41602	kg	ASCENT OX BOILOFF
	LGEAR	1509.2409	kg	LANDING GEAR MASS
	APRSFU1	418.82307	kg	AUTOGENOUS FU PRESSURE MASS
			-	
				VEHICLE STUFF
	TOTPROP	61922.482	kg	VEHICLE TOTAL PROPELLANT
	VEHCL	95341.111	-s kg	TLI MASS
	VERCE	///////////////////////////////////////	*8	121101100
				GLOBAL INPUTS
	00000000			
.2	GROWTH%			GROWTH FRACTION
5000	PAYLOAD		kg	DESCENT PAYLOAD MASS
7426	CREWMOD		kg	CREW MODULE MASS
9.81	G		m/s^2	GRAVITY
200	RETCARG		kg	ASCENT CARGO
.03	RESERVE		0	PROPELLANT RESERVE FRACTION
.05	RESERVE			
				DESCENT INPUTS (1)
204	TTOVO1		ka	DESCENT FEED SYSTEM MASS
294	FESYS1		kg	
873	ENGS1		kg	DESCENT ENGINE(S) MASS TOTAL
270	RCSSYS1		kg	DESCENT RCS SYSTEM WET MASS
425	PROT1		kg	DESCENT PROTECTION MASS
154	POWER1		kg	DESCENT POWER MASS
105	AV1		kg	DESCENT AVIONICS MASS
1050	FLUIDS1		kg	NON-PROPULSION FLUIDS MASS
2750	DELV1		m/s	DESCENT DELTA V
440	ISP1		sec	DESCENT ISP
6	MR1		500	DESCENT MIXTURE RATIO
70.8	FURHO1		kg/m^3	DESCENT FUEL DENSITY
1141	OXRHO1			DESCENT OXIDIZER DENSITY
			kg/m^3	
50	PPRES1		PSI	DESCENT PROP TANK PRESSURE
9.4	DIA1		m	DESCENT STAGE DIA
4	NFUTNK1			DESCENT NUMBER OF FUEL TANKS
1.35	FURAD1		m	DESCENT FUEL TANK RAD
1	NOXTNK1			DESCENT NUMBER OF OX TANKS
2	OXRAD1		m	DESCENT OX TANK RAD
3.1E8	METSIG1			DESCENT TANK METAL SIGMA
2710	METRHO1		kg/m^3	DESCENT TANK METAL RHO
.001143	TMIN1		M	DESCENT TANK MINIMUM THICKNESS
400900	FUVAP1		J/kg	DESCENT FUEL LATENT HEAT OF VAP
198340	OXVAP1		J/kg	DESCENT OX LATENT HEAT OF VAP
			DEG K	DESCENT FUEL TEMPERATURE
21	TEMPFU1			DESCENT POLE TEMPERATURE
91	TEMPOX1		DEG K	DESCENT ON TEMPERATURE
				A COENTE INIDE TO (2)
•••			-	ASCENT INPUTS (2)
294	FESYS2		kg	ASCENT FEED SYSTEM MASS
250	ENGS2		kg	ASCENT ENGINE(S) MASS TOTAL
169	PROT2		kg	ASCENT PROTECTION MASS
1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS

APPENDIX B Trade #13 LOX/LH2, PRESS

			kg	ECLSS MASS
238	ECLSS		kg	ASCENT NON-PROPULSION FLUIDS MASS
202	FLUIDS2		m/sec	ASCENT DELTA V
2777	DELV2		sec	ASCENT ISP
440	ISP2		sa	ASCENT MIXTURE R ATIO
6	MR2		kg/m^3	ASCENT FUEL DENSITY
70.8	FURHO2			ASCENT OXIDIZER DENSITY
1141	OXRHO2		kg/m^3 PSI	ASCENT PROP TANK PRESSURE
250	PPRES2			ASCENT STAGE DIA
8.7	DIA2		m	ASCENT NUMBER FUEL TANKS
3	NFUTNK2			ASCENT FUEL TANK RAD
1.45	FURAD2		m	ASCENT NUMBER OX TANKS
3	NOXTNK2			ASCENT OX TANK RAD
1	OXRAD2		m	ASCENT TANK METAL SIGMA
3.1E8	METSIG2		1	ASCENT TANK METAL RHO
2710	METRHO2		kg/m^3	ASCENT TANK MINIMUM THICKNESS
.001143	TMIN2		M	ASCENT FUEL LATENT HEAT OF VAP
400900	FUVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
198340	OXVAP2		J/kg	ASCENT FUEL TEMPERATURE
70	TEMPFU2		DEG K	ASCENT FOEL TEMPERATURE
170	TEMPOX2		DEG K	
49	STIME		Day	STAYTIME
21176.7	HTRATEF			
14190.5	HTRATEO			
				DESCENT STAGE BREAKDOWN (1)
				DESCENT PROPULSION SYSTEM MASS
	PRPSYS1	4552.4552	kg	DESCENT TANK STRUCTURE
	TNKST1	641.24116	kg	DESCENT PROPELLANT TANKS
	TNKS1	2137.4705	kg	DESCENT SUPPORT MASS
	SPPT1	5310.5569	kg	DESCENT SUPPORT MASS DESCENT STRUCTURE MASS
	STRUCT1	3117.316	kg	DESCENT STRUCTORE MASS DESCENT STAGE MASS
	STAGE1	13228.38	kg	DESCENT GROWTH BUDGET
	GROWTH1	1972.6024	kg	DESCENT OROW TH BODDET DESCENT PRESSURANT TANK MASS
	PTNK1	533.74356	kg	DESCENT PRESSURANT TANK MASS DESCENT HELIUM MASS
	HEMASS1	142.76562	kg	DESCENT PRESSURIZATION SYSTEM MASS
	PSYS1	676.50919	kg	DESCENT PRESSORIZATION STSTEM MINO
				ASCENT STAGE BREAKDOWN (2)
	22221/00	0040 0050	ka	ASCENT PROPULTION SYSTEM MASS
	PRPSYS2	2848.2858	kg ka	ASCENT TANK STRUCTURE
	TNKST2	441.71606	kg kg	ASCENT PROPELLANT TANKS
	TNKS2	1472.3869	kg	ASCENT HELIUM MASS
	HEMASS2	447.28301		ASCENT PRESSURANT TANK MASS
	PTNK2	390.18286	kg	ASCENT PRESSURIZATION SYSTEM MASS
	PSYS2	837.46586 3080.8527	kg ka	ASCENT SUPPORT
	SPPT2		kg ka	ASCENT STRUCTURE MASS
	STRUCT2	1264.8527	kg ka	ASCENT STAGE MASS
	STAGE2	15190.249	kg	ASCENT GROWTH BUDGET
	GROWTH2	1185.8277	kg	ASCENT GROW IN BODGET
				DESCENT PROPELLANT STUFF
	RESID1	1344.7314	kg	DESCENT RESIDUALS
	PROP1	46169.111	kg	DESCENT TOTAL PROP
	BOIL1	208.70162	kg	DESCENT PROP BOILOFF
	DUILI	200.70102	*5	
				ASCENT PROPELLANT STUFF
	RESID2	428.46459	kg	ASCENT RESIDUALS
	PROP2	14710.618	kg	ASCENT TOTAL PROP
	BOIL2	415.22876	kg	ASCENT PROP BOILOFF
	DUIL2	713.22010	~ø	

APPENDIX B Trade #13 LOX/LH2, PRESS

			DESCENT TANKS
FU1	7147.0233	kg	DESCENT FUEL MASS
OX1	39649.612	kg	DESCENT OX MASS
FUVOL1	100.94666	m^3	DESCENT FUEL VOLUME
OXVOL1	34.749879	m^3	DESCENT OX VOLUME
OXTNK1	597.75393	kg	DESCENT OX TANK MASS
FUTNK1	342.44842	kg	DESCENT FUEL TANK MASS
FUTNKV1	26.498497	M^3	DESCENT FUEL TANK VOLUME
OXTNKV1	36.487373	M^3	DESCENT OX TANK VOLUME
LENFU1	5.5281117	m	DESCENT FUEL TANK LENGTH
ATOTFU1	46.891103	m^2	DESCENT FUEL TANK AREA/TANK
LENOX1	4.2369062	m	DESCENT OX TANK LENGTH
ATOTOX1	53.242534	m^2	DESCENT OX TANK AREA/TANK
MLI1	169.92291	kg	DESCENT MLI MASS
			ASCENT TANKS
FU2	2352.3295	kg	ASCENT FUEL MASS
FU2 OX2	2352.3295 12773.517	kg kg	
OX2 FUVOL2			ASCENT FUEL MASS
OX2	12773.517	kg	ASCENT FUEL MASS ASCENT OX MASS
OX2 FUVOL2	12773.517 33.224994	kg m^3	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME
OX2 FUVOL2 OXVOL2	12773.517 33.224994 11.195019	kg m^3 m^3	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2	12773.517 33.224994 11.195019 107.66943	kg m^3 m^3 kg kg m	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2	12773.517 33.224994 11.195019 107.66943 293.42354	kg m^3 m^3 kg kg	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2	12773.517 33.224994 11.195019 107.66943 293.42354 2.7272114	kg m^3 m^3 kg kg m	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2	12773.517 33.224994 11.195019 107.66943 293.42354 2.7272114 24.846583 1.9138865 12.025304	kg m^3 m^3 kg kg m m ²	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2	12773.517 33.224994 11.195019 107.66943 293.42354 2.7272114 24.846583 1.9138865	kg m^3 m^3 kg kg m m^2 m	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2	12773.517 33.224994 11.195019 107.66943 293.42354 2.7272114 24.846583 1.9138865 12.025304	kg m^3 m^3 kg kg m m^2 m m^2	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK
OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2	12773.517 33.224994 11.195019 107.66943 293.42354 2.7272114 24.846583 1.9138865 12.025304 269.10795	kg m^3 m^3 kg kg m m^2 m m^2 kg	ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS

1.5 STAGE IME CRYO TRADE #14

	MBURN1 MBURN2 BOILFU1 BOILOX1 BOILOX2 BOILOX2 LGEAR APRSFU1 APRSFU2 APRSOX1 APRSOX2	31080.344 10919.893 109.90093 75.427626 145.77281 100.80257 1175.475 141.36075 52.900866 184.70955 65.395385	kg kg kg kg kg kg kg	VARIABLES REQUIRING INITIAL GUESSES DESCENT USED PROPELLANT MASS ASCENT USED PROPELLANT MASS DESCENT FUEL BOILOFF DESCENT OX BOILOFF ASCENT FUEL BOILOFF ASCENT OX BOILOFF LANDING GEAR MASS AUTOGENOUS FU PRESSURE MASS AUTOGENOUS FU PRESSURE MASS
	TOTPROP VEHCL	43886.41 70448.173	kg kg	VEHICHLE STUFF VEHICLE TOTAL PROPELLANT TLI MASS
.2 5000 7426 9.81 200 .03	GROWTH% PAYLOAD CREWMOD G RETCARG RESERVE		kg kg m/s^2 kg	GLOBAL INPUTS GROWTH FRACTION DESCENT PAYLOAD MASS CREW MODULE MASS GRAVITY ASCENT CARGO PROPELLANT RESERVE FRACTION
150 600 270 425 154 105 1050 2750 480 6 70.8 1141 25 6 1.2 2 1.35 3.1E8 2710 .001143 400900 198340 21 91	FESYS1 ENGS1 RCSSYS1 PROT1 POWER1 AV1 FLUIDS1 DELV1 ISP1 MR1 FURHO1 OXRHO1 PPRES1 NFUTNK1 FURAD1 NOXTNK1 OXRAD1 METSIG1 METRHO1 TMIN1 FUVAP1 OXVAP1 TEMPFU1 TEMPOX1		kg kg kg kg kg kg m/s sec kg/m^3 kg/m^3 PSI m m kg/m^3 M J/kg J/kg DEG K DEG K	DESCENT TANK MINIMUM THICKNESS DESCENT FUEL LATENT HEAT OF VAP DESCENT OX LATENT HEAT OF VAP DESCENT FUEL TEMPERATURE
100 600 169	FESYS2 ENGS2 PROT2		kg kg kg	ASCENT INPUTS (2) ASCENT FEED SYSTEM MASS ASCENT ENGINE(S) MASS TOTAL ASCENT PROTECTION MASS

APPENDIX B Trade #14 STAGE 1/2 IME

1278	POWER2		kg	ASCENT POWER MASS
131	AV2		kg	ASCENT AVIONICS MASS
238	ECLSS		kg	ECLSS MASS
202	FLUIDS2		kg	ASCENT NON-PROPULSION FLUIDS MASS
2777	DELV2		m/sec	ASCENT DELTA V
	ISP2		sec	ASCENT ISP
480			300	ASCENT MIXTURE R ATIO
6	MR2		kg/m^3	ASCENT FUEL DENSITY
70.8	FURHO2			ASCENT OXIDIZER DENSITY
1141	OXRHO2		kg/m^3	ASCENT PROP TANK PRESSURE
25	PPRES2		PSI	ASCENT NUMBER FUEL TANKS
1	NFUTNK2			ASCENT NUMBER FUEL TAINS
1.8	FURAD2		m	ASCENT FUEL TANK RAD
1	NOXTNK2			ASCENT NUMBER OX TANKS
ī	OXRAD2		m	ASCENT OX TANK RAD
3.1E8	METSIG2			ASCENT TANK METAL SIGMA
2710	METRHO2		kg/m^3	ASCENT TANK METAL RHO
.001143	TMIN2		M	ASCENT TANK MINIMUM THICKNESS
400900	FUVAP2		J/kg	ASCENT FUEL LATENT HEAT OF VAP
	OXVAP2		J/kg	ASCENT OX LATENT HEAT OF VAP
198340			DEG K	ASCENT FUEL TEMPERATURE
21	TEMPFU2		DEG K	ASCENT OX TEMPERATURE
91	TEMPOX2			STAYTIME
49	STIME		Day	31AT IME
21176.7	HTRATEF			
14190.5	HTRATEO			
				DESCENT STACE DECANDONN (1)
				DESCENT STAGE BREAKDOWN (1)
	PRPSYS1	2125.8498	kg	DESCENT PROPULSION SYSTEM MASS
	TNKST1	300.65765	kg	DESCENT TANK STRUCTURE
	TNKS1	1002.1922	kg	DESCENT PROPELLANT TANKS
	SPPT1	3959.475	kg	DESCENT SUPPORT MASS
2100	STRUCT1	57571110	kg	DESCENT STRUCTURE MASS
2100	STAGE1	8552.3897	kg	DESCENT STAGE MASS
		1217.065	kg	DESCENT GROWTH BUDGET
•	GROWTH1	1217.005	kg	DESCENT PRESSURANT TANK MASS
0	PTNK1			DESCENT HELIUM MASS
0	HEMASS1		kg	DESCENT PRESSURIZATION SYSTEM MASS
	PSYS1	0	kg	DESCENT PRESSORIEATION OF OT EMPRINES
				ASCENT STAGE BREAKDOWN (2)
			•	ASCENT PROPULTION SYSTEM MASS
	PRPSYS2	1268.4775	kg	ASCENT FROPOLITION STSTEM MINOS
	TNKST2	131.18712	kg	ASCENTIANK SIKUCIUKE
	TNKS2	437.29039	kg	ASCENT PROPELLANT TANKS
0	HEMASS2		kg	ASCENT HELIUM MASS
Õ	PTNK2		kg	ASCENT PRESSURANT TANK MASS
Ū	PSYS2	0	kg	ASCENT PRESSURIZATION SYSTEM MASS
	SPPT2	3216	kg	ASCENT SUPPORT
1400	STRUCT2		kg	ASCENT STRUCTURE MASS
1400	STAGE2	13009.373	kg	ASCENT STAGE MASS
	GROWTH2	896.8955	kg	ASCENT GROWTH BUDGET
	GROWINZ	070.0733	~5	
				DESCENT PROPELLANT STUFF
		022 41022	ka	DESCENT RESIDUALS
	RESID1	932.41033	kg ka	DESCENT TOTAL PROP
	PROP1	32012.755	kg	DESCENT PROP BOILOFF
	BOIL1	185.32855	kg	DESCENT LVOL BOTTOLL
				ASCENT PROPELLANT STUFF
			_	
	RESID2	327.59679	kg	ASCENT RESIDUALS
	PROP2	11247.49	kg	ASCENT TOTAL PROP
	BOIL2	246.57538	kg	ASCENT PROP BOILOFF
			-	

FU1 OX1 FUVOL1 OXVOL1 OXTNK1 FUTNK1 FUTNKV1 OXTNKV1 LENFU1 ATOTFU1 LENOX1 ATOTOX1 ML11	4824.5123 27514.932 68.142829 24.114752 125.08181 101.15669 11.924995 12.660245 3.4360027 25.90685 3.111183 26.389988 145.08841	kg m^3 m^3 kg M^3 M^3 m m^2 m m^2 kg	DESCENT TANKS DESCENT FUEL MASS DESCENT OX MASS DESCENT FUEL VOLUME DESCENT OX VOLUME DESCENT OX TANK MASS DESCENT FUEL TANK MASS DESCENT FUEL TANK VOLUME DESCENT FUEL TANK VOLUME DESCENT FUEL TANK LENGTH DESCENT FUEL TANK AREA/TANK DESCENT OX TANK AREA/TANK DESCENT OX TANK AREA/TANK DESCENT MLI MASS
FU2 OX2 FUVOL2 OXVOL2 OXTNK2 FUTNK2 LENFU2 ATOTFU2 LENOX2 ATOTOX2 MLI2 FUTNKV2 OXTNKV2	1805.4579 9741.508 25.500818 8.5376933 109.43616 168.41418 3.8305619 43.322635 3.5201804 22.117946 159.44005 26.775859 8.9645779	kg m^33 m^3 kg kg m^2 m^2 kg M^3 M^3	ASCENT TANKS ASCENT FUEL MASS ASCENT OX MASS ASCENT FUEL VOLUME ASCENT OX VOLUME ASCENT OX TANK MASS ASCENT FUEL TANK MASS ASCENT FUEL TANK LENGTH ASCENT FUEL TANK AREA/TANK ASCENT OX TANK LENGTH ASCENT OX TANK AREA/TANK ASCENT MLI MASS ASCENT FUEL TANK VOLUME ASCENT OX TANK VOLUME

APPENDIX C

Launch Operability Index

Application of the Launch Operability Index (LOI) to the FLO Propulsion System Study

Rob Moreland NASA/JSC/EP4 July 27. 1992

BASED ON CHARTS:

Launch Operability Index Operationally Efficient Propulsion System Study

JIM ZIESE Rookwell International ROCKWELL Space Systems Division INTERNATIONAL JULY 15-16, 1992

LOI is Determined Using Computer Program

WHAT LOUS

• A NUMERICAL RATING OF A PROPULSION SYSTEMS OPERABILITY

• LOI = 0: WORST POSSIBLE SYSTEM - PROBABLY COULD NEVER BE LAUNCHED • LOI = 1.0: PERFECT SYSTEM - LAUNCHES ITSELF

- · BASED ON OEPSS CONCERN LIST
- OEPSS CONCERNS TRANSFORMED INTO "DESIGN FEATURES" FOR EVALUATION
- EACH FEATURE OF THE SYSTEM BEING ASSESSED IS COMPARED TO A LIST OF OPTIONS FOR THAT FEATURE WITH EACH OPTION ASSIGNED A NUMERICAL RATING
 - A DEFAULT RANKING IS PROVIDED FOR FOR IMMATURE SYSTEMS IN WHICH ONE OR MORE FEATURE IS UNDEFINED
 - PERMITS EVALUATION OF A PROPULSION SYSTEM AT ANY STAGE OF DEVELOPMENT
- WEIGHTING FACTORS ARE ASSIGNED FOR EACH DESIGN FEATURES BASED ON OPERATIONS COMPLEXITY AND POTENTIAL FOR LAUNCH DELAY
- PRODUCTS OF FEATURE RATINGS AND WEIGHTING FACTORS ARE COMBINED TO OBTAIN THE LOI NUMBER
- THE VERSION OF LOI USED FOR THE FLO TRADE STUDY IS CONSIDERED BETA, AND REPRESENTS A TEST CASE FOR THE CONCEPT

Example LOI Calculation

DESIGN FEATURE	1	2	3	4	5		•	•	•	•	•	16	17
WEIGHTING FACTOR	8	9	9	7	8							2	8
OPERABILITY RATING	5	6	3	7	9	-					•	6	6
WF X OR	40	54	27	49	72							63	42

 $LOI = \frac{CALCULATED \Sigma(WF X OR)}{\Sigma(WF X MAXIMUM OR)} = \frac{581}{1340} = 0.433$

Design Features

- 1. COMPARTMENT CONFIGURATION (8)
- 2. DEGREE OF CHECKOUT AUTOMATION (9)
- 3. NUMBER/TYPE OF PROPELLANTS (9)
- 4. RECOVERY METHOD (7)
- 5. AUXILIARY PROPULSION TYPE (8)
- 6. ORDNANCE SYSTEMS (7)
- 7. ACTUATOR SYSTEM TYPE (6)
- 8. HEAT SHIELD TYPE (6)
- 9. PURGE SYSTEM TYPE (5)

- 10. TVC SYSTEM TYPE (5)
- 11. FLUID GROUND INTERFACE TYPE (5)
- 12. TANK PRESSURIZATION SYSTEMS (4)
- 13. PRECONDITIONING REQTS (4)
- 14. ACCESSIBILITY (9)
- 15. POTENTIAL FOR LEAKAGE (8)
- 16. DEGREE OF HARDWARE INTEGRATION(7)
- 17. GROUND SUPPORT REQTS (7)
- 18. ENGINE TYPE (9)

(X) = Weighting Factor

Design Feature #1 - Compartment Configuration

OPERABIL RATING	
10	COMPLETELY OPEN - NO COMPARTMENTS OR TRAPS
9	COMPLETELY OPEN BEFORE FLIGHT - SINGLE SIMPLE COVER ADDED FOR LAUNCH
8	COMPLETELY OPEN BEFORE FLIGHT - MULTIPLE SIMPLE COVERS ADDED FOR LAUNCH
7	OPEN BUT SMALL TRAP AREA
6	OPEN BUT MULTIPLE OR LARGE TRAP AREAS
5	OPEN EXCEPT FEW SMALL CLOSED COMPARTMENTS
4	OPEN EXCEPT MANY OR LARGE CLOSED COMPARTMENTS
3*	COMPLETELY CLOSED COMPARTMENT - ACCESS THROUGH LARGE EASILY UTILIZED DOORS
2	COMPLETELY CLOSED COMPARTMENT - ACCESS THROUGH MULTIPLE SMALL HATCHES
1	COMPLETELY CLOSED COMPARTMENT - ACCESS THROUGH SINGLE SMALL HATCH

* DEFAULT FOR THIS FEATURE = 3

Design Feature #2 - Checkout Automation

OPERABILITY
RATING

FEATURE OPTION

- 10 NO USING SITE CHECKOUT REQUIRED
- 9 TOTALLY AUTOMATED SINGLE COMMAND REQUIRED FOR COMPLETE CHECKOUT
- 8.5 TOTALLY AUTOMATED EXCEPT MULTIPLE MANUAL COMMANDS REQUIRED FOR COMPLETE CHECKOUT
- 5 FUNCTIONAL CHECKS OF ALL ACTIVE COMPONENTS AUTOMATED MOST LEAK CHECKS AUTOMATED
- 4 FUNCTIONAL CHECKS OF ALL ACTIVE COMPONENTS AUTOMATED SOME LEAK CHECKS AUTOMATED
- 2 FUNCTIONAL CHECKS OF ALL ACTIVE COMPONENTS AUTOMATED LEAK CHECKS PERFORMED MANUALLY
- 1.5* FUNCTIONAL CHECKS OF SOME ACTIVE COMPONENTS AUTOMATED LEAK CHECKS PERFORMED MANUALLY
- 1 NO AUTOMATION ALL CHECKOUT PERFORMED MANUALLY

* DEFAULT FOR THIS FEATURE = 1.5

Design Feature #3 - Number/Type of Propellants

OPERABILITY RATING

FEATURE OPTION

10 SINGLE, AMBIENT TEMPERATURE, NON-TOXIC PROPELLANT

- 9 MULTIPLE, AMBIENT TEMPERATURE, NON-TOXIC PROPELLANTS
- 9 PREPACKAGED, SEALED PROPELLANTS
- 7 LO2 WITH HYDROCARBON FUEL
- 5 LH2
- 4 LH2, LO2
- 3.5 LO2 WITH HYDROCARBON FUEL, AND HYPERGOLIC BI-PROPELLANTS
- 3 LO2, LH2, AND HYDRAZINE MONO-PROPELLANTS
- 3 LO2, LH2, AND BIPROPELLANTS **
- 2.5* LO2, LH2, AND HYPERGOLIC BI-PROPELLANTS
- 2 LO2, LH2, HYPERGOLIC BI-PROPELLANTS, AND HYDROCARBONS
- 1 EXTREMELY HAZARDOUS/TOXIC PROPELLANTS (E.G.: FLUORINE, FLOX, PYROPHORICS, ETC.)

* DEFAULT FOR THIS FEATURE = 2.5 **This rating added to original LOI

Design Feature #4 - Recovery Method

OPERABILITY BATING	FEATURE OPTION
HATING	

- 10 EXPENDABLE NO RECOVERY
- 4 HORIZONTAL LAND (SOFT LANDING)
- 3.5 VERTICAL LAND (SOFT LANDING)
- 3 OCEAN RECOVERY WITH COMPLETE EXPOSURE PROTECTION
- 1 OCEAN RECOVERY WITH NO EXPOSURE PROTECTION

Design Feature #5 - Auxiliary Propulsion

OPERABILITY RATING

FEATURE OPTION

- 10 NO AUXILIARY PROPULSION
- 9 AUXILIARY PROPULSION PREPACKAGED & SEALED
- 8.5 SINGLE AUXILIARY PROPULSION SYSTEM USING MAIN ENGINE PROPELLANTS FROM SAME TANKS
- 8 MULTIPLE AUXILIARY PROPULSION SYSTEMS USING MAIN ENGINE PROPELLANTS FROM SAME TANKS
- 7 SINGLE AUXILIARY PROPULSION SYSTEM USING MAIN ENGINE TYPE PROPELLANTS LOADED OR CHARGED SEPARATELY FROM ME PROPELLANTS
- 6.5 MULTIPLE AUXILIARY PROPULSION SYSTEM USING MAIN ENGINE TYPE PROPELLANTS LOADED OR CHARGED SEPARATELY FROM ME PROPELLANTS
- 4 SINGLE AUXILIARY PROPULSION SYSTEM USING A TOXIC OR HAZARDOUS PROPELLANT
- 3.5 MULTIPLE AUXILIARY PROPULSION SYSTEMS USING A COMMON TOXIC OR HAZARDOUS PROPELLANT
- 2 MULTIPLE AUXILIARY PROPULSION SYSTEMS, EACH WITH DIFFERENT TYPE TOXIC PROPELLANTS
 - * DEFAULT FOR THIS FEATURE = 3.5

Design Feature #6 - Ordnance Systems

OPERABILITY RATING	FEATURE OPTION
-----------------------	----------------

- 10 NO ORDNANCE
- 9 PREINSTALLED BENIGN IGNITION (E.G.: LASER)
- 8 PREINSTALLED ELECTRICAL IGNITION
- 7.5 LAUNCH SITE INSTALLATION CLEARING OF PERSONNEL NOT REQD
- 6 SINGLE LAUNCH SITE INSTALLATION OPERATION CLEARING OF PERSONNEL REQD
- 4 MULTIPLE LAUNCH SITE INSTALLATION OPERATIONS CLEARING OF PERSONNEL REQD

Design Feature #7 - Valve Actuator System Type

OPERABILIT RATING	Y FEATURE OPTION
10	NO ACTUATORS
8	ALL EMA
7.5	ALL EHA
5	PNEUMATIC
4.5	EMA WITH PNEUMATIC BACK-UP
4.0	EMA WITH ACTIVE PNEUMATICS**
3	DISTRIBUTED HYDRAULICS
2*	DISTRIBUTED HYDRAULICS WITH PNEUMATIC BACK-UP

* DEFAULT FOR THIS FEATURE = 2 **This rating added to original LOI

Design Feature #8 - Heatshield Type

OPERABILITY	FEATURE OPTION
RATING	FEATURE OPTION

- 10 NO HEATSHIELD
- 9 SPRAY ON FOAM HEATSHIELD
- 7 GIMBAL PLANE HEATSHIELD + ENGINE BLANKETS
- 6 LOCAL SHIELDING OF CRITICAL COMPONENTS
- 3* AFT HEATSHIELD WITH DYNAMIC SEAL TO ACCOMMODATE ENGINE GIMBALLING

Design Feature #9 - Purge System Type

OPERABILITY RATING

FEATURE OPTION

10 NO PNEUMATIC SYSTEM

- 9 SINGLE GROUND ONLY PURGE. GROUND SUPPLIED & CONTROLLED.
- 8 MULTIPLE GROUND ONLY PURGES. GROUND SUPPLIED & CONTROLLED.
- 7 MULTIPLE GROUND ONLY PURGES. VEHICLE PROVIDES ON-OFF CONTROL.
- 6 MULTIPLE GROUND ONLY PURGES. VEHICLE PROVIDES REGULATION & DISTRIBUTION.
- 5 SIMPLE STORAGE & DISTRIBUTION PROVIDES FEW FLIGHT PURGES.
- 4 SIMPLE STORAGE, DISTRIBUTION, & REGULATION PROVIDES FEW FLIGHT PURGES.
- 3* STORAGE, DISTRIBUTION, & REGULATION FOR MULTIPLE FLIGHT PURGES <u>OR</u> SIMPLE VALVE PNEUMATIC CONTROL SYSTEM.
- 2 PNEUMATIC STORAGE, REGULATION & DISTRIBUTION. MULTIPLE GROUND & FLIGHT PURGES. SOME PNEUMATIC VALVE CONTROL
- 1 COMPLEX PNEUMATIC STORAGE, REGULATION & DISTRIBUTION. MULTIPLE GROUND & FLIGHT PURGES. EXTENSIVE PNEUMATIC VALVE CONTROL SYS.

* DEFAULT FOR THIS FEATURE = 3

Design Feature #10 - TVC System Type

OPERABILITY BATING

FEATURE OPTION

- 10 DIFFERENTIAL THROTTLING FIXED MAIN ENGINE NOZZLES
- 7.5 AUXILIARY THRUSTERS ALL ENGINE NOZZLES FIXED
- 6 FLUID INJECTION FIXED MAIN ENGINE NOZZLES
- 5.5 MAIN ENGINE NOZZLES FIXED AUXILIARY THRUSTERS GIMBALLED BY EMA'S
- 5* MAIN ENGINES GIMBALLED WITH EMA'S
- 3.5 MAIN ENGINE NOZZLES FIXED AUXILIARY THRUSTERS GIMBALLED BY HYDRAULICS -BATTERIES PROVIDE POWER
- 3 MAIN ENGINE NOZZLES GIMBALLED WITH HYDRAULIC ACTUATORS BATTERIES PROVIDE POWER
- 2 MAIN ENGINE NOZZLES GIMBALLED WITH HYDRAULIC ACTUATORS ENGINES PROVIDE POWER**
- 1.5 MAIN ENGINE NOZZLES FIXED AUXILIARY THRUSTERS GIMBALLED BY HYDRAULICS -HYDRAZINE APU PROVIDES POWER
- 1 MAIN ENGINE NOZZLES GIMBALLED WITH HYDRAULIC ACTUATORS HYDRAZINE APU PROVIDES POWER
 - * DEFAULT FOR THIS FEATURE = 5

**This rating added to original LOI

C-8

Design Feature #11 - Fluid Ground Interface Type

OPERAB BATIN	
10	FLUIDS (2) ONLY - EXPENDABLE, RISE OFF CONNECTIONS LOCATED ON BASE OF VEHICLE, ZERO EXTERNAL LEAKAGE DESIGN
10	FLUIDS (2) ONLY - EXPENDABLE, NO LEAKAGE, LOADED OFF-LINE**
9	MULTI-FLUID • EXPENDABLE, RISE OFF CONNECTIONS LOCATED ON BASE OF VEHICLE, ZERO EXTERNAL LEAKAGE DESIGN
6	MULTI-FLUID - EXPENDABLE, RISE OFF CONNECTIONS LOCATED ON BASE OF VEHICLE
4	MILTI-FLUID - PULL AWAY CONNECTIONS LOCATED AT VEHICLE BASE AND OTHER CONVENTIONAL VEHICLE / GROUND INTERFACE POINTS REQUIRING QD PROTECTION
2*	MULTI-FLUID - RETRACT AT COMMIT, CONNECTIONS LOCATED AT CONVENTIONAL VEHICLE / GROUND INTERFACE POINTS, REQUIRING TAIL SERVICE MAST INFRASTRUCTURE, TOWERS AND SWING ARM INFRASTRUCTURE, AND REUSARI F

- INFRASTRUCTURE, TOWERS AND SWING ARM INFRASTRUCTURE, AND REUSABLE, SOPHISTICATED QD CONFIGURATION REQUIRING EXTENSIVE MAINTENANCE / REFURBISHMENT
 - * DEFAULT FOR THIS FEATURE = 2
 - **This rating added to original LOI

Design Feature #12 - Tank Pressurization Systems

<u>OPERABILITY</u> RATING	FEATURE OPTION
10	TANKS SELF PRESSURIZED
8	AUTOGENOUS - FIXED ORIFICE CONTROL
7.5	AMBIENT HELIUM - FIXED ORIFICE CONTROL
7	AUTOGENOUS - OPEN LOOP CONTROL VALVE
6	AMBIENT HELIUM - CLOSED LOOP FLOW CONTROL VALVE
5.5*	AUTOGENOUS - CLOSED LOOP FLOW CONTROL VALVE
5	AUTOGENOUS AND AMBIENT HELIUM, CLOSED LOOP **
5	COLD HELIUM, HEAT EXCHANGER - FIXED ORIFICE CONTROL
4	COLD HELIUM, HEAT EXCHANGER - CLOSED LOOP FLOW CONTROL VALVE

* DEFAULT FOR THIS FEATURE = 5.5

**This rating added to original LOI

Design Feature #13 - Preconditioning Requirements

OPERABILITY FEATURE OPTION RATING

- 10 NO PRECONDITIONING REQUIRED
- 9 PRECONDITIONING THRU NATURAL CONVECTION
- 8.5 PRECONDITIONING THRU ENGINE EXTERNAL BLEED/LEAKAGE OVERBOARD
- 7 PRECONDITIONING BY PASSIVE FEED LINE BLEEDS TO TANKS
- 6 PRÉCONDITIONING BY PASSIVE FEED LINE BLEEDS TO GROUND
- 5 GROUND PUMPS REQUIRED FOR PRECONDITIONING
- 3* FLIGHT PUMPS REQUIRED FOR PRECONDITIONING

* DEFAULT FOR THIS FEATURE = 3

Design Feature #14 - Accessibility

OPERABILITY RATING FEATURE OPTION

- 10 EACH COMPONENT & SUBSYSTEM COMPLETELY ACCESSIBLE WITHOUT REMOVAL OF ANY OTHER PARTS OR USE OF ANY SUPPORT EQUIPMENT (STANDS, PLATFORMS, ETC.)
- 7 EACH COMPONENT & SUBSYSTEM COMPLETELY ACCESSIBLE WITHOUT REMOVAL OF ANY OTHER. SUPPORT EQUIPMENT REQUIRED FOR ACCESS TO SOME ITEMS.
- 5 ACCESS TO SOME COMPONENTS OR SUBSYSTEMS REQUIRES REMOVAL OF PANELS. EACH COMPONENT & SUBSYSTEM COMPLETELY ACCESSIBLE WITHOUT REMOVAL OF ANY OTHER. LIMITED SUPPORT EQUIPMENT REQUIRED.
- 3' ACCESS TO SOME COMPONENTS OR SUBSYSTEMS REQUIRES REMOVAL OF PANELS. ACCESS TO SOME LRU'S REQUIRES REMOVAL OF OTHER HARDWARE. SUPPORT EQUIPMENT REQUIRED FOR ACCESS TO SOME ITEMS.
- 2 ACCESS TO MOST COMPONENTS OR SUBSYSTEMS REQUIRES REMOVAL OF PANELS. ACCESS TO SOME LRU'S REQUIRES REMOVAL OF OTHER HARDWARE. SUPPORT EQUIPMENT REQD FOR ACCESS TO SOME ITEMS.
- 1 ACCESS TO ANY COMPONENT OR SUBSYSTEM REQUIRES REMOVAL OF STRUCTURAL PANELS. ACCESS TO MANY LRU'S REQUIRES REMOVAL OF OTHER HARDWARE. EXTENSIVE SUPPORT EQUIPMENT MUST BE USED.

Design Feature #15 - Leakage Potential

- OPERABILITY RATING FEATURE OPTION
 - 10 HERMETIC SEALING OF ALL FLUID SYSTEMS
 - 7 FEW STATIC SEALS ONLY USED IN FLUID SYSTEMS.
 - 5 STATIC SEALS ONLY USED IN FLUID SYSTEMS.
 - 3' EXTENSIVE USE OF STATIC SEALS IN ALL FLUID SYSTEMS. FEW DYNAMIC SEALS USED.
 - 1 EXTENSIVE USE OF STATIC & DYNAMIC SEALS IN ALL FLUID SYSTEMS
 - * DEFAULT FOR THIS FEATURE = 3

Design Feature #16 - Hardware Integration

OPERABILITY RATING FEATURE OPTION

- 10 FULLY INTEGRATED ESSENTIALLY A SINGLE SUBSYSTEM
- 7 PHYSICAL INTEGRATION OF MAJOR SUBSYSTEMS COMMON REQUIREMENTS WHERE POSSIBLE
- 3* LITTLE PHYSICAL INTEGRATION SOME COMMON SUBSYSTEM REQUIREMENTS
- 1 NO INTEGRATION EACH SUBSYSTEM HAS DIFFERING REQUIREMENTS

Design Feature #17 - Ground Support Requirements

<u>operabi</u> Rating	
10	NO GROUND SUPPORT EQUIPMENT REQUIRED
9	ONLY SIMPLE STANDARD TOOLS AND EQUIPMENT REQUIRED FOR GROUND SUPPORT
7	COMPLEX EQUIPMENT REQUIRED BUT ALL COMMON USAGE WITH LITTLE MAINTENANCE NEEDED
3,	SOME SPECIALLY DEVELOPMENT EQUIPMENT EQUIPMENT NEEDED WITH SIGNIFICANT MAINTENANCE REQUIRED
1	COMPLEX SPECIALLY DEVELOPED EQUIPMENT NEEDED WITH EXTENSIVE MAINTENANCE REQUIREMENTS

* DEFAULT FOR THIS FEATURE = 3

Design Feature #18 - Main Engine Type

OPERABILITY RATING

FEATURE OPTION

- 10 PRESSURE FED MONOPROP
- 9.5 PRESSURE FED MONOPROP, THROTTLE
- 9 PRESSURE FED BI-PROP
- 8.5 PRESSURE FED BI-PROP, THROTTLE
- 6 PUMP FED GAS GENERATOR BI-PROP
- 5 PUMP FED EXPANDER, LH2 AUTOGENOUS
- 4.5 PUMP FED EXPANDER, LH2 AUTOGENOUS, THROTTLE
- 4 PUMP FED EXPANDER, LH2&LO2 HEAT EXCHANGER
- 3.5* PUMP FED EXPANDER, LH2&LO2 HEAT EXCHANGER, THROTTLE
- 3 PUMP FED EXPANDER, LH2 AUTOGENOUS, LH2 RECIRC PUMP
- 1 STAGED COMBUSTION, LH2 & LO2 HEAT EXCHANGER
- 0.5 STAGED COMBUSTION, LH2 & LO2 HEAT EXCHANGER, THROTTLE

* DEFAULT FOR THIS FEATURE = 3.5

**This rating added to original LOI

Design	Weight	Trad	9 1	Trad	e 2	Trade	3	Trade	∋4	Trad	e 5	Trade	6	Trade	∋ 7	Trade	8	Trade	99	Trade	ə 10	Trade	Ð 11	Trad	ə 12	Trade	e 13	Trade	3 14
Feature	Factor	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET	LAN	RET
#1 Comp Config.	8	3	3	3	3	3	3	3	3	3	3	3	3	3	-	3	3	3	10	3	10	3	3	3	3	3	3	3	10
#2 Checkout Auto	9	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
#3 Propellants	9	3	3	3	3	3	1	3	3	3	7	3	3	3	7	3	4	3	4	3	4	1	1	4	4	3	4	4	4
#4 Recovery	7	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
#5 RCS Type	8	4	10	4	10	4	10	4	10	4	10	4	10	4	10	4	10	4	10	4	10	8.5	10	8.5	10	4	10	10	10
#6 Ordnance	7	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
#7 Valve Actuators	6	4	8	4	8	4	8	4	8	4	8	4	8	· · · ·	4	4	4	4	10	4	10	8	8	8	8	4	8	8	8
#8 Heat Shield	6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	6	10	6	10	10	10	10	10	10	10	10	10
#9 Purge	5	2	10	2	9	2	10	2	10	2	9	2	2	2	2	2	2	2	2	2	2	10	10	10	10	2	10	10	10
#10 TVC System	5	2	5	2	5	2	5	2	5	2	5	2	5	2	2	2	2	2	10	2	10		5	10	10	2	5	10	10
#11 Fluid/Gnd. Inter	5	2	10	2	4	2	10	2	10	2	4	2	10	2	2	2	2	2	10	2	10	10	10	2	2	2	2	2	10
#12 Tank Press	4	5	6	5	6	5	6	5	6	5	6	5	6		-	5	5	5	5	5	5	6	6	8	8	5	4	5.5	5.5
#13 Precondition	4	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
#14 Accessibility	9	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
#15 Leakage Potent.	8	3	10	3	3	3			10	3					_		3		3	_	3	_	10	3	3			3	3
#16 Hdwr Integrat	7	3	-	· · · · · · · · · · · · · · · · · · ·		_	3			3	<u> </u>		3	3			3		3		10		3	7	7	3	3	7	10
#17 GSE Regts	7	3	3	3	3	-				<u> </u>			3		_		3		10		_	the second se	3	3	3	-	-	-	
#18 Engine Type	9	4.5	9	4.5	9	4.5	9	4.5	9	4.5	9	4.5	6	4.5	4.5	4.5	3	4.5	10	4.5	10	9	9	3.5	3.5	4.5	9	4.5	10
																	_												
LOI Score		538	816	538	725	538	798	538	816	538	761	538	749	538	632	538	592	514	876	500	925	752	798	718	740	538	721	729	955
LOI Possible	1230																							<u> </u>					
LOI Number		.44	.66	.44	.59	.44	.65	.44	.66	.44	.62	.44	.61	.44	.51	.44	.48	.42	.71	.41	.75	.61	.65	.58	.60	.44	.59	.59	.78

- · · · ·

APPENDIX D

D1 Subcriteria Weights and Pairwise Comparison Matrices

The following section provides the reader with the weighted levels lower in the criteria hierarchy than those presented in Section 7.0. For example, the subcriteria "Supportability" consists of a measure for the Lander (descent) and Return (ascent) stage Launch Operability Index (LOI). Thus, the descent LOI is weighted against the ascent LOI, and for this study the ascent LOI weight equals the descent LOI weight. Similarly, the ratings for each LOI score are weighted against one another and these weights are also presented. The weights for all seven of the subcriteria are presented in this section.

- D1.1 Supportability
- D1.2 Operability
- D1.3 Vehicle Design Issues
- D1.4 Complexity
- D1.5 Vehicle Metrics
- D1.6 Hardware Readiness Level
- D1.7 Evolution

D2 Cumulative Weights

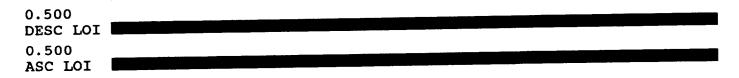
The different subcriteria can appear multiple times in the hierarchy, under Cost, Schedule, Performance and Risk. Since a subcriteria can have one weight under Cost and another weight under Schedule, these weights can be added and the cumulative weight of each subcriteria can be calculated. A detailed cumulative weights discussion is presented in Section 7.1.3 and the cumulative weights of the subcriteria are presented in Figure 7.9. This appendix presents the cumulative weights of the hierarchical level just below the subcriteria. The weights at this level add to a score of 1.

HAR _____AND BOAT AN ADDAR

APPENDIX Section D1.1 Supportability

Data with respect to: SUPPORT < GOAL

Node: 10000


VALUE

DESC LOI	0.50000
ASC LOI	0.50000

GOAL: Select Propulsion System best Meeting Program Resources and Req

ASC LOI --- Launch Operability Index for Return Stage DESC LOI --- Launch Operability Index for Lander Stage SUPPORT --- Measure of the Vehicle Launch Supportibility

PRIORITIES

JUDGMENTS WITH RESPECT TO DESC LOI < SUPPORT < GOAL

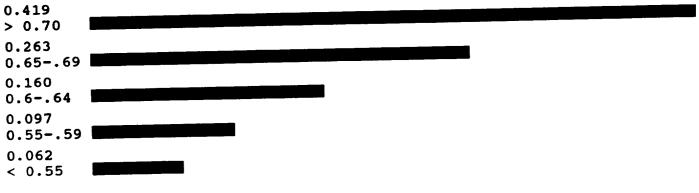
	<0.43	.4350	>0.50
<0.43		(2.0)	(5.0)
.4350			(3.0)
>0.50			

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

.43-.50 --- Value of Descent LOI <0.43 --- Value of Descent LOI >0.50 --- Value of Descent LOI DESC LOI --- Launch Operability Index for Lander Stage SUPPORT --- Measure of the Vehicle Launch Supportibility PRIORITIES

INCONSISTENCY RATIO = 0.004.


JUDGMENTS WITH RESPECT TO ASC LOI < SUPPORT < GOAL

> 0.70 0.6569 0.664 0.5559 < 0.55)	0.70	0.6569 2.0	0.664 3.0 2.0	0.5559 4.0 3.0 2.0	< 0.55 5.0 4.0 3.0 2.0
---	---	------	---------------	---------------------	-----------------------------	------------------------------------

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

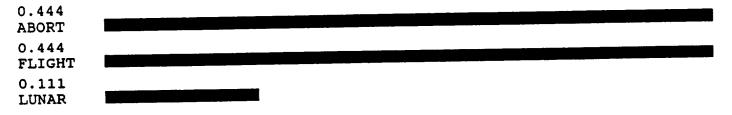
GOAL: Select Propulsion System best Meeting Program Resources and Req

0.664 0.6569 < 0.55 > 0.70	Value of Return LOI Value of Return LOI Value of Return LOI Value of Return LOI Value of Return LOI Launch Operability Index for Return Stage
ASC LOI SUPPORT	Launch Operability Index for Recurs Suggest Measure of the Vehicle Launch Supportibility PRIORITIES

INCONSISTENCY RATIO = 0.015.

APPENDIX Section D1.2 Operability

	Verbal jud	gm€	en	cs	01 01	DI PEI	RAI	BL		< G	OAL	۲. ۳		Γ.	-01	, c		•		Node: 20000
1	ABORT	ç		 В	7	6	5	4	3	2		2	3	4	5	6	7	8	9	FLIGHT
2	ABORT	9)	B	7	6	5		3	2	1	2	3	4	5	6	7	8	9	LUNAR
3	FLIGHT	9)	8	7	6	5		3	2	1	2	3	4	5	6	7	8	9	LUNAR


Verbal judgments of IMPORTANCE with respect to: OPERABLE < GOAL

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

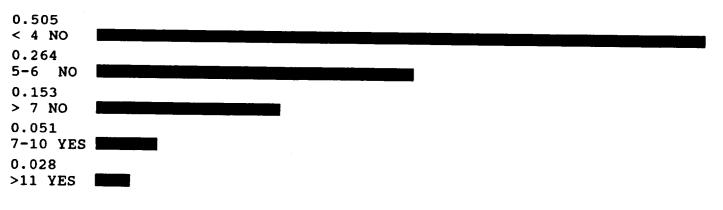
ABORT	 Abort Operability Measure
FLIGHT	 Flight Operability Measure
LUNAR	 Lunar Operability Measure
OPERABLE	 Measure of the Complexity of Operations

PRIORITIES

INCONSISTENCY RATIO = 0.000.

Verbal judgments of PREFERENCE with respect to: ABORT < OPERABLE < GOAL

Node: 21000


· · · · · · · · · · · · · · · · · · ·	·····		
1	< 4 NO	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	5-6 NO
2	< 4 NO	9 8 7 6 4 3 2 1 2 3 4 5 6 7 8 9	> 7 NO
3	< 4 NO	9 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9	7-10 YES
4	< 4 NO	8765432 1 23456789	>11 YES
5	5-6 NO	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	> 7 NO
6	5-6 NO	987 5432 1 23456789	7-10 YES
7	5-6 NO	9 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9	>11 YES
8	> 7 NO	9 8 7 6 4 3 2 1 2 3 4 5 6 7 8 9	7-10 YES
9	> 7 NO	9 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9	>11 YES
10	7-10 YES	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	>11 YES

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

5-6 NO --- # of Abort Ops without any Prechill 7-10 YES --- Number of Abort Ops with Prechill Required to anticipate aborts < 4 NO --- # of Abort Ops without any Prechill > 7 NO --- # of Abort Ops without any Prechill >11 YES --- Number of Abort Ops with Prechill Required to Anticipate Abort ABORT --- Abort Operability Measure OPERABLE --- Measure of the Complexity of Operations

PRIORITIES

INCONSISTENCY RATIO = 0.088.

JUDGMENTS WITH RESPECT TO FLIGHT < OPERABLE < GOAL

< 40 41 - 60 61 - 70 71 - 80 81-90	< 40	41 - 60 1.2	61 - 70 1.3 1.2	71 - 80 3.0 2.8 2.6	81-90 4.0 3.6 3.2 3.0	>91 9.0 8.0 7.0 6.0 5.0
>91						

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Reg

41 - 60	# of Flight Ops
61 - 70	# of Flight Ops
71 - 80	# of Flight Ops
81-90	# of Flight Ops
	# of Flight Ops
>91	# of Flight Ops
	- Flight Operability Measure
OPERABLE	Measure of the Complexity of Operations
	PRIORITIES

INCONSISTENCY RATIO = 0.031.

Verbal judgments of PREFERENCE with respect to: LUNAR < OPERABLE < GOAL

Node: 23000

1	< 8	9		B	7	6	5		3	2	1	2	3	4	5	6	7	8	9	8-24
2	< 8	ç) (3	7		5	4	3	2	1	2	3	4	5	6	7	8	9	GT 24
3	8-24	ç) {	3	7	6	5	4	3		1	2	3	4	5	6	7	8	9	GT 24

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

8-24	Number of Lunar Operations Required
< 8	Number of Lunar Operations Required
GT 24	Number of Lunar Operations Required
LUNAR	Lunar Operability Measure
OPERABLE	Measure of the Complexity of Operations

PRIORITIES

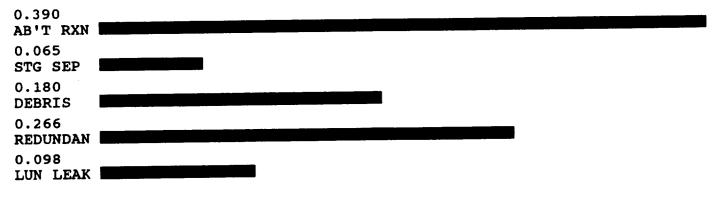
INCONSISTENCY RATIO = 0.009.

PAGE _____NTENTIONALY BLANK

APPENDIX Section D1.3

Vehicle Design Issues

PRECEDING PAGE BLANK NOT FILMED


JUDGMENTS WITH RESPECT TO DSN ISSU < GOAL

AB'T RXN STG SEP DEBRIS REDUNDAN	AB'T RXN	STG SEP 4.0	DEBRIS 3.0 (3.0)	REDUNDAN 2.0 (4.0) (2.0)	LUN LEAK 3.0 (2.0) 3.0 3.0
LUN LEAK					

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more IMPORTANT than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

AB'T RXN --- Abort Reaction Time:90% Thrust for Return Engines During Landing DEBRIS --- Exposure Level of Return Stage Engines to Surface Debris DSN ISSU --- Design Issues Affecting Success Which Will Require Design Effort LUN LEAK --- Leakage Potential on the Lunar Surface REDUNDAN --- Level of Redundancy: # faults during (landing,return,post-abort) STG SEP --- Stage Separation Characteristics PRIORITIES

INCONSISTENCY RATIO = 0.040.

Verbal judgments of PREFERENCE with respect to: AB'T RXN < DSN ISSU < GOAL

Node: 31000

1	LT .5 NP	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	.5-1.5NP
2	LT .5 NP	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	LT 1 P
3	LT .5 NP	9 8 7 5 4 3 2 1 2 3 4 5 6 7 8 9	1-1.5 P
4	LT .5 NP	9 8 7 6 4 3 2 1 2 3 4 5 6 7 8 9	> 1.5 NP
5	.5-1.5NP	9 8 7 6 5 4 3 📕 1 2 3 4 5 6 7 8 9	LT 1 P
6	.5-1.5NP	9 8 7 6 5 4 📕 2 1 2 3 4 5 6 7 8 9	1-1.5 P
7	.5-1.5NP	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	> 1.5 NP
8	LT 1 P	9 8 7 6 5 3 2 1 2 3 4 5 6 7 8 9	1-1.5 P
9	LT 1 P	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	> 1.5 NP
10	1-1.5 P	9 8 7 6 5 4 3 📕 1 2 3 4 5 6 7 8 9	> 1.5 NP

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

.5-1.5NP --- Abort Reaction Time, No pre-chill required

1-1.5 P --- Abort Reaction Time, Prechill Required

> 1.5 NP --- Abort Reaction Time with No Prechill

AB'T RXN --- Abort Reaction Time:90% Thrust for Return Engines During Landing DSN ISSU --- Design Issues Affecting Success Which Will Require Design Effort LT .5 NP --- Abort Reaction Time, No pre-chill required. LT 1 P --- Abort Reaction Time, Prechill Required

PRIORITIES

INCONSISTENCY RATIO = 0.050.

JUDGMENTS WITH RESPECT TO STG SEP < DSN ISSU < GOAL

FLAT PROTRUDE INTERCON	FLAT	PROTRUDE 2.0	INTERCON 8.0 3.0	NO SEP (2.0) (3.0) (8.0)
NO SEP				•

0.050

INTERCON

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Reg

DSN ISSU Design Issues Affecting Success Which Will Requ FLAT Flat Interface Between Stages INTERCON Return Stage Completely Surrounded by Lander St NO SEP No Separation Required PROTRUDE Return Engines Protude Into Lander Stage STG SEP Stage Separation Characteristics PRIORITIES	
0.311 FLAT	
0.153 PROTRUDE	

0.486 NO SEP

INCONSISTENCY RATIO = 0.016.

Data with respect to: DEBRIS < DSN ISSU < GOAL VALUE

PROTECT	1.00000
EXPOSED	0.00000

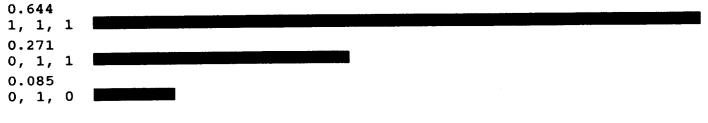
GOAL: Select Propulsion System best Meeting Program Resources and Req

DEBRIS --- Exposure Level of Return Stage Engines to Surface Debris DSN ISSU --- Design Issues Affecting Success Which Will Require Design Effort EXPOSED --- Return Stage Engines are Exposed to Debris During Lunar Landing PROTECT --- Return Stage Engines are Protected From Debris During Landing

PRIORITIES

1.000 PROTECT 0.000 EXPOSED

		REDUNDAN < DSN	ISSU < GOAL	Node: 34000
1	1, 1, 1	987654	2 1 2 3 4 5 6 7 8 9	0, 1, 1
2	1, 1, 1	987 📕 543	2 1 23456789	0, 1, 0
3	0, 1, 1	987653	2 1 2 3 4 5 6 7 8 9	0, 1, 0


Verbal judgments of PREFERENCE with respect to:

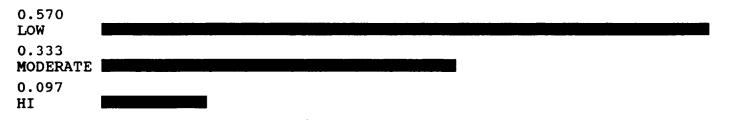
1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

0, 1, 0	Number of Faults for (landing, return, post-abort)
0. 1. 1	Number of Faults for (landing, return, post-abort)
1, 1, 1	Number of Faults for (landing, return, post-abort)
DSN ISSU	Design Issues Affecting Success Which Will Require Design Effort
REDUNDAN	Level of Redundancy: # faults during (landing, return, post-abort)

PRIORITIES

INCONSISTENCY RATIO = 0.051.


JUI	OGMENTS	5	WITH	RESI	PEC	CT TO
LUN	LEAK <	<	DSN	ISSU	<	GOAL

	LOW	MODERATE	HI
LOW		2.0	5.0
MODERATE			4.0
HI			

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

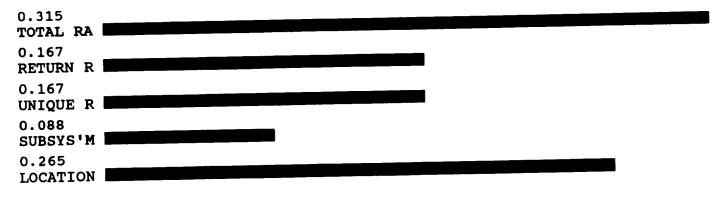
DSN ISSU --- Design Issues Affecting Success Which Will Require Design Effort HI --- Hi Leakage Potential LOW --- Low Leakage Potential LUN LEAK --- Leakage Potential on the Lunar Surface MODERATE --- Moderate Leakage Potential PRIORITIES

INCONSISTENCY RATIO = 0.023.

PAGE_____ INTENTIONALLY BLANK

APPENDIX Section D1.4 Complexity

PRECEIVING PAGE BLANK NOT FILMED


JUDGMENTS WITH RESPECT TO COMPLEX < GOAL

TOTAL RA RETURN R UNIQUE R SUBSYS'M LOCATION		RETURN R 1.5	UNIQUE R 1.5 1.0	SUBSYS'M 3.0 2.0 2.0	LOCATION 2.0 (2.0) (2.0) (3.0)
--	--	-----------------	------------------------	-------------------------------	--

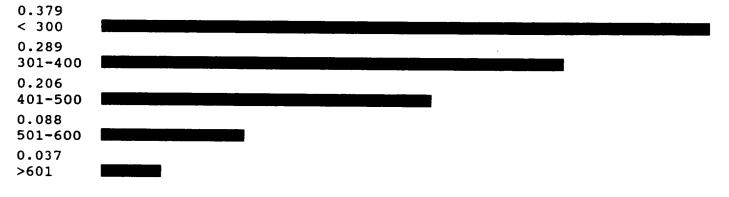
Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more IMPORTANT than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

COMPLEX Measure of the Complexity	
Teasmin - Number of Instrumentation Locations	nents
RETURN R Complexity Rating for Number of Return Compo	mento
SUBSYS'M Number of Subsystems	onts
TOTAL RA Complexity Rating for Total Number of Compon	nonts
UNIQUE R Complexity Rating for Number of Unique compe	ments
PRIORITIES	

INCONSISTENCY RATIO = 0.024.

JUDGMENTS WITH RESPECT TO TOTAL RA < COMPLEX < GOAL


	< 300	301-400	401-500	501-600	>601
< 300		1.5	2.0	4.0	9.0
301-400			1.5	3.5	8.0
401-500				3.0	5.0
501-600				-	3.0
>601					

.

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

301-400	 Rating for Total Number of Compo	nents
401-500	 Rating for Total Number of Compo	nents
501-600	 Rating for Total Number of Compo	nents
< 300	 Rating for Total Number of Compo	nents
>601	 Rating for Total Number of Compo	ntents
COMPLEX	 Measure of the Complexity	
TOTAL RA	 Complexity Rating for Total Numb	er of Components
	PRIORITIES	-

INCONSISTENCY RATIO = 0.008.

Verbal judgments of PREFERENCE with respect to: RETURN R < COMPLEX < GOAL

Node: 42000


		RE	ΤU	RI	R		C	011												
1	<95	9	8	7	6	5	4	3		1	2	3	4	5	6	7	8	9		95-120
2	<95	9	8	7	6	5		3	2	1	2	3	4	5	6	7	8	9		120-200
3	<95	9	8	7		5	4	3	2	1	2	3	4	5	6	7	8	9)	200-300
4	<95				6					1	2	3	4	5	6	7	8	9)	300-350
	<95				6					1	2	3	4	5	6	7	8	9)	350-400
5	95-120				6					1	2	3	4	5	6	7	8	5	•	120-200
6					6					1	2	3	4	5	6	7	8		 7	200-300
7	95-120			_	6					1	2	3	4	5	6	7	8			300-350
8	95-120	9 		_		_				$\left \right $	 2				6					350-400
9	95-120				6					1										200-300
10	120-200	9	8	7	6	5	4		2	1		3			6			-		· · · · · · · · · · · · · · · · · · ·
11	120-200	9	8	7	6		4	3	2	1	2	3	4	5	6	7	<u>۶</u>	3	9	300-350
12	120-200	9	8		6	5	4	3	2	1	2	3	4	5	6	7	' E	3	9	350-400
13	200-300	9	8	7	6	5	4		2	1	2	3	4	5	6	5 7	7 8	8	9	300-350
14	200-300	9	8	3 7		5	4	3	2	1	2	3	4	5	5 6	5 7	7 8	В	9	350-400
15	300-350	9		3 7	6	5	4	3		1	2	2 3	4	1 5	5 6	5 7	7	8	9	350-400
1 10											<u> </u>									

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

200-300 300-350	 Complexity Complexity Complexity Complexity Complexity Complexity	Rating Rating Rating Rating Rating	for for for for for	Number Number Number Number Number	of of of	Return Return Return	Components Components Components
COMPLEX RETURN R	 Measure of Complexity	the Con Rating	for	Number	of	Return	Components

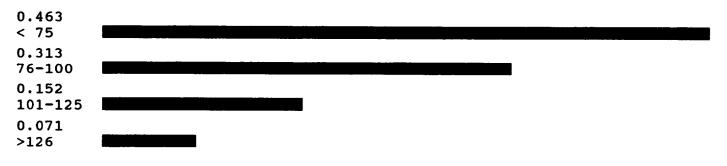
PRIORITIES

0.025 350-400

INCONSISTENCY RATIO = 0.054.

		UNIQUE R < COMPLEX < GOAL	NOGE: 43000
1	< 75	9 8 7 6 5 4 3 📕 1 2 3 4 5 6 7 8 9	76-100
2	< 75	9 8 7 6 5 4 🛛 2 1 2 3 4 5 6 7 8 9	101-125
3	< 75	9 8 7 6 4 3 2 1 2 3 4 5 6 7 8 9	>126
4	76-100	9 8 7 6 5 4 📕 2 1 2 3 4 5 6 7 8 9	101-125
5	76-100	98765 32 1 23456789	>126
6	101-125	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	>126

Verbal judgments of PREFERENCE with respect to: UNIQUE R < COMPLEX < GOAL


Node: 43000

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

101-125	 Rating	for	Number	of	Unique	Comp	onents	
76-100	 Rating	for	Number	of	Unique	Comp	onents	
< 75	 Rating	for	Number	of	Unique	Comp	onents	
>126	 Rating	for	Number	of	unique	Comp	onents	
COMPLEX	 Measure	e of	the Con	nple	exity	-		
UNIQUE R	 Complex	city	Rating	foi	Number	of :	Unique	Components

PRIORITIES

INCONSISTENCY RATIO = 0.040.

Verbal judgments of PREFERENCE with respect to: SUBSYS'M < COMPLEX < GOAL

Node: 44000

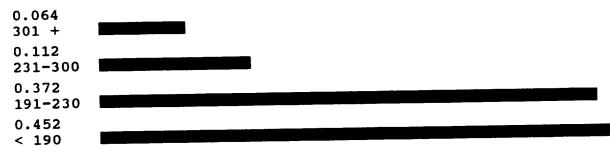
1	>	14	9	8	7	6	5	4	3	2	1	2		4	5	6	7	8	9	10 - 14
2	>	14	9	8	7	6	5	4	3	2	1	2	3	4		6	7	8	9	< 10
3	10 -	14	9	8	7	6	5	4	3	2	1	2		4	5	6	7	8	9	< 10

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

10 - 14	 Number of Subsystems
< 10	 Number of Subsystems
> 14	 Number of Subsystems
COMPLEX	 Measure of the Complexity
SUBSYS'M	 Number of Subsystems

PRIORITIES


JUDGMENTS WITH RESPECT TO LOCATION < COMPLEX < GOAL

301 + 231	-300 191-230 < 190
301 + (3.	0) (5.0) (5.0)
231-300	(5.0) (5.0)
191-230	(1.5)
< 190	

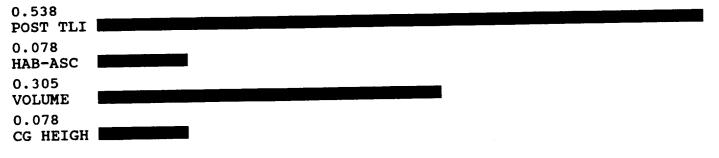
Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

191-230	 Number of	f Instrumentation	Locations
231-300	 Number of	f Instrumentation	Locations
301 +	 Number of	f Instrumentation	Locations
< 190	 Number o	f Instrumentation	Locations
COMPLEX	 Measure	of the Complexity	
LOCATION	 Number o	f Instrumentation	Locations
Doguition		PRIO	RITIES

INCONSISTENCY RATIO = 0.066.

APPENDIX Section D1.5


Vehicle Metrics

JUDGMENTS WITH RESPECT TO V-METRIC < GOAL

POST TLI HAB-ASC VOLUME CG HEIGH	POST TLI	HAB-ASC 5.0	VOLUME 3.0 (5.0)	CG HEIGH 5.0 1.0 5.0
CC HEIGH				

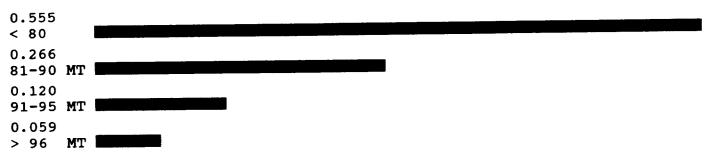
Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more IMPORTANT than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

INCONSISTENCY RATIO = 0.058.

	J	POST	TLI	<	V-METR	IC	< GOAL				Node:	51000
1	< 80	98	76	5	4 2	1	234	56	578	9	81-90	MT
2	< 80	98	76		4 3 2	1	234	56	578	9	91-95	MT
3	<				<u></u>	 					> 96	MT
4	81-90 MT	98	76	5	4 2	1	234	56	578	9	91-95	MT
5	81-90 MT	98	76		4 3 2	1	234	5 6	578	9	> 96	MT
6	91-95 MT	98	76	5	4 2	1	234	56	578	9	> 96	MT

Verbal judgments of PREFERENCE with respect to:


- E1000

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

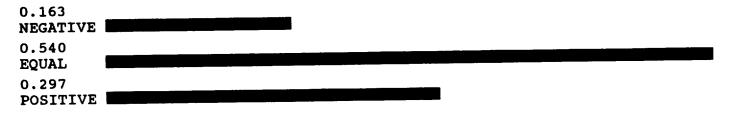
GOAL: Select Propulsion System best Meeting Program Resources and Req

81-90 MT --- Post TLI Mass 91-95 MT --- Post TLI Mass --- Post TLI Mass < 80 > 96 MT --- Post TLI Mass POST TLI --- Post TLI Mass of Lander/Return Vehicle V-METRIC --- Vehicle Metric Characterstics

PRIORITIES

	Node: 52000		
1	NEGATIVE	9 8 7 6 5 4 3 2 1 2 4 5 6 7 8 9	EQUAL
2	NEGATIVE	9 8 7 6 5 4 3 2 1 📱 3 4 5 6 7 8 9	POSITIVE
3	EQUAL	9 8 7 6 5 4 3 📕 1 2 3 4 5 6 7 8 9	POSITIVE

Verbal judgments of PREFERENCE with respect to: HAB-ASC < V-METRIC < GOAL


Node: 52000

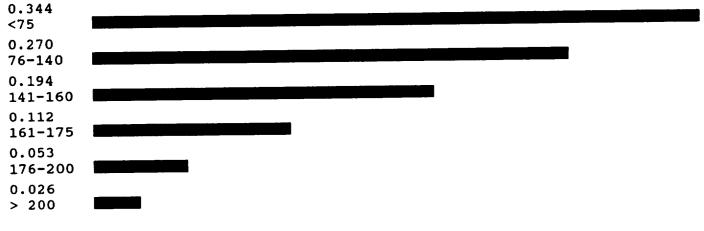
1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

EQUAL --- The Habitat Vehicle Mass is EQUAL to the Crew Vehicle HAB-ASC --- Difference in Mass Between Habitat (Cargo) and Crew Mission NEGATIVE --- The Habitat Vehicle Mass is LESS Than the Crew Vehicle POSITIVE --- The Habitat Vehicle Mass is MORE than the Crew Vehicle V-METRIC --- Vehicle Metric Characterstics

PRIORITIES

INCONSISTENCY RATIO = 0.009.


JUDGMENTS WITH RESPECT TO VOLUME < V-METRIC < GOAL

	<75	76-140	141-160	161-175	176-200	> 200
<75		1.5	2.5	3.0	6.0	9.0
76-140			2.0	2.5	5.0	9.0
141-160				3.0	4.0	7.0
					3.0	5.0
161-175					510	3.0
176-200						5.0
> 200						

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

141-160	 Volume of Propellant and Pressurant
161-175	 Volume of Pressurant
176-200	 Volume of Propellant and Pressurant
76-140	 Volume of Propellant and Pressurant
<75	 Volume of Propellant and Pressurant
> 200	 Volume of Propellant and Pressurant
V-METRIC	 Vehicle Metric Characterstics
VOLUME	 Volume of the Crew Vehicle Propellant and Pressurant
1020112	PRIORITIES

JUDGMENTS WITH RESPECT TO CG HEIGH < V-METRIC < GOAL

	< 5	5 - 6.5	6.5 - 8	> 8
< 5		2.0	2.5	4.0
5 - 6.5			1.5	3.0
-			-	2.0
6.5 - 8				
> 8				

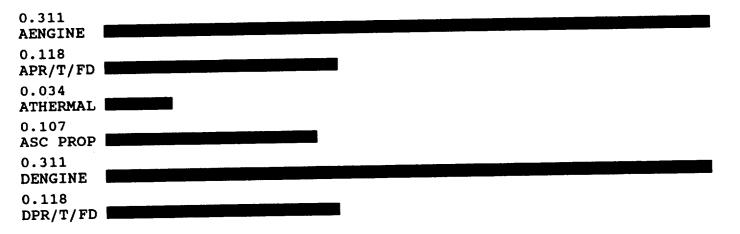
Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

5 - 6.5 --- CG Height at Lunar Landing 6.5 - 8 --- CG Height at Lunar Landing < 5 --- Cg Height at Lunar Landing > 8 --- CG Height at Lunar Landing CG HEIGH --- Center of Gravity Height To Lunar Surface Upon Lunar Landing V-METRIC --- Vehicle Metric Characterstics PRIORITIES

INCONSISTENCY RATIO = 0.006.

APPENDIX Section D1.6 Hardware Readiness Level


JUDGMENTS WITH RESPECT TO HARDWRE < GOAL

AENGINE APR/T/FD AENGINE 3.0 APR/T/FD ATHERMAL ASC PROP DENGINE DPR/T/FD	ATHERMAL 7.0 5.0	ASC PROP 3.0 1.0 (3.0)	DENGINE 1.0 (3.0) (7.0) (3.0)	DPR/T/FD 3.0 1.0 (5.0) 1.0 3.0
--	------------------------	----------------------------------	--	--

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more IMPORTANT than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

AENGINE --- Readiness of Ascent (return) Engines APR/T/FD --- Readiness of Ascent (return) Pressurization, Tank and Feed System ASC PROP --- Readiness of Propellant Manufacturing and Handling for Ascent ATHERMAL --- Readiness of Ascent (return) Propellant Thermal Controls DENGINE --- Readiness of Descent Engines DPR/T/FD --- Hardware Readiness of Descent Pressurization/Tank/Feed Systems HARDWRE --- Measure of the Hardware Readiness: Function of TRL and Difficulty PRIORITIES

INCONSISTENCY RATIO = 0.013.

JUDGMENTS WITH RESPECT TO AENGINE < HARDWRE < GOAL

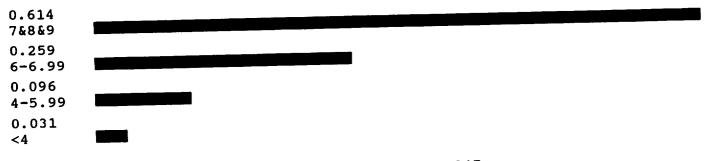
	7&8&9	6-6.99	4-5.99	<4
7&8&9		5.0	7.0	9.0
6-6.99			6.0	8.0
4-5.99				7.0
<4				

0.031 <4

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

4-5.99 6-6.99 7&8&9 <4 AENGINE HARDWRE	HR Level HR Level HR Level HR Level Readiness of Ascent (return) Engines Readiness of the Hardware Readiness: Function of TRL and Difficulty PRIORITIES
0.614 7&8&9	
0.259 6-6.99	
0.096 4-5.99	

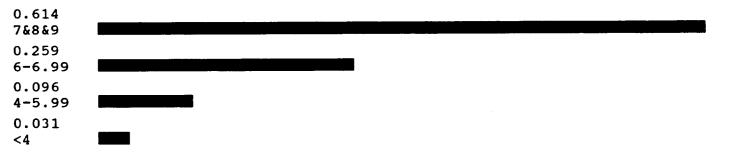

JUDGMENTS WITH RESPECT TO APR/T/FD < HARDWRE < GOAL

	7&8&9	6-6.99	4-5.99	<4
21250	7000	5.0	7.0	9.0
7&8&9		5.0	6.0	8.0
6-6.99				7.0
4-5.99				
<4				

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

4-5.99	 HR Level
6-6.99	 HR Level
	HR Level
<4	 HR Level Tank and Feed System
APR/T/FD	 HR Level Readiness of Ascent (return) Pressurization, Tank and Feed System Readiness of TRL and Difficulty
HARDWRE	 Measure of the Hardware Readiness. Tunceron of the
	PRIORITIES

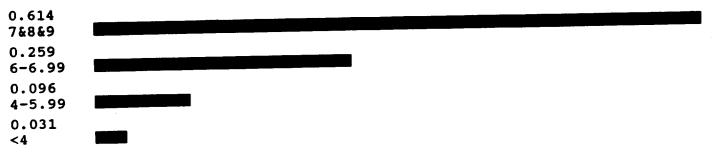

JUDGMENTS WITH RESPECT TO ATHERMAL < HARDWRE < GOAL

	7&8&9	6-6.99	4-5.99	<4
7&8&9		5.0	7.0	9.0
6-6.99			6.0	8.0
4-5.99				7.0
<4				

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

4-5.99 HR Level	
6-6.99 HR Level	
7&8&9 HR Level	
<4 HR Level	
ATHERMAL Readiness of Ascent (return) Propellant Thermal Controls	
HARDWRE Measure of the Hardware Readiness: Function of TRL and Difficu	lty
PRIORITIES	

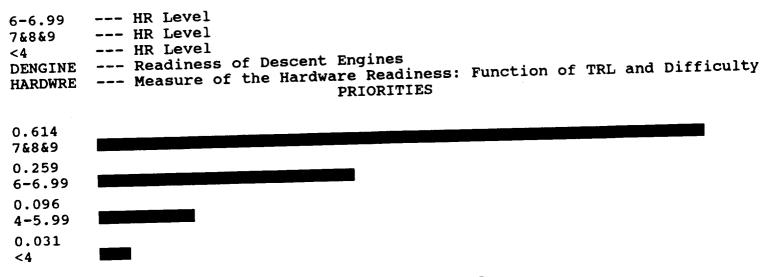

JUDGMENTS WITH RESPECT TO ASC PROP < HARDWRE < GOAL

	7&8&9	6-6.99	4-5.99	<4
7&8&9	700003	5.0	7.0	9.0
		510	6.0	8.0
6-6.99				7.0
4-5.99				,
<4				

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

4-5.99	 HR Level
6-6.99	 HR Level
7&8&9	 HR Level
<4	 HR Level
ASC PROP	 Readiness of Propellant Manufacturing and Handling for Ascent Readiness of Propellant Manufacturing and Handling for Ascent
HARDWRE	 Measure of the Hardware Readiness: Function of The and December
	PRIORITIES



JUDGMENTS WITH RESPECT TO DENGINE < HARDWRE < GOAL

	7&8&9	6-6.99	4-5.99	<4
7&8&9		5.0	7.0	9.0
6-6.99			6.0	8.0
4-5.99				7.0
<4				

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Reg 4-5.99 --- HR Level

JUDGMENTS WITH RESPECT TO DPR/T/FD < HARDWRE < GOAL

	7&8&9	6-6.99	4-5.99	<4
7&8&9		5.0	7.0	9.0
6-6.99			6.0	8.0
4-5.99				7.0
<4				

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

4-5.99 --- HR Level 6-6.99 --- HR Level 7&8&9 --- HR Level <4 --- HR Level DPR/T/FD --- Hardware Readiness of Descent Pressurization/Tank/Feed Systems HARDWRE --- Measure of the Hardware Readiness: Function of TRL and Difficulty PRIORITIES

PAGE INTENTIONALLY BLADM

APPENDIX Section D1.7 Evolution

D-45

PRECEENING PALE BLANK NOT FILMED

0-4

	Node. 70000		
1	STAY TIM	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	PAYLOAD
2	STAY TIM	98 65432 1 23456789	INSITU
3	STAY TIM	98 65432 1 23456789	BOILOFF
4	STAY TIM	9 8 7 6 5 4 🛛 2 1 2 3 4 5 6 7 8 9	MARS
5	STAY TIM	9 8 7 6 5 4 2 1 2 3 4 5 6 7 8 9	LOG VOL
6	PAYLOAD	9 8 7 5 4 3 2 1 2 3 4 5 6 7 8 9	INSITU
7	PAYLOAD	9 8 7 5 4 3 2 1 2 3 4 5 6 7 8 9	BOILOFF
8	PAYLOAD	9 8 7 6 5 3 2 1 2 3 4 5 6 7 8 9	MARS
9	PAYLOAD	9 8 7 6 5 4 3 2 🔳 2 3 4 5 6 7 8 9	LOG VOL
10	INSITU	9 8 7 6 5 4 3 2 📕 2 3 4 5 6 7 8 9	BOILOFF
11	INSITU	9 8 7 6 5 4 3 2 1 2 4 5 6 7 8 9	MARS
12	INSITU	9 8 7 6 5 4 3 2 1 2 3 5 6 7 8 9	LOG VOL
13	BOILOFF	9 8 7 6 5 4 3 2 1 2 3 5 6 7 8 9	MARS
14	BOILOFF	9 8 7 6 5 4 3 2 1 2 3 5 6 7 8 9	LOG VOL
15	MARS	9 8 7 6 5 4 3 2 1 3 4 5 6 7 8 9	LOG VOL

Verbal judgments of IMPORTANCE with respect to: EVOLVE < GOAL

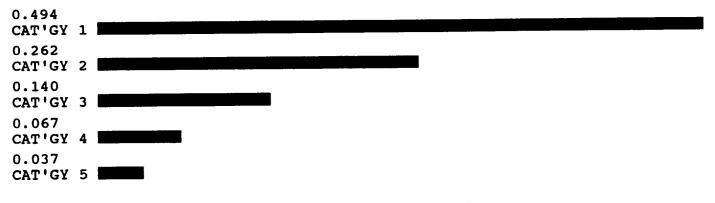
Node: 70000

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

BOILOFF --- Evolution Towards Using Propellant for RCS, Power, Consumables,.. EVOLVE --- Measure of the SEI Evolvability of each Vehicle INSITU --- Insitu Resoure Utilization is the Evolution Towards Lunar Prop. LOG VOL --- Evolution Towards Increased Logistics Volume MARS --- Mars Evolution for Mars ISRU or Aeroshell Packaging PAYLOAD --- Evolution Potential for Extra Payload to 96 mt Post-TLI Limit STAY TIM --- Evolution Potential for Longer Lunar Stay Times

PRIORITIES


JUDGMENTS WITH RESPECT TO STAY TIM < EVOLVE < GOAL

	CAT'GY 1	CAT'GY 2	CAT'GY 3	CAT'GY 4	CAT'GY 5
CAT'GY 1		3.0	5.0	6.0	7.0
CAT'GY 2			3.0	5.0	6.0
CAT'GY 3				3.0	6.0
CAT'GY 4					3.0
CAT'GY 5					

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

CAT'GY 1 Category 1: See Evolution Definitions
CAT'GY 2 Category Two: See Evolution Definitions
CAT'GY 3 Category 3: See Evolution Definitions
CAT'GY 4 Category 4: See Evolution Definitions
CAT'GY 5 Ccategory 5: See Evolution Definitions
EVOLVE Measure of the SEI Evolvability of each Vehicle
STAY TIM Evolution Potential for Longer Lunar Stay Times
PRIORITIES

Verbal judgments of PREFERENCE with respect to: PAYLOAD < EVOLVE < GOAL

Node: 72000

1	< 0.5	987	654	4 3 2	1 3456789 0.5-1.0
2	< 0.5	987	654	4 3 2	1 2 4 5 6 7 8 9 1 - 1.5
3	< 0.5	987	65	4 3 2	1 2 3 4 6 7 8 9 1.5-2.5
4	< 0.5	987	65	432	1 2 3 4 5 7 8 9 > 2.5
5	0.5-1.0	987	65	432	1 2 4 5 6 7 8 9 1 - 1.5
6	0.5-1.0	987	65	4 3 2	1 23 56789 1.5-2.5
7	0.5-1.0	987	65	432	1 2 3 4 5 6 8 9 > 2.5
8	1 - 1.5	987	65	4 3 2	1 2 4 5 6 7 8 9 1.5-2.5
9	1 - 1.5	987	65	4 3 2	1 23 56789 > 2.5
10	1.5-2.5	987	65	4 3 2	1 2 3 5 6 7 8 9 > 2.5
	l				

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

PRIORITIES

INCONSISTENCY RATIO = 0.060.

Data with respect to: INSITU < EVOLVE < GOAL VALUE

Node: 73000

YES	1.00000
NO	0.00000

GOAL: Select Propulsion System best Meeting Program Resources and Req

EVOLVE	Measure of the SEI Evolvability of each Vehicle
INSITU	Insitu Resoure Utilization is the Evolution Towards Lunar Prop.
NO	No, the Propellant Type is Not Compatible With Lunar ISRU
YES	Yes, the Propellant Type is Compatible with Lunar ISRU

PRIORITIES

1.000 YES	
0.000 NO	

Data with respect to: BOILOFF < EVOLVE < GOAL VALUE

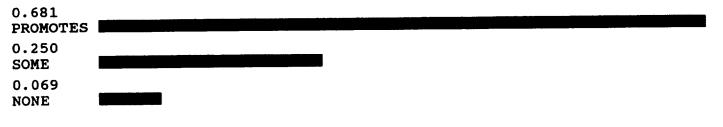
YES-B	1.00000
NO-B	0.00000

GOAL: Select Propulsion System best Meeting Program Resources and Req

BOILOFF --- Evolution Towards Using Propellant for RCS, Power, Consumables,.. EVOLVE --- Measure of the SEI Evolvability of each Vehicle NO-B --- No,Propellant Type Will Not Evolve Towards Boiloff Utilization YES-B --- Yes,the Propellant Type is Can Evolve Twoards Boiloff Utilization

PRIORITIES

1.000 YES-B	
0.000 NO-B	


JUDGMENTS WITH RESPECT TO MARS < EVOLVE < GOAL

	PROMOTES	SOME	NONE
PROMOTES		3.0	9.0
SOME			4.0
NONE			

Matrix entry indicates that ROW element is 1 EQUALLY 3 MODERATELY 5 STRONGLY 7 VERY STRONGLY 9 EXTREMELY more PREFERABLE than COLUMN element unless enclosed in parenthesis.

GOAL: Select Propulsion System best Meeting Program Resources and Req

EVOLVE	Measure of the SEI Evolvability of each Vehicle
MARS	Mars Evolution for Mars ISRU or Aeroshell Packaging
	No Significant Mars Evolution Potential
PROMOTES	Promotes Mars Evolution
SOME	Only Some Mars Evolution Applicability
	PRIORITIES

INCONSISTENCY RATIO = 0.009.

Verbal	judgments of	PREFERENCE	with	respect	to:
	LOG VOL	< EVOLVE <	GOAL	-	

Node: 76000

1	<20 M^3	98765432	1 23 56789	20 - 35
2	<20 M^3	98765432	1 2 3 4 5 6 7 9	>35 M^3
3	20 - 35	98765432	1 2 3 4 6 7 8 9	>35 M^3

1=EQUAL 3=MODERATE 5=STRONG 7=VERY STRONG 9=EXTREME

GOAL: Select Propulsion System best Meeting Program Resources and Req

20 - 35	Logistics Volume Available Within the Shroud
<20 M^3	Logistics Volume Available within shroud
>35 M^3	Logistics Volume Available Under the Shroud
EVOLVE	Measure of the SEI Evolvability of each Vehicle
LOG VOL	Evolution Towards Increased Logistics Volume

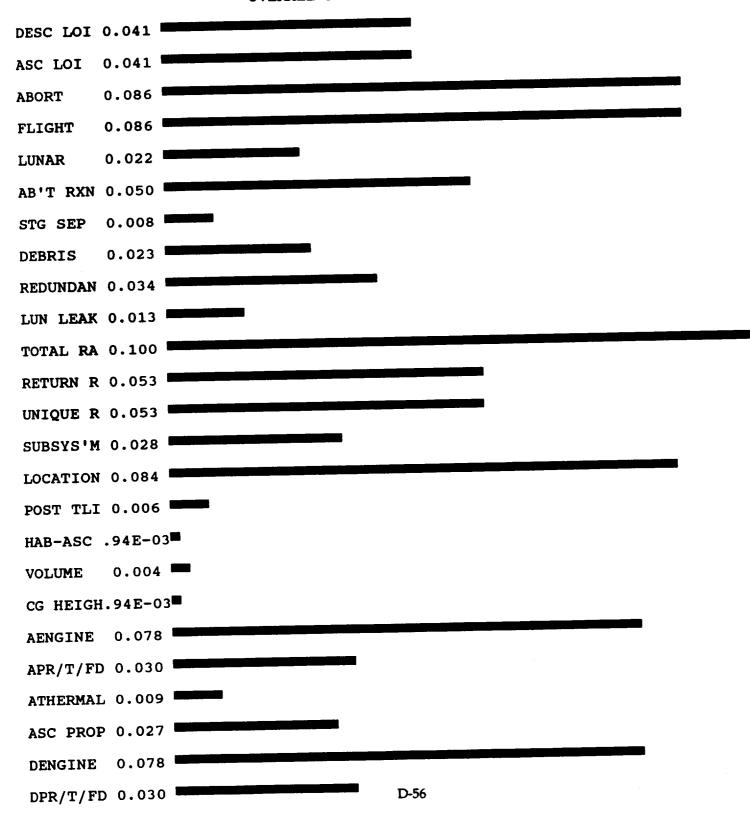
PRIORITIES

INCONSISTENCY RATIO = 0.090.

PAGE _____ INTENTIONALLY DLANK

APPENDIX Section D2 Cumulative Weights

PRECEDING PAGE BLANK NOT FILMED


C:\EC8\MODELS\ZRATE

12-07-1992 NASA Johnson Space Center

Select Propulsion System best Meeting Program Resources and Req

Synthesis of Level 2 Nodes with respect to GOAL DISTRIBUTIVE MODE

OVERALL INCONSISTENCY INDEX = 0.00

STAY TIM	0.005
PAYLOAD	0.003 📟
INSITU	.49E-03
BOILOFF	.48E-03
MARS	0.001 🗖
LOG VOL	0.002 🗖

.- · ·

AB'T RXN --- Abort Reaction Time:90% Thrust for Return Engines During Landing --- Abort Operability Measure ABORT AENGINE --- Readiness of Ascent (return) Engines APR/T/FD --- Readiness of Ascent (return) Pressurization, Tank and Feed System ASC LOI --- Launch Operability Index for Return Stage ASC PROP --- Readiness of Propellant Manufacturing and Handling for Ascent ATHERMAL --- Readiness of Ascent (return) Propellant Thermal Controls BOILOFF --- Evolution Towards Using Propellant for RCS, Power, Consumables,.. CG HEIGH --- Center of Gravity Height To Lunar Surface Upon Lunar Landing DEBRIS --- Exposure Level of Return Stage Engines to Surface Debris DENGINE --- Readiness of Descent Engines DESC LOI --- Launch Operability Index for Lander Stage DPR/T/FD --- Hardware Readiness of Descent Pressurization/Tank/Feed Systems --- Flight Operability Measure --- Difference in Mass Between Habitat (Cargo) and Crew Mission FLIGHT HAB-ASC --- Insitu Resoure Utilization is the Evolution Towards Lunar Prop. INSITU LOCATION --- Number of Instrumentation Locations LOG VOL --- Evolution Towards Increased Logistics Volume LUN LEAK --- Leakage Potential on the Lunar Surface --- Lunar Operability Measure LUNAR --- Mars Evolution for Mars ISRU or Aeroshell Packaging PAYLOAD --- Evolution Potential for Extra Payload to 96 mt Post-TLI Limit MARS POST TLI --- Post TLI Mass of Lander/Return Vehicle REDUNDAN --- Level of Redundancy: # faults during (landing, return, post-abort) RETURN R --- Complexity Rating for Number of Return Components STAY TIM --- Evolution Potential for Longer Lunar Stay Times STG SEP --- Stage Separation Characteristics SUBSYS'M --- Number of Subsystems TOTAL RA --- Complexity Rating for Total Number of Components UNIQUE R --- Complexity Rating for Number of Unique Components --- Volume of the Crew Vehicle Propellant and Pressurant VOLUME

MU.S. GOVERNMENT PRINTING OFFICE: 1993-762-623-No Program

/ ---

D-57

1-

REPORT	Form Approved OMB No. 0704-0188						
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.							
1. AGENCY USE ONLY (Leave Bia	DATES COVERED						
4. TITLE AND SUBTITLE	5. FUNDING NUMBERS						
Lunar Lander and Return Prop							
6. AUTHOR(S) Eric A. Hurlbert, Robert Morel Amidei, *John Mulholland	and, Gerald B. Sanders,	Edward A.	Robertson, *David				
7. PERFORMING ORGANIZATION Lyndon B. Johnson Space Cent Engineering Directorate Houston, TX 77058	8. PERFORMING ORGANIZATION REPORT NUMBERS S-728						
9. SPONSORING/MONITORING A National Aeronautics and Spac Washington, D. C. 20546	10. SPONSORING/MONITORING AGENCY REPORT NUMBER NASA TP-3388						
11. SUPPLEMENTARY NOTES *White Sands Test Facility Propulsion Test Office Las Cruces, NM 88004							
12a. DISTRIBUTION/AVAILABILIT Unclassified/Publicly Available NASA Center for Aerospace In 800 Elkridge Landing Road Linthicum Heights, MD 21090 (201) 621 0200	2b. DISTRIBUTION CODE						
(301) 621-0390 Subject Category: 20 13. ABSTRACT (Maximum 200 words) This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the Analytic Hierarchy Process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.							
14. SUBJECT TERMS Propulsion Trade Study, Space interplanetary spacecraft, Apoll	P), 15. NUMBER OF PAGES 314 16. PRICE CODE						
propellants, Moon 17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFIC OF THIS PAGE		9. SECURITY CLASSIFIC OF ABSTRACT				
Unclassified	Unclassified		Unclassified				
NSN 7540-01-280-5500	Standard Form 298 (Rev 2-89) Prescribed by ANSI Std. 239-18 298-102						