9 research outputs found
Impact of air infiltration on buildings' performance : focus on the experimental study within timber-frame walls
Une mauvaise étanchéité à l’air dans un bâtiment peut entraîner des surconsommations énergétiques et poser un certain nombre de problèmes tels que l’apparition de moisissures dans les murs ou encore une mauvaise qualité de l’air intérieur. Les constructions à ossature bois sont particulièrement sujettes aux infiltrations d’air, d’où la nécessité de mieux comprendre ces phénomènes et leurs conséquences afin que ces bâtiments puissent respecter les normes d’étanchéité de plus en plus strictes. Cette étude contribue par plusieurs aspects et à différentes échelles à l’évaluation de l’impact des infiltrations d’air sur les performances d’un bâtiment.Les infiltrations d’air à travers l’enveloppe peuvent perturber le bon fonctionnement de la ventilation mécanique et augmenter les pertes thermiques. Cette problématique est d’abord traitée numériquement à l’échelle du bâtiment, avec l’étude d’une grande variété de maisons et de conditions météorologiques. Des modèles simplifiés applicables à tout niveau d’étanchéité ont été établis pour la prise en compte des infiltrations naturelles dans les calculs de débit total de ventilation. Une plus petite échelle est ensuite considérée pour l’étude de l’étanchéité à l’air, avec la caractérisation expérimentale de parois ossature bois, de matériaux et de détails de construction, notamment grâce à la construction d’un banc d’essai adapté. Un certain nombre de tests de pressurisation ont permis de quantifier les fuites d’air induites par des défauts d’étanchéité spécifiques et peuvent être utilisés pour les simulations numériques à l’échelle du bâtiment.L’impact des infiltrations d’air sur les performances hygrothermiques d’une paroi est intimement lié à la dispersion de l’air à l’intérieur de celle-ci, mais il y a actuellement un manque d’études et de techniques expérimentales pour la déterminer. Une nouvelle méthode a donc été développée, à savoir l’utilisation de microparticules de fluorescéine comme traceur à l’intérieur des isolants. L’établissement de cartographies de la concentration en fluorescéine a permis d’étudier l’impact de certains paramètres tels que la vitesse d’air, le matériau isolant ou encore la géométrie sur les infiltrations d’air, et a mis en évidence des phénomènes tels que l’apparition de lames d’air entre les composants de la paroi. Par ailleurs un modèle du transport des particules de fluorescéine a été développé et couplé à un modèle CFD pour des analyses plus fines du chemin de l’air.Enfin, une étude de cas a été effectuée sur des parois simplifiées afin de comparer les différentes méthodes expérimentales, de vérifier leur applicabilité à l’étude du chemin de l’air, et d’obtenir des données pour la validation de modèles numériques. La dispersion de l’air en entrée/sortie de l’isolant a été étudiée par thermographie infrarouge et PIV. Le chemin de l’air à l’intérieur de l’isolant a lui été étudié par 3 techniques : des mesures de température avec des thermocouples ; d’humidité relative avec des capteurs capacitifs SHT 75 ; et l’utilisation de microparticules de fluorescéine. Les avantages et inconvénients de chaque méthode ont été identifiés pour aider à sélectionner la plus adaptée pour de futures études.Poor airtightness in buildings can lead to an over-consumption of energy and to many issues such as moisture damage and poor indoor climate. The timber frame constructions are particularly subject to air leakage and further knowledge in this field is needed to meet the regulation requirements tightened by the development of low-energy and passive houses. This study focuses on the impact of air infiltration on the buildings’ performance, both at the building and the wall assembly scales.The air infiltration through the envelope can disrupt the proper functioning of mechanical ventilation and increase the global energy load. This issue was first investigated numerically at the building scale on a wide range of housing and weather conditions. Simplified models working across the whole airtightness spectrum were established for the inclusion of natural infiltration in buildings’ total ventilation rate calculations. The airtightness was then considered at a smaller scale with the experimental characterization of timber frame wall assemblies, components and construction details, in particular with an original test set-up built for this purpose. A number of pressurization tests enabled to quantify the additional leakage air flow induced by specific airtightness defects and may be of use for building scale numerical simulations.The impact of air infiltration on the hygro-thermal performance of a wall is closely linked to the air dispersion inside it, but there is a lack of experimental studies and methods for the air path investigation. A new technique has therefore been developed, consisting in an innovative use of fluorescein micro-particles as tracer inside the insulation material. It was first applied to specific configurations: straight/angled air channels in contact with porous media. A simple analysis of the fluorescein concentration mappings enabled to investigate the impact of parameters such as the flow velocity, the insulation material and the geometry on the air infiltration in the glass wool, and gave evidences of phenomena such as the appearance of thin air gaps between the components of the wall. A fluorescein transport model was developed and coupled to a CFD model for finer analysis.Finally a case study on simple wall assemblies was carried out to compare experimental techniques, to verify their applicability to the air path study and to provide data for possible numerical model validation. The air dispersion at the inlet/outlet of the insulation was studied with both infrared thermography and the PIV. The air path inside the insulation layer was investigated using three experimental approaches: a temperature monitoring with thermocouples; a relative humidity monitoring with capacitive sensors SHT 75; and the use of fluorescein tracer micro-particles. The respective benefits and limitations of the various methods were identified to help in the selection of the most appropriate one for further studies
Impact des infiltrations d'air sur les performances des bâtiments : focus sur l'étude expérimentale dans les parois ossature bois
Poor airtightness in buildings can lead to an over-consumption of energy and to many issues such as moisture damage and poor indoor climate. The timber frame constructions are particularly subject to air leakage and further knowledge in this field is needed to meet the regulation requirements tightened by the development of low-energy and passive houses. This study focuses on the impact of air infiltration on the buildings’ performance, both at the building and the wall assembly scales.The air infiltration through the envelope can disrupt the proper functioning of mechanical ventilation and increase the global energy load. This issue was first investigated numerically at the building scale on a wide range of housing and weather conditions. Simplified models working across the whole airtightness spectrum were established for the inclusion of natural infiltration in buildings’ total ventilation rate calculations. The airtightness was then considered at a smaller scale with the experimental characterization of timber frame wall assemblies, components and construction details, in particular with an original test set-up built for this purpose. A number of pressurization tests enabled to quantify the additional leakage air flow induced by specific airtightness defects and may be of use for building scale numerical simulations.The impact of air infiltration on the hygro-thermal performance of a wall is closely linked to the air dispersion inside it, but there is a lack of experimental studies and methods for the air path investigation. A new technique has therefore been developed, consisting in an innovative use of fluorescein micro-particles as tracer inside the insulation material. It was first applied to specific configurations: straight/angled air channels in contact with porous media. A simple analysis of the fluorescein concentration mappings enabled to investigate the impact of parameters such as the flow velocity, the insulation material and the geometry on the air infiltration in the glass wool, and gave evidences of phenomena such as the appearance of thin air gaps between the components of the wall. A fluorescein transport model was developed and coupled to a CFD model for finer analysis.Finally a case study on simple wall assemblies was carried out to compare experimental techniques, to verify their applicability to the air path study and to provide data for possible numerical model validation. The air dispersion at the inlet/outlet of the insulation was studied with both infrared thermography and the PIV. The air path inside the insulation layer was investigated using three experimental approaches: a temperature monitoring with thermocouples; a relative humidity monitoring with capacitive sensors SHT 75; and the use of fluorescein tracer micro-particles. The respective benefits and limitations of the various methods were identified to help in the selection of the most appropriate one for further studies.Une mauvaise étanchéité à l’air dans un bâtiment peut entraîner des surconsommations énergétiques et poser un certain nombre de problèmes tels que l’apparition de moisissures dans les murs ou encore une mauvaise qualité de l’air intérieur. Les constructions à ossature bois sont particulièrement sujettes aux infiltrations d’air, d’où la nécessité de mieux comprendre ces phénomènes et leurs conséquences afin que ces bâtiments puissent respecter les normes d’étanchéité de plus en plus strictes. Cette étude contribue par plusieurs aspects et à différentes échelles à l’évaluation de l’impact des infiltrations d’air sur les performances d’un bâtiment.Les infiltrations d’air à travers l’enveloppe peuvent perturber le bon fonctionnement de la ventilation mécanique et augmenter les pertes thermiques. Cette problématique est d’abord traitée numériquement à l’échelle du bâtiment, avec l’étude d’une grande variété de maisons et de conditions météorologiques. Des modèles simplifiés applicables à tout niveau d’étanchéité ont été établis pour la prise en compte des infiltrations naturelles dans les calculs de débit total de ventilation. Une plus petite échelle est ensuite considérée pour l’étude de l’étanchéité à l’air, avec la caractérisation expérimentale de parois ossature bois, de matériaux et de détails de construction, notamment grâce à la construction d’un banc d’essai adapté. Un certain nombre de tests de pressurisation ont permis de quantifier les fuites d’air induites par des défauts d’étanchéité spécifiques et peuvent être utilisés pour les simulations numériques à l’échelle du bâtiment.L’impact des infiltrations d’air sur les performances hygrothermiques d’une paroi est intimement lié à la dispersion de l’air à l’intérieur de celle-ci, mais il y a actuellement un manque d’études et de techniques expérimentales pour la déterminer. Une nouvelle méthode a donc été développée, à savoir l’utilisation de microparticules de fluorescéine comme traceur à l’intérieur des isolants. L’établissement de cartographies de la concentration en fluorescéine a permis d’étudier l’impact de certains paramètres tels que la vitesse d’air, le matériau isolant ou encore la géométrie sur les infiltrations d’air, et a mis en évidence des phénomènes tels que l’apparition de lames d’air entre les composants de la paroi. Par ailleurs un modèle du transport des particules de fluorescéine a été développé et couplé à un modèle CFD pour des analyses plus fines du chemin de l’air.Enfin, une étude de cas a été effectuée sur des parois simplifiées afin de comparer les différentes méthodes expérimentales, de vérifier leur applicabilité à l’étude du chemin de l’air, et d’obtenir des données pour la validation de modèles numériques. La dispersion de l’air en entrée/sortie de l’isolant a été étudiée par thermographie infrarouge et PIV. Le chemin de l’air à l’intérieur de l’isolant a lui été étudié par 3 techniques : des mesures de température avec des thermocouples ; d’humidité relative avec des capteurs capacitifs SHT 75 ; et l’utilisation de microparticules de fluorescéine. Les avantages et inconvénients de chaque méthode ont été identifiés pour aider à sélectionner la plus adaptée pour de futures études
Impact of different construction details on air permeability of timber frame wall assemblies: Some experimental evidences from a three-scale laboratory study
International audiencePoor airtightness in buildings can lead to an over-consumption of energy and to many issues such as moisture damage and poor indoor climate. The timber frame constructions are particularly subject to air leakages, and further knowledge in this field is needed to meet the regulation requirements tightened by the development of low-energy and passive houses. This article focuses on a three-scale experimental study carried out in laboratories to quantify the impact of a number of construction details on timber frame wall airtightness. For this purpose, we built two original experimental setups and to complement an existing large-scale facility. Each setup enables to carry out pressurization tests at a different scale. The results put all together give quantitative information for more accurate simulations of building performance. Some specific construction details were investigated. It has been found in particular that the density of the insulation material is significant since a soft glass wool can have an air permeability three times higher than a rigid one with the same thermal performances. Moreover, it has been pointed out that the bond between the gypsum board and the insulation has a significant impact on the resulting pressure–flow law, and to ensure that there is no air gap the whole interface should be glued. The air flow directions also influence the flow values for high-pressure differences. Finally, at wall scale we have found that the sealing of the gypsum boards and the vapor barrier against the bottom wall plate is not very significant as long as the exterior side is sealed correctly. On the other hand, a proper sealing on both sides of a window is required because of the air gaps along it
Assessing the performance of infrared thermography and PIV methods to identify and characterize the air inlets and outlets in wall assemblies
International audienceBuilding airtightness is crucial for reducing energy demand in the building sector and preventing moisture damage and indoor environment quality issues. Mandatory airtightness tests are now commonly performed in many countries to quantify the total envelope leakage rate of real buildings. For a more precise diagnosis, air leakages are usually identified by infrared thermography or visualized by smoke. However, a finer analysis is also needed to characterize precisely the air flow through specific leaks. Numerical models have been developed for this purpose but experimental data are necessary to validate them. In this paper, two experimental approaches are tested on simple light-wall assembly configurations to address this need: infrared thermography (IRT) and the innovative use of particle image velocimetry (PIV) with a specific experimental set-up and protocol developed. The results are compared with each other as well as with numerical simulations. Results showed that both techniques can be applied for the experimental characterization of the air inlet/outlet of a wall assembly with different advantages and drawbacks. IRT is easy to implement, non-intrusive, possible for in-situ investigations, but the correlation between the thermographs and the air dispersion at the outlet is not straight forward due to thermal inertia and heat conduction issues. PIV gives direct results on the velocity field and enables quantitative analysis of air flow rates for various configurations, with some limitations: a difficult implementation; restrictions on the possible infiltration velocity range and difficulties to visualize the flow exactly at the interface with the wall assembly
Innovative use of fluorescein for the air path study within light-weight wall assemblies
The impact of air infiltration on the hygro-thermal performance of a wall is closely linked to the air dispersion inside it, but there is a lack of experimental studies and methods for the air path investigation within light-weight wall assemblies. A new technique has therefore been developed, consisting in an innovative use of fluorescein micro-particles as tracer inside the insulation material. It is a destructive method but it has the great advantage of not being intrusive unlike the use of any type of sensor. The experimental protocol is detailed in this paper.
This technique was tested on a number of preliminary tests which showed consistent results and a good repeatability of the measurement. A fluorescein transport model was developed to facilitate the comparison between the experimental fluorescein concentration mappings and the numerical velocity fields. This method was then applied to a specific configuration: an air channel in contact with porous media. A simple analysis of the resulting fluorescein concentration mappings enabled to draw conclusions on the impact of parameters such as the flow velocity or the insulation material on the air infiltration. It has also given evidences of phenomena such as the appearance of thin air gaps between the components of the wall assembly. The results were compared to a numerical study with the fluorescein transport model coupled to a CFD model
Innovative use of fluorescein for the air path study within light-weight wall assemblies
The impact of air infiltration on the hygro-thermal performance of a wall is closely linked to the air dispersion inside it, but there is a lack of experimental studies and methods for the air path investigation within light-weight wall assemblies. A new technique has therefore been developed, consisting in an innovative use of fluorescein micro-particles as tracer inside the insulation material. It is a destructive method but it has the great advantage of not being intrusive unlike the use of any type of sensor. The experimental protocol is detailed in this paper.
This technique was tested on a number of preliminary tests which showed consistent results and a good repeatability of the measurement. A fluorescein transport model was developed to facilitate the comparison between the experimental fluorescein concentration mappings and the numerical velocity fields. This method was then applied to a specific configuration: an air channel in contact with porous media. A simple analysis of the resulting fluorescein concentration mappings enabled to draw conclusions on the impact of parameters such as the flow velocity or the insulation material on the air infiltration. It has also given evidences of phenomena such as the appearance of thin air gaps between the components of the wall assembly. The results were compared to a numerical study with the fluorescein transport model coupled to a CFD model