219 research outputs found
Human paraoxonase gene cluster polymorphisms as predictors of coronary heart disease risk in the prospective Northwick Park Heart Study II
AbstractThe anti-atherogenic effect of HDL has been suggested to be partly due to the action of HDL-associated paraoxonase (PON). Three distinct enzymes have been identified, encoded by PON1, PON2 and PON3, clustered on chromosome 7q21–q22. Two cSNPs in PON1 (L55M and Q192R) and one in PON2 (S311C) have been implicated as independent risk factors for coronary heart disease (CHD) in some, but not all, studies. A PON3 SNP (A99A) was identified and the effect of these four PON SNPs on HDL levels and CHD risk was examined in the prospective Northwick Park Heart Study II (NPHSII). Genotype frequencies did not differ between cases and controls but the CHD risk associated with smoking was significantly modified by PON1 L55M genotype. Compared to LL non-smokers, LL smokers had a hazard ratio (HR) of 1.30 (95% CI 0.81–2.06) while M-allele carriers had a HR of 1.76 (1.17–2.67). When genotypes were analysed in combination, men with the genotype PON1 55 LM/MM+PON2 311 CC, had HR of 3.54 (1.81–6.93) compared to PON1 LL+PON2 SS/SC men (interaction P=0.004). These effects were independent of classical risk factors. These data demonstrate the importance of stratifying by environmental factors and the use of multiple SNPs for genetic analysis
Modelling a two-stage adult population screen for autosomal dominant familial hypercholesterolaemia: cross-sectional analysis within the UK Biobank
Background:
Most people with autosomal dominant familial hypercholesterolaemia (FH) remain undetected, which represents a missed opportunity for coronary heart disease prevention.
Objective:
To evaluate the performance of two-stage adult population screening for FH.
Design:
Using data from UK Biobank, we estimated the screening performance of different low-density lipoprotein cholesterol (LDL-C) cut-offs (stage 1) to select adults for DNA sequencing (stage 2) to identify individuals with FH-causing variants inLDLR, APOB, PCSK9andAPOE. We estimated the number of additional FH cases detected by cascade testing of first-degree relatives of index cases and compared the overall approach with screening in childhood.
Setting:
UK Biobank.
Participants:
140 439 unrelated participants of European ancestry from UK Biobank with information on circulating LDL-C concentration and exome sequence.
Main outcome measures:
For different LDL-C cut-offs, we estimated the detection and false-positive rate, the proportion of individuals who would be referred for DNA sequencing (stage 1 screen positive rate), and the number of FH cases identified by population screening followed by cascade testing.
Results:
We identified 488 individuals with an FH-causing variant and 139 951 without (prevalence 1 in 288). An LDL-C cut-off of >4.8 mmol/L had a stage 1 detection rate (sensitivity) of 40% (95% CI 36 to 44%) for a false-positive rate of 10% (95% CI 10 to 11%). Detection rate increased at lower LDL-C cut-offs but at the expense of higher false-positive and screen positive rates, and vice versa. Two-stage screening of 100 000 adults using an LDL-C cut-off of 4.8 mmol/L would generate 10 398 stage 1 screen positives for sequencing, detect 138 FH cases and miss 209. Up to 207 additional cases could be detected throughtwo-generationcascade testing of first-degree relatives. By comparison, based on previously published data, childhood screening followed by cascade testing was estimated to detect nearly three times as many affected individuals for around half the sequencing burden.
Conclusions:
Two-stage adult population screening for FH could help achieve the 25% FH case detection target set in the National Health Service Long Term Plan, but less efficiently than childhood screening and with a greater sequencing requirement
Variant rs10911021 that associates with coronary heart disease in type 2 diabetes, is associated with lower concentrations of circulating HDL cholesterol and large HDL particles but not with amino acids.
AIMS: An intergenic locus on chromosome 1 (lead SNP rs10911021) was previously associated with coronary heart disease (CHD) in type 2 diabetes (T2D). Using data from the UCLEB consortium we investigated the relationship between rs10911021 and CHD in T2D, whether rs10911021 was associated with levels of amino acids involved in the γ-glutamyl cycle or any conventional risk factors (CRFs) for CHD in the T2D participants. METHODS: Four UCLEB studies (n = 6531) had rs10911021 imputation, CHD in T2D, CRF and metabolomics data determined using a nuclear magnetic resonance based platform. RESULTS: The expected direction of effect between rs10911021 and CHD in T2D was observed (1377 no CHD/160 CHD; minor allele OR 0.80, 95 % CI 0.60-1.06) although this was not statistically significant (p = 0.13). No association between rs10911021 and CHD was seen in non-T2D participants (11218 no CHD/1274 CHD; minor allele OR 1.00 95 % CIs 0.92-1.10). In T2D participants, while no associations were observed between rs10911021 and the nine amino acids measured, rs10911021 was associated with HDL-cholesterol (p = 0.0005) but the minor "protective" allele was associated with lower levels (-0.034 mmol/l per allele). Focusing more closely on the HDL-cholesterol subclasses measured, we observed that rs10911021 was associated with six large HDL particle measures in T2D (all p < 0.001). No significant associations were seen in non-T2D subjects. CONCLUSIONS: Our findings are consistent with a true association between rs10911021 and CHD in T2D. The protective minor allele was associated with lower HDL-cholesterol and reductions in HDL particle traits. Our results indicate a complex relationship between rs10911021 and CHD in T2D
Recommended from our members
A 19-SNP coronary heart disease gene score profile in subjects with type 2 diabetes: the coronary heart disease risk in type 2 diabetes (CoRDia study) study baseline characteristics
Background
The coronary risk in diabetes (CoRDia) trial (n = 211) compares the effectiveness of usual diabetes care with a self-management intervention (SMI), with and without personalised risk information (including genetics), on clinical and behavioural outcomes. Here we present an assessment of randomisation, the cardiac risk genotyping assay, and the genetic characteristics of the recruits.
Methods
Ten-year coronary heart disease (CHD) risk was calculated using the UKPDS score. Genetic CHD risk was determined by genotyping 19 single nucleotide polymorphisms (SNPs) using Randox’s Cardiac Risk Prediction Array and calculating a gene score (GS). Accuracy of the array was assessed by genotyping a subset of pre-genotyped samples (n = 185).
Results
Overall, 10-year CHD risk ranged from 2–72 % but did not differ between the randomisation groups (p = 0.13). The array results were 99.8 % concordant with the pre-determined genotypes. The GS did not differ between the Caucasian participants in the CoRDia SMI plus risk group (n = 66) (p = 0.80) and a sample of UK healthy men (n = 1360). The GS was also associated with LDL-cholesterol (p = 0.05) and family history (p = 0.03) in a sample of UK healthy men (n = 1360).
Conclusions
CHD risk is high in this group of T2D subjects. The risk array is an accurate genotyping assay, and is suitable for estimating an individual’s genetic CHD risk.
Trial registration
This study has been registered at ClinicalTrials.gov; registration identifier NCT0189178
Genetic variation in CADM2 as a link between psychological traits and obesity
CADM2 has been associated with a range of behavioural and metabolic traits, including physical activity, risk-taking, educational attainment, alcohol and cannabis use and obesity. Here, we set out to determine whether CADM2 contributes to mechanisms shared between mental and physical health disorders. We assessed genetic variants in the CADM2 locus for association with phenotypes in the UK Biobank, IMPROVE, PROCARDIS and SCARFSHEEP studies, before performing meta-analyses. A wide range of metabolic phenotypes were meta-analysed. Psychological phenotypes analysed in UK Biobank only were major depressive disorder, generalised anxiety disorder, bipolar disorder, neuroticism, mood instability and risk-taking behaviour. In UK Biobank, four, 88 and 172 genetic variants were significantly (p <1 x 10(-5)) associated with neuroticism, mood instability and risk-taking respectively. In meta-analyses of 4 cohorts, we identified 362, 63 and 11 genetic variants significantly (p <1 x 10(-5)) associated with BMI, SBP and CRP respectively. Genetic effects on BMI, CRP and risk-taking were all positively correlated, and were consistently inversely correlated with genetic effects on SBP, mood instability and neuroticism. Conditional analyses suggested an overlap in the signals for physical and psychological traits. Many significant variants had genotype-specific effects on CADM2 expression levels in adult brain and adipose tissues. CADM2 variants influence a wide range of both psychological and metabolic traits, suggesting common biological mechanisms across phenotypes via regulation of CADM2 expression levels in adipose tissue. Functional studies of CADM2 are required to fully understand mechanisms connecting mental and physical health conditions.</p
Comparison of the characteristics at diagnosis and treatment of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries
Background and aims: For children with heterozygous familial hypercholesterolaemia (HeFH), European guidelines recommend consideration of statin therapy by age 8–10 years for those with a low density lipoprotein cholesterol (LDL-C) >3.5 mmol/l, and dietary and lifestyle advice. Here we compare the characteristics and lipid levels in HeFH children from Norway, UK, Netherlands, Belgium, Czech Republic, Austria, Portugal and Greece. Methods: Fully-anonymized data were analysed at the London centre. Differences in registration and on treatment characteristics were compared by standard statistical tests. Results: Data was obtained from 3064 children. The median age at diagnosis differed significantly between countries (range 3–11 years) reflecting differences in diagnostic strategies. Mean (SD) LDL-C at diagnosis was 5.70 (±1.4) mmol/l, with 88% having LDL-C>4.0 mmol/l. The proportion of children older than 10 years at follow-up who were receiving statins varied significantly (99% in Greece, 56% in UK), as did the proportion taking Ezetimibe (0% in UK, 78% in Greece). Overall, treatment reduced LDL-C by between 28 and 57%, however, in those >10 years, 23% of on-treatment children still had LDL-C>3.5 mmol/l and 66% of those not on a statin had LDL-C>3.5 mmol/l. Conclusions: The age of HeFH diagnosis in children varies significantly across 8 countries, as does the proportion of those >10 years being treated with statin and/or ezetimibe. Approximately a quarter of the treated children and almost three quarters of the untreated children older than 10 years still have LDL-C concentrations over 3.5 mmol/l. These data suggest that many children with FH are not receiving the full potential benefit of early identification and appropriate lipid-lowering treatment according to recommendations
Recommended from our members
Effectiveness of a self-management intervention with personalised genetic and lifestyle-related risk information on coronary heart disease and diabetes-related risk in type 2 diabetes (CoRDia): study protocol for a randomised controlled trial
Background
Many patients with type 2 diabetes fail to achieve good glycaemic control. Poor control is associated with complications including coronary heart disease (CHD). Effective self-management and engagement in health behaviours can reduce risks of complications. However, patients often struggle to adopt and maintain these behaviours. Self-management interventions have been found to be effective in improving glycaemic control. Recent developments in the field of genetics mean that patients can be given personalised information about genetic- and lifestyle-associated risk of developing CHD. Such information may increase patients’ motivation to engage in self-management. The Coronary Risk in Diabetes (CoRDia) trial will compare the effectiveness of a self-management intervention, with and without provision of personalised genetic- and lifestyle-associated risk information, with usual care, on clinical and behavioural outcomes, the cognitive predictors of behaviour, and psychological wellbeing.
Methods/Design
Participants will be adults aged 25–74 years registered with general practices in the East of England, diagnosed with type 2 diabetes, with no history of heart disease, and with a glycated haemoglobin level of ≥6.45 % (47 mmol/mol). Consenting participants will be randomised to one of three arms: usual care control, group self-management only, group self-management plus personalised genetic- and lifestyle-associated risk information. The self-management groups will receive four weekly 2-hour group sessions, focusing on knowledge and information sharing, problem solving, goal setting and action planning to promote medication adherence, healthy eating, and physical activity. Primary outcomes are glycaemic control and CHD risk. Clinical data will be collected from GP records, including HbA1c, weight, body mass index, blood pressure, and HDL and total cholesterol. Self-reported health behaviours, including medication adherence, healthy eating and physical activity, and cognitive outcomes will be assessed by questionnaire. Measures will be taken at baseline, 3 months (questionnaire only), 6 months and 12 months post-baseline.
Discussion
This study will determine whether the addition of personalised genetic- and lifestyle-associated CHD risk information to a group self-management intervention improves diabetes control and CHD risk compared with group self-management and usual care. Effectiveness of the combined intervention on health behaviours cognitions theorised to predict them, and psychological outcomes will also be investigated.
Trial registration
This study has been registered at ClinicalTrials.gov; registration identifier NCT01891786, registered 28 June 2013
The overlap of genetic susceptibility to schizophrenia and cardiometabolic disease can be used to identify metabolically different groups of individuals
Understanding why individuals with severe mental illness (Schizophrenia, Bipolar Disorder and Major Depressive Disorder) have increased risk of cardiometabolic disease (including obesity, type 2 diabetes and cardiovascular disease), and identifying those at highest risk of cardiometabolic disease are important priority areas for researchers. For individuals with European ancestry we explored whether genetic variation could identify sub-groups with different metabolic profiles. Loci associated with schizophrenia, bipolar disorder and major depressive disorder from previous genome-wide association studies and loci that were also implicated in cardiometabolic processes and diseases were selected. In the IMPROVE study (a high cardiovascular risk sample) and UK Biobank (general population sample) multidimensional scaling was applied to genetic variants implicated in both psychiatric and cardiometabolic disorders. Visual inspection of the resulting plots used to identify distinct clusters. Differences between these clusters were assessed using chi-squared and Kruskall-Wallis tests. In IMPROVE, genetic loci associated with both schizophrenia and cardiometabolic disease (but not bipolar disorder or major depressive disorder) identified three groups of individuals with distinct metabolic profiles. This grouping was replicated within UK Biobank, with somewhat less distinction between metabolic profiles. This work focused on individuals of European ancestry and is unlikely</p
Cascade testing in Familial Hypercholesterolaemia: how should family members be contacted?
Cascade testing or screening provides an important mechanism for identifying people at risk of a genetic condition. For some autosomal dominant conditions, such as Familial Hpercholesterolaemia (FH), identifying relatives allows for significant health-affecting interventions to be administered, which can extend a person’s life expectancy significantly. However, cascade screening is not without ethical implications. In this paper, we examine one ethically contentious aspect of cascade screening programmes, namely the alternative methods by which relatives of a proband can be contacted. Should the proband be responsible for contacting his or her family members, or should the screening programme contact family members directly? We argue that direct contact is an ethically justifiable method of contact tracing in cascade screening for FH. Not only has this method of contact already been utilised without adverse effects, an examination of the ethical arguments against it shows these are unsubstantiated. We describe several criteria which, if met, will allow an appropriate balance to be struck between maximising the efficiency of family tracing and respecting the interests of probands and their relatives. Keywords Cascade genetic screening; cascade testing; confidentiality; autonomy; genetics; ethics; guidelines; familial hypercholesterolaemi
- …