7,435 research outputs found
Processing and Transmission of Information
Contains reports on two research projects.Lincoln Laboratory (Purchase Order DDL-B187)Department of the ArmyDepartment of the NavyDepartment of the Air Force under Contract AF19(122)-45
Processing and Transmission of Information
Contains research objectives and reports on two research projects
High efficiency thermionic converter studies
The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV
A survey of parallel algorithms for fractal image compression
This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon
which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm
Precision neutron interferometric measurement of the nd coherent neutron scattering length and consequences for models of three-nucleon forces
We have performed the first high precision measurement of the coherent
neutron scattering length of deuterium in a pure sample using neutron
interferometry. We find b_nd = (6.665 +/- 0.004) fm in agreement with the world
average of previous measurements using different techniques, b_nd = (6.6730 +/-
0.0045) fm. We compare the new world average for the nd coherent scattering
length b_nd = (6.669 +/- 0.003) fm to calculations of the doublet and quartet
scattering lengths from several modern nucleon-nucleon potential models with
three-nucleon force (3NF) additions and show that almost all theories are in
serious disagreement with experiment. This comparison is a more stringent test
of the models than past comparisons with the less precisely-determined nuclear
doublet scattering length of a_nd = (0.65 +/- 0.04) fm.Comment: 4 pages, 4 figure
Processing and Transmission of Information
Contains research objectives and reports on one research project.Lincoln Laboratory (Purchase Order DDL-B187)Department of the ArmyDepartment of the NavyDepartment of the Air Force under Contract AF19(122)-45
High efficiency thermionic converter studies
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion
Testing T Invariance in the Interaction of Slow Neutrons with Aligned Nuclei
The study of five-fold (P even, T odd) correlation in the interaction of slow
polarized neutrons with aligned nuclei is a possible way of testing the time
reversal invariance due to the expected enhancement of T violating effects in
compound resonances. Possible nuclear targets are discussed which can be
aligned both dynamically as well as by the "brute force" method at low
temperature. A statistical estimation is performed of the five-fold correlation
for low lying p wave compound resonances of the Sb, Sb and
I nuclei. It is shown that a significant improvement can be achieved
for the bound on the intensity of the fundamental parity conserving time
violating (PCTV) interaction.Comment: 22 pages, 5 figures, published versio
Lossy data compression with random gates
We introduce a new protocol for a lossy data compression algorithm which is
based on constraint satisfaction gates. We show that the theoretical capacity
of algorithms built from standard parity-check gates converges exponentially
fast to the Shannon's bound when the number of variables seen by each gate
increases. We then generalize this approach by introducing random gates. They
have theoretical performances nearly as good as parity checks, but they offer
the great advantage that the encoding can be done in linear time using the
Survey Inspired Decimation algorithm, a powerful algorithm for constraint
satisfaction problems derived from statistical physics
- …