3,147 research outputs found
Thermoelectric energy recovery at ionic-liquid/electrode interface
A Thermally Chargeable Capacitor containing a binary solution of
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (EMIMTFSI) in
acetonitrile is electrically charged by applying a tempera- ture gradient to
two ideally polarisable electrodes. The corresponding thermoelectric
coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for
nanoporous carbon electrodes. Stored electrical energy is extracted by
discharging the capacitor through a resistor. The measured capacitance of the
electrode/ionic- liquid interface is 5 micro F for each platinum electrode
while it becomes four orders of magnitude larger mF for a single
nanoporous carbon electrode. Reproducibility of the effect through repeated
charging-discharging cycles under a steady-state temperature gradient
demonstrates the robustness of the electrical charging pro- cess at the
liquid/electrode interface. The acceleration of the charging by convective
flows is also observed. This offers the possibility to convert waste-heat into
electric energy without exchanging electrons between ions and electrodes, in
contrast to what occurs in most thermogalvanic cells.Comment: 8 pages, 11 figure
Improving the Performance of Cryogenic Calorimeters with Nonlinear Multivariate Noise Cancellation Algorithms
State-of-the-art physics experiments require high-resolution, low-noise, and
low-threshold detectors to achieve competitive scientific results. However,
experimental environments invariably introduce sources of noise, such as
electrical interference or microphonics. The sources of this environmental
noise can often be monitored by adding specially designed "auxiliary devices"
(e.g. microphones, accelerometers, seismometers, magnetometers, and antennae).
A model can then be constructed to predict the detector noise based on the
auxiliary device information, which can then be subtracted from the true
detector signal. Here, we present a multivariate noise cancellation algorithm
which can be used in a variety of settings to improve the performance of
detectors using multiple auxiliary devices. To validate this approach, we apply
it to simulated data to remove noise due to electromagnetic interference and
microphonic vibrations. We then employ the algorithm to a cryogenic light
detector in the laboratory and show an improvement in the detector performance.
Finally, we motivate the use of nonlinear terms to better model vibrational
contributions to the noise in thermal detectors. We show a further improvement
in the performance of a particular channel of the CUORE detector when using the
nonlinear algorithm in combination with optimal filtering techniques.Comment: 21 pages, 15 figures, 7 table
The global oscillation network group site survey. II. Results
The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile.
Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable components analysis. An accompanying paper describes the analysis methods in detail; here we present the results of both the network and individual site analyses.
The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 × 10⁻⁴ with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum
Point Interaction in two and three dimensional Riemannian Manifolds
We present a non-perturbative renormalization of the bound state problem of n
bosons interacting with finitely many Dirac delta interactions on two and three
dimensional Riemannian manifolds using the heat kernel. We formulate the
problem in terms of a new operator called the principal or characteristic
operator. In order to investigate the problem in more detail, we then restrict
the problem to one particle sector. The lower bound of the ground state energy
is found for general class of manifolds, e.g., for compact and Cartan-Hadamard
manifolds. The estimate of the bound state energies in the tunneling regime is
calculated by perturbation theory. Non-degeneracy and uniqueness of the ground
state is proven by Perron-Frobenius theorem. Moreover, the pointwise bounds on
the wave function is given and all these results are consistent with the one
given in standard quantum mechanics. Renormalization procedure does not lead to
any radical change in these cases. Finally, renormalization group equations are
derived and the beta-function is exactly calculated. This work is a natural
continuation of our previous work based on a novel approach to the
renormalization of point interactions, developed by S. G. Rajeev.Comment: 43 page
Identifier mapping performance for integrating transcriptomics and proteomics experimental results
Background\ud
Studies integrating transcriptomic data with proteomic data can illuminate the proteome more clearly than either separately. Integromic studies can deepen understanding of the dynamic complex regulatory relationship between the transcriptome and the proteome. Integrating these data dictates a reliable mapping between the identifier nomenclature resultant from the two high-throughput platforms. However, this kind of analysis is well known to be hampered by lack of standardization of identifier nomenclature among proteins, genes, and microarray probe sets. Therefore data integration may also play a role in critiquing the fallible gene identifications that both platforms emit.\ud
\ud
Results\ud
We compared three freely available internet-based identifier mapping resources for mapping UniProt accessions (ACCs) to Affymetrix probesets identifications (IDs): DAVID, EnVision, and NetAffx. Liquid chromatography-tandem mass spectrometry analyses of 91 endometrial cancer and 7 noncancer samples generated 11,879 distinct ACCs. For each ACC, we compared the retrieval sets of probeset IDs from each mapping resource. We confirmed a high level of discrepancy among the mapping resources. On the same samples, mRNA expression was available. Therefore, to evaluate the quality of each ACC-to-probeset match, we calculated proteome-transcriptome correlations, and compared the resources presuming that better mapping of identifiers should generate a higher proportion of mapped pairs with strong inter-platform correlations. A mixture model for the correlations fitted well and supported regression analysis, providing a window into the performance of the mapping resources. The resources have added and dropped matches over two years, but their overall performance has not changed.\ud
\ud
Conclusions\ud
The methods presented here serve to achieve concrete context-specific insight, to support well-informed decisions in choosing an ID mapping strategy for "omic" data merging
Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films
The properties of water at the nanoscale are crucial in many areas of biology, but the confinement of water molecules in sub-nanometre channels in biological systems has received relatively little attention. Advances in nanotechnology make it possible to explore the role played by water molecules in living systems, potentially leading to the development of ultrasensitive biosensors. Here we show that the adsorption of water by a self-assembled monolayer of single-stranded DNA on a silicon microcantilever can be detected by measuring how the tension in the monolayer changes as a result of hydration. Our approach relies on the microcantilever bending by an amount that depends on the tension in the monolayer. In particular, we find that the tension changes dramatically when the monolayer interacts with either complementary or single mismatched single-stranded DNA targets. Our results suggest that the tension is mainly governed by hydration forces in the channels between the DNA molecules and could lead to the development of a label-free DNA biosensor that can detect single mutations. The technique provides sensitivity in the femtomolar range that is at least two orders of magnitude better than that obtained previously with label-free nanomechanical biosensors and with label-dependent microarrays.D.R. acknowledges the fellowship funded by the Autonomic Community of Madrid (CAM). J.T, M.C, J.M and D.R acknowledge financial support by Spanish Ministry of Science (MEC) under grant No. TEC2006-10316 and CAM under grant No. 200550M056. C.B. acknowledges funding provided by MEC under grant No. BIO2007-67523. Work at Centro de Astrobiología was supported by European Union (EU), Instituto Nacional de Técnica Aeroespacial (INTA), MEC and CAM. All the authors acknowledge A. Cebollada, J.M. García-Martín, J. García, J.L. Costa-Kramer, M. Arroyo-Hernández and J.V. Anguita for their assistance in the gold deposition on the cantilevers.Peer reviewe
Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay
The combined effects of anthropogenic and biological CO2 inputs may lead to more rapid acidification in coastal waters compared to the open ocean. It is less clear, however, how redox reactions would contribute to acidification. Here we report estuarine acidification dynamics based on oxygen, hydrogen sulfide (H2S), pH, dissolved inorganic carbon and total alkalinity data from the Chesapeake Bay, where anthropogenic nutrient inputs have led to eutrophication, hypoxia and anoxia, and low pH. We show that a pH minimum occurs in mid-depths where acids are generated as a result of H2S oxidation in waters mixed upward from the anoxic depths. Our analyses also suggest a large synergistic effect from river-ocean mixing, global and local atmospheric CO2 uptake, and CO2 and acid production from respiration and other redox reactions. Together they lead to a poor acid buffering capacity, severe acidification and increased carbonate mineral dissolution in the USA\u27s largest estuary
The Impact of HAART on the Respiratory Complications of HIV Infection: Longitudinal Trends in the MACS and WIHS Cohorts
Objective: To review the incidence of respiratory conditions and their effect on mortality in HIV-infected and uninfected individuals prior to and during the era of highly active antiretroviral therapy (HAART). Design: Two large observational cohorts of HIV-infected and HIV-uninfected men (Multicenter AIDS Cohort Study [MACS]) and women (Women's Interagency HIV Study [WIHS]), followed since 1984 and 1994, respectively. Methods: Adjusted odds or hazards ratios for incident respiratory infections or non-infectious respiratory diagnoses, respectively, in HIV-infected compared to HIV-uninfected individuals in both the pre-HAART (MACS only) and HAART eras; and adjusted Cox proportional hazard ratios for mortality in HIV-infected persons with lung disease during the HAART era. Results: Compared to HIV-uninfected participants, HIV-infected individuals had more incident respiratory infections both pre-HAART (MACS, odds ratio [adjusted-OR], 2.4; 95% confidence interval [CI], 2.2-2.7; p<0.001) and after HAART availability (MACS, adjusted-OR, 1.5; 95%CI 1.3-1.7; p<0.001; WIHS adjusted-OR, 2.2; 95%CI 1.8-2.7; p<0.001). Chronic obstructive pulmonary disease was more common in MACS HIV-infected vs. HIV-uninfected participants pre-HAART (hazard ratio [adjusted-HR] 2.9; 95%CI, 1.02-8.4; p = 0.046). After HAART availability, non-infectious lung diseases were not significantly more common in HIV-infected participants in either MACS or WIHS participants. HIV-infected participants in the HAART era with respiratory infections had an increased risk of death compared to those without infections (MACS adjusted-HR, 1.5; 95%CI, 1.3-1.7; p<0.001; WIHS adjusted-HR, 1.9; 95%CI, 1.5-2.4; p<0.001). Conclusion: HIV infection remained a significant risk for infectious respiratory diseases after the introduction of HAART, and infectious respiratory diseases were associated with an increased risk of mortality. © 2013 Gingo et al
- …