3,035 research outputs found
Relating Molecular Morphology to Charge Mobility in Semicrystalline Conjugated Polymers
The molecular-level origins of the effects of annealing temperature and molecular weight on hole mobility in P3HT are elucidated using coarse-grained molecular dynamics, quantum chemical calculations, and kinetic Monte Carlo charge-transport simulations on a variety of realistic thin-film morphologies. The zero-field hole mobility is shown to increase as the annealing temperature or average molecular weights of samples are increased, in accordance with experimental results. Crystal structure analysis shows that the annealing temperature dependence of the mobility can be attributed to the size and structural order of the crystallites in both the chain-backbone and π-stacking directions. However, the molecular weight dependence of the mobility cannot be rationalized in the same way. Longer chains are shown to belong to more crystallites in the morphology, suggesting that the crystals become better connected as the molecular weight of the sample increases. We show that engineering samples to have an increased fraction of these long “tie chains” within the morphology improves mobility. As such, we propose that crystal connectivity in the noncrystalline portions of the morphology is similarly important in determining carrier mobility as crystallite size and order for semicrystalline conjugated polymers
Model of a fluid at small and large length scales and the hydrophobic effect
We present a statistical field theory to describe large length scale effects
induced by solutes in a cold and otherwise placid liquid. The theory divides
space into a cubic grid of cells. The side length of each cell is of the order
of the bulk correlation length of the bulk liquid. Large length scale states of
the cells are specified with an Ising variable. Finer length scale effects are
described with a Gaussian field, with mean and variance affected by both the
large length scale field and by the constraints imposed by solutes. In the
absence of solutes and corresponding constraints, integration over the Gaussian
field yields an effective lattice gas Hamiltonian for the large length scale
field. In the presence of solutes, the integration adds additional terms to
this Hamiltonian. We identify these terms analytically. They can provoke large
length scale effects, such as the formation of interfaces and depletion layers.
We apply our theory to compute the reversible work to form a bubble in liquid
water, as a function of the bubble radius. Comparison with molecular simulation
results for the same function indicates that the theory is reasonably accurate.
Importantly, simulating the large length scale field involves binary arithmetic
only. It thus provides a computationally convenient scheme to incorporate
explicit solvent dynamics and structure in simulation studies of large
molecular assemblies
Risk factors for recurrent C lostridium difficile infection in hematopoietic stem cell transplant recipients
Background Recurrent C lostridium difficile infection ( CDI ) represents a significant burden on the healthcare system and is associated with poor outcomes in hematopoietic stem cell transplant ( HSCT ) patients. Data are limited evaluating recurrence rates and risk factors for recurrence in HSCT patients. Methods HSCT patients who developed CDI between January 2010 and December 2012 were divided into 2 groups: non‐recurrent CDI (nr CDI ) and recurrent CDI ( rCDI ). Risk factors for rCDI were compared between groups. Rate of recurrence in HSCT patients was compared to that in other hospitalized patients. Results CDI was diagnosed in 95 of 711 HSCT patients (22 rCDI and 73 nr CDI ). Recurrence rates were similar in HSCT patients compared with other hospitalized patients (23.2% vs. 22.9%, P > 0.99). Patients in the rCDI group developed the index case of CDI significantly earlier than the nr CDI group (3.5 days vs. 7.0 days after transplant, P = 0.05). On univariate analysis, patients with rCDI were more likely to have prior history of CDI and neutropenia at the time of the index CDI case. Neutropenia at the time of the index CDI case was the only independent predictor of rCDI (78.8 vs. 34.8%, P = 0.006) on multivariate analysis. Conclusions The rate of rCDI was similar between HSCT and other hospitalized patients, and the majority of patients developed the index case of CDI within a week of transplantation. Neutropenia at the index CDI case may be associated with increased rates of rCDI .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109272/1/tid12267.pd
Electronic damping of molecular motion at metal surfaces
A method for the calculation of the damping rate due to electron-hole pair
excitation for atomic and molecular motion at metal surfaces is presented. The
theoretical basis is provided by Time Dependent Density Functional Theory
(TDDFT) in the quasi-static limit and calculations are performed within a
standard plane-wave, pseudopotential framework. The artificial periodicity
introduced by using a super-cell geometry is removed to derive results for the
motion of an isolated atom or molecule, rather than for the coherent motion of
an ordered over-layer. The algorithm is implemented in parallel, distributed
across both and space, and in a form compatible with the
CASTEP code. Test results for the damping of the motion of hydrogen atoms above
the Cu(111) surface are presented.Comment: 10 pages, 3 figure
Cavity formation and the drying transition in the Lennard-Jones fluid
By simulation and theory, we study the probability of observing N molecular centers within molecular sized volumes for a Lennard-Jones fluid near liquid-vapor coexistence. For large volumes and small N, the probability distribution differs markedly from Gaussian. The free energy per unit surface area to form empty volumes (i.e., cavities) is a rapidly varying function of the radius for small cavities. It becomes constant for large volumes. The source of these behaviors is the occurrence of drying (i.e., solvent depletion) at the cavity surface. The crossover to drying occurs on microscopic length scales, with significant density depletion found for cavities with radii of the order of two or more Lennard-Jones diameters. Reasonable agreement is found between the simulation results and the theory developed by Lum, Chandler, and Weeks [J. Phys. Chem. B 103, 4570 (1999)].David M. Huang and David Chandle
Calculating transition dipole moments of phosphorescent emitters for efficient organic light-emitting diodes
The out-coupling of light from an organic light-emitting diode, and thus its efficiency, strongly depends on the orientation of the transition dipole moment (TDM) of the emitting molecules with respect to the substrate surface. Despite the importance of this quantity, theoretical investigations of the direction of the TDM of phosphorescent emitters based on iridium(iii) complexes remain limited. One challenge is to find an appropriate level of theory able to accurately predict the direction of the TDM. Here, we report relativistic time-dependent density functional theory (TDDFT) calculations of the TDM, emission energies and lifetimes for both the ground-state (S0) and triplet (T1) excited-state geometries of fac-tris(2-phenylpyridyl)iridium(iii) (Ir(ppy)3), using the two-component zero-order regular approximation (ZORA) or including spin-orbit coupling (SOC) perturbatively using the simpler one-component (scalar) formulation. We show that the one- and two-component approaches give similar emission energies and overall radiative lifetimes for each individual geometry. Use of the S0 geometry leads to two of the excited triplet substates being degenerate, with the degeneracy lifted for the T1 geometry, with the latter matching experiment. Two-component calculations using the T1 geometry give results for the direction of the TDM more consistent with experiment than calculations using the S0 geometry. Finally, we show that adding a dielectric medium does not affect the direction of TDM significantly, but leads to better agreement with the experimentally measured radiative lifetime.Mohammad Babazadeh, Paul L. Burn and David M. Huan
Instabilities in a Two-Component, Species Conserving Condensate
We consider a system of two species of bosons of equal mass, with
interactions and for bosons of the same and different
species respectively. We present a rigorous proof -- valid when the Hamiltonian
does not include a species switching term -- showing that, when
, the ground state is fully "polarized" (consists of
atoms of one kind only). In the unpolarized phase the low energy excitation
spectrum corresponds to two linearly dispersing modes that are even a nd odd
under species exchange. The polarization instability is signaled by the vani
shing of the velocity of the odd modes.Comment: To appear in Phys. Rev.
Plans for laser spectroscopy of trapped cold hydrogen-like HCI
Laser spectroscopy studies are being prepared to measure the 1s ground state
hyperfine splitting in trapped cold highly charged ions. The purpose of such
experiments is to test quantum electrodynamics in the strong electric field
regime. These experiments form part of the HITRAP project at GSI. A brief
review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB
Plans for laser spectroscopy of trapped cold hydrogen-like HCI
Laser spectroscopy studies are being prepared to measure the 1s ground state
hyperfine splitting in trapped cold highly charged ions. The purpose of such
experiments is to test quantum electrodynamics in the strong electric field
regime. These experiments form part of the HITRAP project at GSI. A brief
review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB
- …