103 research outputs found

    Propagating functional dependencies with conditions

    Get PDF
    The dependency propagation problem is to determine, given a view defined on data sources and a set of dependencies on the sources, whether another dependency is guaranteed to hold on the view. This paper investigates dependency propagation for recently proposed conditional functional dependencies (CFDs). The need for this study is evident in data integration, exchange and cleaning since dependencies on data sources often only hold conditionally on the view. We investigate dependency propagation for views defined in various fragments of relational algebra, CFDs as view dependencies, and for source dependencies given as either CFDs or traditional functional dependencies (FDs). (a) We establish lower and upper bounds, all matching , ranging from PTIME to undecidable. These not only provide the first results for CFD propagation, but also extend the classical work of FD propagation by giving new complexity bounds in the presence of finite domains. (b) We provide the first algorithm for computing a minimal cover of all CFDs propagated via SPC views; the algorithm has the same complexity as one of the most efficient algorithms for computing a cover of FDs propagated via a projection view, despite the increased expressive power of CFDs and SPC views. (c) We experimentally verify that the algorithm is efficient. </jats:p

    Big Graph Analyses: From Queries to Dependencies and Association Rules

    Get PDF

    Incremental Graph Computations: Doable and Undoable

    Get PDF

    94 GHz Beam Scanning Dual-Reflector Antenna with a Sub-Reflectarray

    Get PDF
    A Cassegrain dual-reflector antenna which employs a flat reflectarray subreflector was analysed in a recent paper [1]. It was shown that the antenna beam can be scanned by introducing an appropriate progressive phase distribution across the reflectarray surface. This configuration is very attractive for steerable beam applications, because it combines the high gain and broad bandwidth properties of the parabolic main reflector with the simplicity of manufacturing a small electronically reconfigurable microstrip reflectarray antenna. The subreflector could be constructed on a thin liquid crystal (LC) substrate, and control of the phase distribution across the aperture would be achieved by applying a bias voltage to the individual elements in the patch array [2, 3]. In addition to the simplicity of this biasing arrangement, phase shifters based on LC materials can be designed to operate with no upper limit on the operating frequency range, thereby removing the main disadvantage of many existing active control technologies. Moreover precision micromachining processes and a quasi–optical measurement technique which are suitable for manufacturing and characterising sub mm wavelength phase agile reflectarrays, have recently been demonstrated at frequencies up to 170 GHz [4]. In this paper we present the design of a dual-reflector antenna which could use an ‘active’ sub-reflectarray based on liquid crystals to produce the required Earth scene scan profile of a limbsounder radiometric instrument [5]. The validity of the beam scanning concept has been demonstrated by designing, manufacturing and measuring the radiation patterns of a 120mm diameter offset parabolic reflector at 94 GHz. In the first phase of the project we have used three planar solid metal subreflectors of diameter 28-mm to generate a focussed beam in the boresight direction, and at offset scan angles of 2.5° and 5°. Experimental results are shown to be in reasonably good agreement with numerical simulations. In the second phase of the work, the solid metal subreflectors are replaced by a passive microstrip patch subreflectarray which is designed to scan the beam to an angle of 5º. The final stage of the project will employ an electronically controllable LC reflectarray subreflector which will be used to scan the beam over the angular range 0 º to 5º

    Extending Conditional Dependencies with Built-in Predicates

    Get PDF
    This paper proposes a natural extension of conditional functional dependencies (CFDs [1]) and conditional inclusion dependencies (CINDs [2]), denoted by CFDps and CIND(p)s, respectively, by specifying patterns of data values with not equal, &lt;, &lt;=, &gt;, and &gt;= predicates. As data quality rules, CFDps and CIND(p)s are able to capture errors that commonly arise in practice but cannot be detected by CFDs and CINDs. We establish two sets of results for central technical problems associated with CFD(p)s and CIND(p)s. (a) One concerns the satisfiability and implication problems for CFD(p)s and CIND(p)s, taken separately or together. These are important for, e.g. deciding whether data quality rules are dirty themselves, and for removing redundant rules. We show that despite the increased expressive power, the static analyses of CFD(p)s and CIND(p)s retain the same complexity as their CFDs and CINDs counterparts. (b) The other concerns validation of CFD(p)s and CIND(p)s. We show that given a set Sigma of CFD(p)s and CIND(p)s on a database D, a set of SQL queries can be automatically generated that, when evaluated against D, return all tuples in D that violate some dependencies in Sigma. We also experimentally verified the efficiency and effectiveness of our SQL based error detection techniques, using real-life data. This provides commercial DBMS with an immediate capability to detect errors based on CFD(p)s and CIND(p)s.973 program [2014CB340300, 2012CB316200, 2014CB340302]; NSFC [61322207, 61133002]; Guangdong Innovative Research Team Program [2011D005]; Shenzhen Peacock Program [1105100030834361]; EPSRC [EP/J015377/1, EP/M025268/1]; NSF III [1302212]; Google Faculty Research Award; [ERC-2014-AdG 652976]SCI(E)[email protected]; [email protected]; [email protected]; [email protected]; [email protected]

    Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions

    Get PDF
    Ice crystals occurring in mixed-phase clouds play a vital role in global precipitation and energy balance because of the unstable equilibrium between coexistent liquid droplets and ice crystals, which affects cloud lifetime and radiative properties, as well as precipitation formation. Satellite observations proved that immersion freezing, i.e., ice formation on particles immersed within aqueous droplets, is the dominant ice nucleation (IN) pathway in mixed-phase clouds. However, the impact of anthropogenic emissions on atmospheric IN in the urban environment remains ambiguous. In this study, we present in situ observations of ambient ice-nucleating particle number concentration (NINP) measured at mixed-phase cloud conditions (−30 ∘C, relative humidity with respect to liquid water RHw= 104 %) and the physicochemical properties of ambient aerosol, including chemical composition and size distribution, at an urban site in Beijing during the traditional Chinese Spring Festival. The impact of multiple aerosol sources such as firework emissions, local traffic emissions, mineral dust, and urban secondary aerosols on NINP is investigated. The results show that NINP during the dust event reaches up to 160 # L−1 (where “#” represents number of particles), with an activation fraction (AF) of 0.0036 % ± 0.0011 %. During the rest of the observation, NINP is on the order of 10−1 to 10 # L−1, with an average AF between 0.0001 % and 0.0002 %. No obvious dependence of NINP on the number concentration of particles larger than 500 nm (N500) or black carbon (BC) mass concentration (mBC) is found throughout the field observation. The results indicate a substantial NINP increase during the dust event, although the observation took place at an urban site with high background aerosol concentration. Meanwhile, the presence of atmospheric BC from firework and traffic emissions, along with urban aerosols formed via secondary transformation during heavily polluted periods, does not influence the observed INP concentration. Our study corroborates previous laboratory and field findings that anthropogenic BC emission has a negligible effect on NINP and that NINP is unaffected by heavy pollution in the urban environment under mixed-phase cloud conditions.</p

    The Protective Effect of Ligustilide in Osteoarthritis: An in Vitro and in Vivo Study

    Get PDF
    Background/Aims: Osteoarthritis is a degenerative joint disease characterized by cartilage degeneration and a chondrocyte inflammatory response that induces an inflammatory environment closely linked to extracellular matrix (ECM) degradation. Ligustilide (LIG) is a major component of the herb Radix Angelicae Sinensis, with demonstrated anti-inflammatory effects. To confirm whether LIG has an equally inhibitory effect on inflammation in human osteoarthritis chondrocytes, we performed in vivo and in vitro experiments to validate the above conjectures and determine the relevant mechanisms. Methods: Quantitative realtime PCR and western blotting were performed to evaluate the expression of MMP-3, MMP-13, ADAMTS-5, iNOS, and COX-2 at both gene and protein levels. An enzyme-linked immunosorbent assay was used to evaluate the levels of other inflammatory factors (PGE2, TNF-α, and IL-6). The PI3K/AKT and nuclear factor kappa B (NF-κB) signaling pathways were also analyzed by western blotting, whereas immunofluorescence was used to assess the expression of collagen II and aggrecan. The in vitro effect of LIG was evaluated by intraperitoneal injection into a mouse osteoarthritis model induced by destabilization of the medial meniscus. Results: LIG lowered the phosphorylation levels of p65, IκBα, and IKKα/β and suppressed the IL-1β-induced expression of MMP-3, ADAMTS-5, iNOS, and COX-2 and the inflammatory factors PGE2, TNF-α, and IL-6. LIG markedly decreased IL-1β-induced degradation of collagen II and aggrecan. In vivo results showed that LIG-treated mouse cartilage showed less damage than the control group; the Osteoarthritis Research Society International (OARSI) score was also lower. LIG further reduced the thickness of the subchondral bone plate and alleviated the synovitis. Conclusion: LIG may act as a promising therapeutic agent for osteoarthritis by attenuating IL-1β-induced inflammation in chondrocytes and ECM degradation via suppression of NF-κB activation by the PI3K/AKT pathway
    corecore