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Extending Conditional Dependencies with
Built-in Predicates

Shuai Ma, Liang Duan, Wenfei Fan, Chunming Hu, and Wenguang Chen

Abstract—This paper proposes a natural extension of conditional functional dependencies (CFDs [22]) and conditional inclusion
dependencies (CINDs [30]), denoted by CFDps and CINDps, respectively, by specifying patterns of data values with ̸=, <,≤, > and ≥
predicates. As data quality rules, CFDps and CINDps are able to capture errors that commonly arise in practice but cannot be detected
by CFDs and CINDs. We establish two sets of results for central technical problems associated with CFDps and CINDps. (a) One
concerns the satisfiability and implication problems for CFDps and CINDps, taken separately or together. These are important for, e.g.,
deciding whether data quality rules are dirty themselves, and for removing redundant rules. We show that despite the increased
expressive power, the static analyses of CFDps and CINDps retain the same complexity as their CFDs and CINDs counterparts. (b) The
other concerns validation of CFDps and CINDps. We show that given a set Σ of CFDps and CINDps on a database D, a set of SQL

queries can be automatically generated that, when evaluated against D, return all tuples in D that violate some dependencies in Σ. We
also experimentally verified the efficiency and effectiveness of our SQL based error detection techniques, using real-life data. This
provides commercial DBMS with an immediate capability to detect errors based on CFDps and CINDps.

Index Terms—Conditional dependencies, built-in predicates, functional dependencies, inclusion dependencies, data quality

F

1 INTRODUCTION

Extensions of traditional functional dependencies (FDs) and
inclusion dependencies (INDs), known as conditional func-
tional dependencies (CFDs [22]) and conditional inclusion depen-
dencies (CINDs [30]), respectively, have recently been pro-
posed for improving data quality. These extensions enforce
patterns of semantically related data values, and detect
errors as violations of the dependencies. It has been shown
that conditional dependencies are able to capture more
inconsistencies than FDs and INDs [17], [21], [30].

Conditional dependencies specify constant patterns in
terms of equality (=). In practice, however, the semantics of
data often need to be specified with other predicates such as
̸=, <,≤, > and ≥, as illustrated by the following example.

Example 1: An online store maintains a database of two
relations: (a) item for items sold by the store, and (b) tax for
the sale tax rates for the items, except artwork, in various
states. The relations are specified by the following schemas:

item (id: string, name: string, type: string, price: float,
shipping: float, sale: bool, state: string)

tax (state: string, rate: float)

where each item is specified by its id, name, type (e.g., book,
CD), price, shipping fee, the state to which it is shipped, and
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whether it is on sale. A tax tuple specifies the sale tax rate in
a state. An instance D0 of item and tax is shown in Fig. 1.

One wants to specify dependencies on the relations as
data quality rules to detect errors in the data, such that
inconsistencies emerge as violations of the dependencies.
Traditional dependencies (FDs, INDs; see, e.g., [3]) and con-
ditional dependencies (CFDs, CINDs [22], [30]) on the data
include the following:

cfd1: item (id → name, type, price, shipping, sale)
cfd2: tax (state → rate)
cfd3: item (sale = ‘T’ → shipping = 0)

These are CFDs: (a) cfd1 assures that the id of an item
uniquely determines its name, type, price, shipping and sale;
(b) cfd2 states that state is a key for tax, i.e., for each state
there is a unique sale tax rate; and (c) cfd3 ensures that for
any item tuple t, if t[sale] = ‘T’ then t[shipping] must be 0;
i.e., free shipping is provided for items on sale. Here cfd3
is specified in terms of patterns of semantically related data
values, namely, sale = ‘T’ and shipping = 0. It is to hold only
on item tuples that match the pattern sale = ‘T’. In contrast,
cfd1 and cfd2 are traditional FDs without constant patterns,
a special case of CFDs. One can verify that no sensible INDs
or CINDs can be defined across item and tax.

Note that D0 of Fig. 1 satisfies cfd1, cfd2 and cfd3. That
is, when these dependencies are used as data quality rules,
no errors are found in D0.

In practice, the shipment fee of an item is typically
determined by the price of the item. Moreover, when an item
is on sale, the price of the item is often in a certain range.
Furthermore, for any item sold by the store to a customer in
a state, if the item is not artwork, then one expects to find the
sale tax rate in the state from the tax table. These semantic
relations cannot be expressed as CFDs of [22] or CINDs of
[30], but can be expressed as the following dependencies:
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id name type price shipping sale state
t1: b1 Harry Potter book 25.99 0 T WA
t2: c1 Snow White CD 9.99 2 F NY
t3: b2 Catch-22 book 34.99 20 F DL
t4: a1 Sunflowers art 5m 500 F DL

(a) An item relation

state rate
t5: PA 6
t6: NY 4
t7: DL 0
t8: NJ 3.5

(b) A tax rate relation

Figure 1. Example instance D0 of item and tax

pfd1: item (sale = ‘F’ and price ≤ 20 → shipping = 3)
pfd2: item (sale = ‘F’ and price > 20 and price ≤ 40

→ shipping = 6)
pfd3: item (sale = ‘F’ and price > 40 → shipping = 10)
pfd4: item (sale = ‘T’ → price ≥ 2.99 and price < 9.99)
pind1: item (state; type ̸= ‘art’) ⊆ tax (state; nil)

Here pfd2 states that for any item tuple, if it is not on sale and
its price is in the range (20, 40], then its shipment fee must
be 6; similarly for pfd1 and pfd3. These dependencies extend
CFDs [22] by specifying patterns of semantically related data
values in terms of predicates <, ≤, > and ≥. Similarly,
pfd4 assures that for any item tuple, if it is on sale, then its
price must be in the range [2.99, 9.99). Finally, pind1 extends
CINDs [30] by specifying patterns with ̸=: for any item tuple
t, if t[type] is not artwork, then there must exist a tax tuple t′

such that t[state] = t′[state], i.e., the sale tax of the item can
be found from the tax relation.

Using dependencies pfd1–pfd4 and pind1 as data quality
rules, we find that D0 of Fig. 1 is not clean. Indeed, (a) t2
violates pfd1: its price is less than 20, but its shipping fee is 2
rather than 3; similarly, t3 violates pfd2, and t4 violates pfd3.
(b) Tuple t1 violates pfd4: it is on sale but its price is not
in the range [2.99, 9.99). (c) The database D0 also violates
pind1: t1 is not artwork, but its state cannot find a match in
the tax relation, i.e., no tax rate for WA is found in D0. 2

None of pfd1–pfd4 and pind1 can be expressed as FDs or
INDs [3], which do not allows constants, or as CFDs [22]
or CINDs [30], which specify patterns with equality (=)
only. While there have been extensions of CFDs [10], [13],
[28], none of these allows dependencies to be specified
with patterns on data values in terms of built-in predicates
̸=, <,≤, > or ≥. To the best of our knowledge, the earlier
conference version [12] of this paper is the first to study
these constraints.

These highlight the need for extending CFDs and CINDs
to capture errors commonly found in real-life data. While
one can consider arbitrary extensions, it is necessary to
strike a balance between their expressive power and their
complexity. In particular, we want to be able to reason about
data quality rules expressed as extended CFDs and CINDs.
Furthermore, we want to have effective algorithms to detect
inconsistencies based on these extensions.

Contributions & Roadmap. To this end we introduce an
extension of CFDs and CINDs, investigate the static analyses
of these constraints, and develop effective SQL-based tech-
niques for detecting errors based on these constraints.

(1) We propose two classes of dependencies, denoted by
CFDps and CINDps, which respectively extend CFDs and
CINDs by supporting ̸=, <, ≤, >, ≥ predicates (Sections 2
and 3). For example, all the dependencies we have encoun-
tered so far can be expressed as CFDps or CINDps. These

dependencies are capable of capturing errors in real-world
data that cannot be detected by CFDs or CINDs.

(2) We establish the complexity bounds for the satisfiability
and implication problems for CFDps and CINDps, taken sepa-
rately or together (Section 4). The satisfiability problem is to
determine whether a set Σ of dependencies has a nonempty
model, i.e., whether the rules in Σ are consistent themselves.
The implication problem is to decide whether a set Σ of
dependencies entails another dependency φ, i.e., whether
the rule φ is redundant in the presence of the rules in Σ.
These are the central technical problems associated with any
dependency language.

We show that despite the increased expressive power,
CFDps and CINDps do not increase the complexity for rea-
soning about them. In particular, we show that the satis-
fiability and implication problems remain (a) NP-complete
and coNP-complete for CFDps, respectively, (b) in O(1)-time
(constant-time) and EXPTIME-complete for CINDps, respec-
tively, and (c) are undecidable when CFDps and CINDps are
taken together. These are the same as their CFDs and CINDs
counterparts [30]. In contrast, data with linearly ordered
domains often makes our lives harder [35].

(3) We provide SQL-based techniques to detect errors based
on CFDps and CINDps (Section 5). Given a set Σ of CFDps
and CINDps on a database D, we automatically generate a
set of SQL queries that, when evaluated on D, find all tuples
in D that violate some dependencies in Σ. Further, the SQL
queries are independent of the size and cardinality of Σ.
These provide the capability of detecting errors in a sin-
gle relation (CFDps) and across different relations (CINDps)
within the immediate reach of commercial DBMS.

(4) Using real-life data (HOSP and DBLP), we finally conduct
an extensive experimental study (Section 6). We show that
(a) the running time of CFDps and CINDps is comparable to
their CFDs and CINDs counterparts, which is consistent with
the static analyses in Section 4, and (b) CFDps and CINDps
are able to capture more errors than their CFDs and CINDs
counterparts (22% on HOSP and 75% on DBLP), due to the
increased expressive power.

Related work. This paper is an extension of our earlier
work [12] by adding (a) the proofs for the complexity
bounds for the satisfiability and implication analyses of
CFDps and CINDps, separately and taken together (Section 4),
and (b) an extensive experimental study of CFDps and
CINDps (Section 6), which was not investigated in [12].

Recently, data dependencies have generated renewed
interests for improving data quality [5], [10], [14], [15],
[22], [28], [30], [33], [36]. Constraint-based data cleaning
was introduced in [4], which proposed to use dependen-
cies, e.g., FDs, INDs and denial constraints, to detect and
repair errors in real-life data (see, e.g., [3], [15], [33] for
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(1) φ1 = tax (state → rate, T1) (2) φ2 = item (sale → shipping, T2)
state rate

T1:
sale shipping

T2: = T = 0

(3) φ3 = item (sale, price → shipping, T3) (4) CFDp φ4 = item (sale → price, T4)
sale price shipping
= F > 20 = 6

T3: = F ≤ 40 = 6

sale price
= T ≥ 2.99

T4: = T < 9.99

Figure 2. Example CFDps

details). Data dependencies have been studied for relational
databases since the introduction of FDs by Codd [16] in
1972 (see, e.g., [3] for details), and the theory of INDs was
established in [11], which developed a sound and complete
inference system and the PSPACE-completeness for the im-
plication analysis of INDs. As an extension of traditional
FDs, CFDs were developed in [22], for improving the quality
of data. It was shown in [22] that the satisfiability and
implication problems for CFDs are NP-complete and coNP-
complete, respectively. Along the same lines, CINDs [30]
were proposed to extend INDs, and it was shown [30] that
the satisfiability and implication problems for CINDs are
in constant time and EXPTIME-complete, respectively. SQL
techniques were developed in [22] to detect errors by using
CFDs, but have not been studied for CINDs. This work
extends the static analyses of conditional dependencies
of [22], [30], and has established several new complexity
results, notably in the absence of finite-domain attributes
(e.g., Theorems 2, 8 and Proposition 6). In addition, it is the
first work to develop SQL techniques for checking violations
of CINDs and violations of CFDps and CINDps taken together.

Extensions of CFDs have been proposed to support
disjunction and negation [10], cardinality constraints and
synonym rules [13], and to specify patterns in terms of
value ranges [28]. While CFDps are more powerful than
the extension of [28], they cannot express disjunctions [10],
cardinality constraints and synonym rules [13]. To our
knowledge no extensions of CINDs have been studied. This
work is the first full treatment of extensions of CFDs and
CINDs by incorporating built-in predicates ( ̸=, <,≤, >,≥),
from static analyses to error detection.

Methods have been developed for discovering CFDs [14],
[28], CFDps [36] and CINDs [5] and for repairing data based
on either CFDs [17], traditional FDs and INDs taken to-
gether [8], CFDs and CINDs taken together [19], denial con-
straints [7], aggregate constraints [25], matching dependen-
cies [20], matching dependencies and CFDs [24], or editing
rules and master data [23]. We defer the treatment of these
topics for CFDps and CINDps to future work.

A variety of extensions of FDs and INDs have been stud-
ied for specifying constraint databases and constraint logic
programs [6], [9], [27], [31], [32]. While the languages of [6],
[27], [31] cannot express CFDps, constraint-generating de-
pendencies (CGDs) of [6] and constrained tuple-generating
dependencies (CTGDs) of [32] can express CFDps, and CTGDs
can also express CINDps. The increased expressive power
of CTGDs comes at the price of a higher complexity: both
their satisfiability and implication problems are undecid-
able. Built-in predicates and arbitrary constraints are sup-
ported by CGDs, for which it is not clear whether effective

SQL queries can be developed to detect errors. It is worth
mentioning that Theorems 2 and 6 of this work provide
lower bounds for the consistency and implication analyses
of CGDs, by using patterns with built-in predicates only.

Observe that constraints specifying semantics with or-
derings have long been recognized, such as order depen-
dencies [27] supporting the comparison of attributes with
=, <,≤, >,≥, matching dependencies [20] and differential
dependencies [34] that support the comparison of attributes
with =, ̸=, <,≤, >,≥ for record matching. However, differ-
ent from CFDs and CFDps, these constraints do not specify
conditions on those tuples such that the embedded FDs hold.
Further, it is also possible that other existing constraints
could be improved by incorporating these built-in predi-
cates, such as metric functional dependencies [29].

2 EXTENDING CFDS WITH PREDICATES

We now define conditional functional dependencies with predi-
cates, denoted by CFDps, by extending CFDs [22] with built-in
predicates ( ̸=, <, ≤, >, ≥) in addition to equality (=).

Consider a relational schema R defined over a finite set
of attributes, denoted by attr(R). For each attribute A ∈
attr(R), its domain is specified in R, denoted as dom(A),
which is either finite (e.g., bool) or infinite (e.g., string). We
assume w.l.o.g. that a domain on which <, ≤, > or ≥ is
defined is totally ordered.

Syntax. A CFDp φ on R is a pair R(X → Y, Tp), where
(1) X,Y are sets of attributes in attr(R); (2) X → Y is a
standard FD, referred to as the FD embedded in φ; and (3) Tp
is a tableau with attributes in X and Y , referred to as the
pattern tableau of φ, where for each A in X ∪ Y and each
tuple tp ∈ Tp, tp[A] is either an unnamed variable ‘ ’ that
draws values from dom(A), or ‘op a’, where op is one of {=,
̸=, <, ≤, >, ≥}, and ‘a’ is a constant in dom(A).

If attribute A occurs in both X and Y , we use AL and
AR to indicate the occurrence of A in X and Y , respectively,
and we separate the X and Y attributes in a pattern tuple
with ‘∥’. We simply write φ as (X → Y, Tp) when R is
clear from the context, and denote X as LHS(φ) and Y as
RHS(φ), respectively.

Example 2: The dependencies cfd1–cfd3 and pfd1–pfd4 that
we have seen in Example 1 can all be expressed as CFDps.
Some of these CFDps are illustrated in Fig. 2, in which φ1 is
for FD cfd2, φ2 is for CFD cfd3, φ3 is for pfd2, and φ4 is for
pfd4, respectively. 2

Semantics. Consider CFDp φ = R(X → Y , Tp), where Tp =
{tp1 , . . . , tpk}.

A data tuple t of R is said to match LHS(φ), denoted by
t[X] ≍ Tp[X], if for each tuple tpi (i ∈ [1, k]) in Tp and each
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attribute A in X , either (a) tpi [A] is the wildcard ‘ ’ (which
matches any value in dom(A)), or (b) t[A] op a if tpi [A] is ‘op
a’, where the operator op (=, ̸=, <, ≤, > or ≥) is interpreted
by its standard semantics. Similarly, the notion that tmatches
RHS(φ) is defined, denoted by t[Y ] ≍ Tp[Y ].

Intuitively, each pattern tuple tpi (i ∈ [1, k]) specifies a
condition via tpi [X], and t[X] ≍ Tp[X] if t[X] satisfies the
conjunction of all these conditions. Similarly, t[Y ] ≍ Tp[Y ]
if t[Y ] matches all the patterns specified by tpi [Y ] for all
pattern tuples tpi in Tp.

An instance I ofR satisfies the CFDp φ, denoted by I |= φ,
if for each pair of tuples t1, t2 in I , if t1[X] = t2[X] ≍ Tp[X],
then t1[Y ] = t2[Y ] ≍ Tp[Y ]. That is, if t1[X] and t2[X] are
equal and in addition, they both match the pattern tableau
Tp[X], then t1[Y ] and t2[Y ] must also be equal to each other
and they both match the pattern tableau Tp[Y ].

Observe that φ is imposed only on the subset of tuples
in I that match LHS(φ), rather than on the entire I . For all
tuples t1, t2 in this subset, if t1[X] = t2[X], then (a) t1[Y ] =
t2[Y ], i.e., the semantics of the embedded FDs is enforced;
and (b) t1[Y ] ≍ Tp[Y ], which assures that the constants in
t1[Y ] match the constants in tpi [Y ] for all tpi in Tp. Note that
here tuples t1 and t2 can be the same.

An instance I of R satisfies a set Σ of CFDps, denoted by
I |= Σ, if I |= φ for each CFDp φ in Σ.
Example 3: The instance D0 of Fig. 1 satisfies φ1 and φ2

of Fig. 2, but neither φ3 nor φ4. Indeed, tuple t3 violates
(i.e., does not satisfy) φ3, since t3[sale] = ‘F’ and 20 <
t3[price] ≤ 40, but t3[shipping] is 20 instead of 6. Note that
t3 matches LHS(φ3) since it satisfies the condition specified
by the conjunction of the pattern tuples in T3. Similarly, t1
violates φ4, since t1[sale] = ‘T’ but t1[price] > 9.99. Observe
that while it takes two tuples to violate a standard FD, a
single tuple may violate a CFDp. 2

Special cases. (1) A standard FD X → Y [3] can be ex-
pressed as a CFD (X → Y, Tp) in which Tp contains a single
tuple consisting of ‘ ’ only, without constants. (2) A CFD
(X → Y, Tp) [22] with Tp = {tp1, . . . , tpk} can be expressed
as a set {φ1, . . . , φk} of CFDps such that for each i ∈ [1, k],
φi = (X → Y, Tpi), where Tpi contains the pattern tuple tpi
of Tp only, defined with equality (=) only. For example, φ1

and φ2 in Fig. 2 are CFDps representing FD cfd2 and CFD cfd3
in Example 1, respectively. Note that all data quality rules
in [14], [28] can be expressed as CFDps.

3 EXTENDING CINDS WITH PREDICATES

Similar to CFDps, we define conditional inclusion dependencies
with predicates, denoted by CINDps, by extending CINDs [30]
with built-in predicates ( ̸=, <, ≤, >, ≥) in addition to
equality (=). Consider two relational schemas R1 and R2.

Syntax. A CINDp ψ is a pair (R1[X; Xp] ⊆ R2[Y ; Yp], Tp),
where (1) X,Xp and Y, Yp are lists of attributes in attr(R1)
and attr(R2), respectively; (2) R1[X] ⊆ R2[Y ] is a standard
IND, referred to as the IND embedded in ψ; and (3) Tp is a
tableau, called the pattern tableau of ψ defined over attributes
Xp ∪ Yp, and for each A in Xp or Yp and each pattern tuple
tp ∈ Tp, tp[A] is either an unnamed variable ‘ ’ that draws
values from dom(A), or ‘op a’, where op is one of =, ̸=, <,≤
, >,≥ and ‘a’ is a constant in dom(A).

We denote X ∪ Xp as LHS(ψ), Y ∪ Yp as RHS(ψ), and
separate the Xp and Yp attributes in a pattern tuple with ‘∥’.
We also use nil to denote an empty list.

Example 4: Figure 3 shows two example CINDps: ψ1 ex-
presses the pind1 in Example 1, and ψ2 refines ψ1 by stating
that for any item tuple t1, if its type is not art and its state
is DL, then there must be a tax tuple t2 such that its state
is DL and rate is 0, i.e., ψ2 assures that the sale tax rate in
Delaware is 0. 2

Semantics. Consider CINDp ψ = (R1[X; Xp] ⊆ R2[Y ; Yp],
Tp). An instance (I1, I2) of (R1, R2) satisfies the CINDp ψ,
denoted by (I1, I2) |= ψ, iff for each tuple t1 ∈ I1, if t1[Xp] ≍
Tp[Xp], then there exists a tuple t2 ∈ I2 such that t1[X] =
t2[Y ] and t2[Yp] ≍ Tp[Yp].

That is, if t1[Xp] matches the pattern tableau Tp[Xp], then
ψ assures the existence of t2 such that (1) t1[X] = t2[Y ] as
needed by the standard IND embedded in ψ; and, moreover,
(2) t2[Yp] must match the pattern tableau Tp[Yp]. In other
words, ψ is “conditional” since its embedded IND is applied
only to the subset of tuples in I1 that match Tp[Xp], and
Tp[Yp] is enforced on the tuples in I2 that match those
tuples in I1. As remarked in Section 2, the pattern tableau
Tp specifies the conjunction of all the pattern tuples in Tp.

Example 5: The instance D0 of item and tax in Fig. 1 violates
CINDp ψ1. Indeed, tuple t1 in item matches LHS(ψ1) since
t1[type] ̸= ‘art’, but there is no tuple t in tax such that t[state]
= t1[state] = ‘WA’. In contrast, D0 satisfies ψ2. 2

We say that a database D satisfies a set Σ of CINDps,
denoted by D |= Σ, if D |= ψ for each ψ ∈ Σ.

Safe CINDps. We say a CINDp (R1[X; Xp] ⊆ R2[Y ; Yp], Tp)
is unsafe if there exist pattern tuples tp, t′p in Tp such that
either (a) there exists B ∈ Yp, such that tp[B] and t′p[B] are
not satisfiable when taken together, or (b) there exist C ∈ Y ,
A ∈ X such that A corresponds to C in the embedded IND
and tp[C] and t′p[A] are not satisfiable when taken together;
e.g., tp[price] = 9.99 and t′p[price] ≥ 19.99.

Obviously unsafe CINDps do not make sense: no
nonempty databases satisfy unsafe CINDps. It takes O(|Tp|2)
time in the size |Tp| of Tp to decide whether a CINDp is
unsafe. Thus in the sequel we consider safe CINDp only.

Special cases. (1) A standard IND (R1[X] ⊆ R2[Y ]) can be
expressed as a CINDp (R1[X; nil] ⊆ R2[Y ; nil], Tp) such
that Tp is simply a empty set. (2) A CIND (R1[X; Xp] ⊆
R2[Y ; Yp], Tp) with Tp = {tp1, . . . , tpk} can be expressed
as a set {ψ1, . . . , ψk} of CINDps, where for each i ∈ [1, k], ψi
= (R1[X; Xp] ⊆ R2[Y ; Yp], Tpi) such that Tpi consists of
the pattern tuple tpi of Tp, defined with equality (=) only.

4 REASONING ABOUT CFDpS AND CINDpS

The satisfiability and implication problems are the two clas-
sical questions associated with any dependency languages
[3], [22], [30]. In this section we investigate these problems
for CFDps and CINDps, separately and taken together.

4.1 Satisfiability Analyses
The satisfiability problem is to determine, given a set Σ of
constraints, whether there exists a nonempty database that
satisfies Σ.
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(1) ψ1 = (item [state; type] ⊆ tax [state; nil], T1),

(2) ψ2 = (item [state; type, state] ⊆ tax [state; rate], T2)

T1:
type nil
̸= art T2:

type state rate
̸= art = DL = 0

Figure 3. Example CINDps

The satisfiability analysis of conditional dependencies
is not only of theoretical interest, but is also important in
practice. Indeed, when CFDps and CINDps are used as data
quality rules, this analysis helps one check whether the rules
make sense themselves. The need for this is particularly
evident when the rules are manually designed or discovered
from various datasets [5], [14], [28].

Satisfiability analysis of CFDps. Given any FDs, one does
not need to worry about their satisfiability as any set of FDs
is always satisfiable. However, as observed in [22], for a set
Σ of CFDs on a relational schema R, there may not exist
a nonempty instance I of R such that I |= Σ. As CFDs are
a special case of CFDps, the same problem exists when it
comes to CFDps.

Example 6: Consider a CFDp φ = (R : A→ B, Tp) such that
Tp = {( ∥= a), ( ∥≠ a)}. There is no nonempty instance I
of R that satisfies φ. Indeed, for any R tuple t, φ requires
that both t[B] = a and t[B] ̸= a, which is impossible. 2

This problem is already NP-complete for CFDs [22]. Be-
low we show that it remains the same complexity for CFDps
despite their increased expressive power.

Proposition 1: The satisfiability problem for CFDps is NP-
complete. 2

Proof: The lower bound follows from the NP-hardness of
their CFDs counterparts [22], since CFDs are a special case
of CFDps. The upper bound is verified by presenting an NP
algorithm that, given a set Σ of CFDps defined on a relational
schema R, determines whether Σ is satisfiable.

We next present an NP algorithm that, given a set Σ of
CFDps defined on a relational schemaR, determines whether
Σ is satisfiable or not. The satisfiability problem has the
following small model property: If there is a nonempty R
instance I such that I |= Σ, then for any tuple t ∈ I , instance
It ={t} satisfies Σ. Thus it suffices to consider single-tuple
instances I = {t} for deciding whether Σ is satisfiable.

Assume w.l.o.g. that the attributes attr(R) = {A1, . . . ,
Am} and the total number of pattern tuples in all pattern
tableaux Tp of CFDps in Σ is h. For each i ∈ [1,m], define the
active domain ofAi to be a set adom(Ai) =C0∪C1, where (1)
C0 consists of all constants in Tp[Ai] of all pattern tableaux
Tp in Σ, and if C0 is empty, we further let C0 = {a1, a2},
where a1, a2 ∈ dom(Ai) and a1 ̸= a2, and (2) C1 contains
the set of constants for the attributes whose domains have
total orders, i.e., involved with predicates ̸=, <, ≤, > or ≥:

(1) Arrange all constants in C0 in the increasing order,
and assume the resulting C0 = {a1, . . . , ak} (k ≥ 1);

(2) Add a constant b01 ∈ dom(Ai) to C1 such that b01 <
a1 if there exists one; And also add another constant
b02 ∈ dom(Ai) toC1 such that b02 < a1 and b02 ̸= b01
if there exists one;

(3) Similarly, for each j ∈ [1, k − 1], add a constant
bj1 ∈ dom(Ai) to C1 such that aj < bj1 < aj+1

if there exists one; And also add another constant
bj2 ∈ dom(Ai) to C1 such that aj < bj2 < aj+1 and
bj2 ̸= bj1 if there exists one;

(4) Finally, add a constant bk1 ∈ dom(Ai) to C1 such that
bk1 > ak if there exists one; And also add another
constant bk2 ∈ dom(Ai) to C1 such that bk2 > ak and
bk2 ̸= bk1 if there exists one.

Moveover, the number of elements in adom(Ai) is at most
3 ∗ h + 2. Then one can easily verify that Σ is satisfiable iff
there exists a mapping ρ from t[Ai] to adom(Ai) (i ∈ [1,m])
such that I = {(ρ(t[A1]), . . . , ρ(t[Am]))} and I |= Σ.

We now give an NP algorithm as follows: (1) Guess an
instance, which contains a single tuple t of R such that
t[Ai] ∈ adomAi for each i ∈ [1,m]. (2) Check whether
I |= Σ. If so the algorithm returns ‘yes’, and otherwise it
repeats steps (1) and (2). Obviously step (2) can be done in
PTIME in the size of Σ. Hence the algorithm is in NP, and so
is the problem. 2

It is known [22] that the satisfiability problem for CFDs
is in PTIME when the CFDs considered are defined over
attributes that have an infinite domain, i.e., in the absence
of finite domain attributes. However, this is no longer the
case for CFDps. This tells us that the increased expressive
power of CFDps does take a toll in this special case. It should
be remarked that while the proof of Proposition 1 is an
extension of its counterpart in [22], the result below is new.

Theorem 2: In the absence of finite domain attributes, the
satisfiability problem for CFDps remains NP-complete. 2

Proof: The problem is in NP by Proposition 1. Its NP-
hardness is shown by reduction from the 3SAT problem,
which is NP-complete (cf. [26]).

We next show the reduction from the 3SAT problem.
Consider an instance ϕ = C1∧· · ·∧Cn of 3SAT, where all the
variables in ϕ are x1, . . . , xm, Cj is of the form yj1 ∨yj2 ∨yj3
such that for each i ∈ [1, 3], yji is either xpji or xpji for
pji ∈ [1,m]. Given ϕ, we construct a relational schema R
and a set Σ of CFDps defined on R such that ϕ is satisfiable
iff Σ is satisfiable.

(1) We first define the relational schema R(X1, . . . , Xm,
C1, . . . , Cn, Z), where all attributes share a common infinite
domain dom that contains constant a. Intuitively, for each
R tuple t, t[X1, . . . , Xm] specifies a truth assignment ξ for
variables x1, . . . , xm of ϕ, and t[Ci] (i ∈ [1, n]) and t[Z]
are the truth values of clause Ci and sentence ϕ w.r.t. the
assignment ξ, respectively.

(2) We then construct the set CFDps Σ = Σ0 ∪Σ1 ∪ . . .∪Σn ∪
Σn+1, defined as follows.

(a) Σ0 contains n+1 CFDps, which intuitively encode the
relationships of the truth values between the clauses
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C1, . . . , Cn and sentence ϕ.
For each clause Ci (i ∈ [1, n]), we add to Σ0 a CFDp

φi = (C1, . . . , Cn → Z, Tpi), in which Tpi = {tpi}
such that tpi[Ci, Z] = (̸= a ∥≠ a) and tpi[Cj ] = ‘ ’
for any j ̸= i and j ∈ [1, n]. We also add to Σ0

a CFDp φ0 = (C1, . . . , Cn → Z, Tp0), where Tp0 =
{(= a, . . . ,= a ∥= a)}. Intuitively, we use ̸= a and
= a to represent false and true, respectively.

(b) For i ∈ [1, n], Σi contains 8 CFDps, which intuitively
encode the relationships of the truth values between
the clause Ci and its three variables.
For clause Ci = xj1 ∨ xj2 ∨ xj3 of ϕ with 1 ≤ j1,
j2, j3 ≤ m, we define CFDps (a) φi,0 = (Xj1 , Xj2 ,
Xj3 → Ci, Tpi,0) with Tpi,0 = {(< a,< a,< a
∥= a)}, (b) φi,1 = (Xj1 , Xj2 , Xj3 → Ci, Tpi,2) with
Tpi,1 = {(< a,< a,≥ a ∥= a)}, and (c) φi,2 =
(Xj1 , Xj2 , Xj3 → Ci, Tpi,2) with Tpi,2 = {(< a,≥
a,< a ∥≠ a)}. Similarly, we can define the rest 5
CFDps φi,3, φi,4, φi,5, φi,6 and φi,7. Intuitively, we
further use < a and ≥ a to represent false and true
for a variable, respectively.

(c) Σn+1 contains a single CFDp φn+1 = (Z → Z ,
Tp(n+1)) with Tp(n+1) = {( ∥= a)}. Intuitively, φn+1

requires that for any R tuple t, t[Z] = a.

Observe that Σ contains 8 ∗ m + n + 2 CFDps in total.
Thus the reduction is in PTIME.

We now show that ϕ is satisfiable iff Σ is satisfiable.
Assume first that Σ is satisfiable, then we show that

there exists a nonempty instance I of R such that I |= Σ.
For any tuple t ∈ I , (a) Σn+1 forces t[Z] = a, (b) Σ0

forces t[C1, . . . , Cn] = (a, . . . , a), and (c) for each clause
Ci (i ∈ [1, n]) with variables Xj1 , Xj2 , Xj3 , Σj forces that
t[Xj1 , Xj2 , Xj3 ] does not match the LHS of the CFDps that
force t[Ci] ̸= a. From the tuple t, we can construct a truth
assignment ξ of ϕ such that ξ(xi) = false if t[Xi] < a and
ξ(xi) = true if t[Xi] ≥ a (i ∈ [1,m]). Since {t} |= Σ, it is easy
to verify that the truth assignment ξ makes ϕ true.

Conversely, if ϕ is satisfiable, there exists a truth assign-
ment ξ that makes ϕ true. We construct a tuple t of R as
follows: (a) t[C1, . . . , Cn, Z] = (a, . . . , a) and (b) for each
i ∈ [1,m], t[Xi] = ai such that (a) ai ∈ dom and ai ≥ a if
ξ(xi) = true and (b) ai < a otherwise. Let I = {t}, then one
can easily verify that I |= Σ.

Putting these together, we have the conclusion. 2

Satisfiability analysis of CINDps. Like FDs, one can spec-
ify arbitrary INDs or CINDs without worrying about their
satisfiability. Below we show that CINDps preserve this nice
property, by extending the proof of its counterpart in [30].

Proposition 3: Any set of CINDps is always satisfiable. 2

Proof: Given a set Σ of CINDps over a database schema
R(R1, . . . , Rn), we show that one can always construct a
nonempty instance D of R such that D |= Σ.

We build D as follows. First, for each attribute A, define
the active domain of A to be a set adom(A), which consists
of certain data values in dom(A). Second, using these active
domains, we construct D.

(1) We start with the construction of active domains. (a) For
each attribute A, initialize adom(A) along the same lines

as the one for CFDps in Proposition 1; (b) For each CINDp

(Ra[A1, A2, . . . , Am;Xp] ⊆Rb[B1, . . . , Bm;Yp], Tp) in Σ, let
adom(Bi) = adom(Bi) ∪ adom(Ai) for each i ∈ [1,m], and
this rule is repeatedly applied until a fixpoint of adom(A) is
reached for all attributes A in R.

It is easy to verify that this process always terminates as
we start with a finite set of data values.

(2) We next construct the database instance D. For each rela-
tion Ri(A1, . . . , Ak) ∈ R, we define Ii = adom(A1)× · · · ×
adom(Ak), where × is the Cartesian Product operation [3].
Let D = {I1, . . . , In}, then it is easy to verify that D is
nonempty and D |= Σ. 2

Satisfiability analysis of CFDps and CINDps. The sat-
isfiability problem for CFDs and CINDs taken together is
undecidable [30]. Since CFDps and CINDps subsume CFDs
and CINDs, respectively, we immediately have the following.

Corollary 4: The satisfiability problem for CFDps and CINDps is
undecidable. 2

4.2 Implication Analyses
The implication problem is to determine, given a set Σ of
dependencies and another dependency ϕ, whether or not Σ
entails ϕ, denoted by Σ |= ϕ. That is, whether or not for all
databases D, if D |= Σ then D |= ϕ.

The implication analysis helps us remove redundant
rules, and thus improve the performance of error detection
and repairing based on the rules [22], [30].

Example 7: The CFDps in Fig. 2 imply another CFDp φ =
item (sale, price → shipping, T ), where T consists of a single
pattern tuple (sale =‘F’, price = 30 ∥ shipping = 6). Thus in
the presence of the CFDps in Fig. 2, φ is redundant. 2

Implication analysis of CFDps. We first show that the
implication problem for CFDps retains the same complexity
as their CFDs counterpart, verified by extending the proof of
its counterpart in [22].

Proposition 5: The implication problem for CFDps is coNP-
complete. 2

Proof: The lower bound follows from the coNP-hardness of
their CFDs counterpart [22], since CFDs are a special case of
CFDps. The coNP upper bound is verified by presenting an
NP algorithm for its complement problem for determining
whether Σ ̸|= φ.

We next present the a NP algorithm for its complement
problem. The algorithm is based on a small model property:
if φ = R(X → Y, Tp) and Σ ̸|= φ, then there exists an
instance I of R with two tuples t1 and t2 such that I |= Σ
and t1[X] = t2[X] ≍ Tp[X], but either t1[Y ] ̸= t2[Y ]
or t1[Y ] ̸≍ Tp[Y ] (resp. t2[Y ] ̸≍ Tp[Y ]). Thus it suffices
to consider instances I with two tuples only for deciding
whether Σ ̸|= φ.

Assume that the attributes attr(R) = {A1, . . . , Am}. For
each i ∈ [1,m], let adom(Ai) be the active domain defined
in Proposition 1. Then one can easily verify that Σ ̸|= φ iff
there exist two mappings ρ1 and ρ2 from all attributes Ai to
adom(Ai) (i ∈ [1,m]) such that I = {(ρ1(A1), . . . , ρ1(Am)),
(ρ2(A1), . . . , ρ2(Am))}, I |= Σ, but I ̸|= φ.
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Based on these, we give an NP algorithm as follows:
(1) Guess two R tuples t1 and t2 such that t1[Ai], t2[Ai] ∈
adom(Ai) for each i ∈ [1,m]. (2) Check whether I = {t1, t2}
satisfies Σ, but not φ. If so the algorithm returns ‘yes’, and
otherwise it repeats steps (1) and (2). Obviously step (2) can
be done in PTIME in the size of Σ. Hence the algorithm is in
NP, and so is the problem. 2

Similar to the satisfiability analysis, it is known [22]
that the implication analysis of CFDs is in PTIME when the
CFDs are defined only with attributes that have an infinite
domain. Analogous to Theorem 2, the result below shows
that this is no longer the case for CFDps, which does not find
a counterpart in [22].

Proposition 6: In the absence of finite domain attributes, the
implication problem for CFDps is coNP-complete. 2

Proof: The problem is in coNP by Proposition 5. The coNP-
hardness is shown by reduction from the 3SAT problem to
its complement problem, i.e., the problem for determining
whether Σ ̸|= φ.

We next show the reduction from the 3SAT problem to
the complement problem of the implication problem for
CFDps, where 3SAT is NP-complete (cf. Proposition 2). Given
an instance ϕ of 3SAT, we construct a relational schema R
and a set Σ ∪ {φ} of CFDps defined on R such that ϕ is
satisfiable iff Σ ̸|= φ.

The relational schema R and the set Σ of CFDps are the
same as the corresponding ones in Proposition 2. Moreover,
φ is defined as (Z → Z, Tp), where Tp = {( ∥≠ a)}.
Intuitively, φ requires that for any R tuple t, t[Z] ̸= a. Along
the same lines as Proposition 2, one can easily verify that ϕ
is satisfiable iff Σ ̸|= φ. Thus the problem is coNP-hard. 2

Implication analysis of CINDps. We next show that CINDps
do not make their implication analysis harder, verified by
extending the proof of their CINDs counterpart given in [30].

Proposition 7: The implication problem for CINDps is EXPTIME-
complete. 2

Proof: The implication problem for CINDs is EXPTIME-hard
[30]. Since CINDps subsume CINDs, the lower bound carries
over to CINDps immediately. The EXPTIME upper bound is
shown by presenting an EXPTIME algorithm that, given a set
Σ ∪ {ψ} of CINDps over a database schema R, determines
whether Σ |= ψ or not.

We next present the EXPTIME algorithm. Consider R =
(R1, . . . , Rn) and ψ = (Ra[X; Xp] ⊆ Rb[Y ;Yp], Tp). And
for each attribute A, define the active domain adom(A) of
A based on Σ ∪ {ψ} along the same line as the proof of
Proposition 3. One can easily verify that if Σ ̸|= ψ, there
exists a non-empty instance D of R such that (a) D |= Σ
and D ̸|= ψ, and (b) D consists of data values from the
active domains only.

The detailed EXPTIME algorithm is given as follows.

(1) We first build a labeled directed graph G(V,E, l). Each
node u ∈ V is a possible tuple ‘Ri : ti’ such that
ti[A] ∈ adom(A) for each attribute A ∈ attr(Ri). There
is an edge e = (‘Ri : ti’, ‘Rj : tj ’) in E iff there exists
a CINDp ϕ = (Ri[U ;Up] ⊆ Rj [V ;Vp], Tpϕ) in Σ such that

ti[Up] ≍ Tpϕ [Up], tj [V ] = ti[U ] and tj [Vp] ≍ Tpϕ [Vp], and e
is labeled with the CINDp ϕ, i.e., ϕ ∈ l(e). Note that an edge
may have multiple labels.

(2) Let Sa be the set of nodes ‘Ra : ta’ such that ta[Xp] ≍
Tp[Xp], and Sb be the set of nodes ‘Rb : tb’ such that tb[Yp] ≍
Tp[Yp], respectively.

(3) For each node u = ‘Ra : ta’ in Sa, let Gu be the induced
subgraph of G that contains all the nodes reachable from u,
and exactly the edges that appear in G over the same set of
nodes. We also refer to u as the root of Gu.

(4) For an induced subgraph Gu of G with root u = ‘Ra : ta’,
we derive another graph G′

u by recursively removing edges
as follows. For any v in Gu, if v has a child v′ from which
no nodes in ‘Rb : tb’ in Sb with tb[X] = tb[Y ] are reachable,
then for all children v′′ of v, we remove from labels l(v, v′′)
all the labels in l(v, v′), and edge (v, v′′) is removed when
l(v, v′′) becomes empty.

(5) If there exists a subgraph G′
u derived from an induced

subgraph Gu of G with root u = ‘Ra : ta’ such that no nodes
‘Rb : tb’ in Sb with ta[X] = tb[Y ] are reachable from u, we
return ‘no’, and return ‘yes’, otherwise.

It can be verified that (a) if the algorithm returns ‘no’,
we can construct an instance D such that D |= Σ, but not
ψ, by collecting those tuples attached on the end nodes of
edges whole labels become empty at setp 4; and (b) if the
algorithm returns ‘yes’, there exist no instances D such that
D |= Σ, but not ψ.

We next show that the above algorithm indeed runs in
exponential time: (a) The number of nodes in graph G is
bounded by the maximum number of tuples in a database
instance on R. Let |Σ∪ {ψ}| be the size of Σ and ψ, and |R|
be the sum of arities of all relations in R. Then the number of
tuples in a database instance is bounded by O(|Σ∪{ψ}||R|);
(b) The number of nodes in sets Sa or Sb is bounded by
the maximum number of tuples in a database too; (c) The
induced subgraph and the reachability testing can be done
in linear-time in the size of the input [18].

Putting all these together, we have shown that the algo-
rithm runs in exponential time. And, hence, the problem is
in EXPTIME. 2

It is known [30] that the implication problem is PSPACE-
complete for CINDs defined with infinite domain attributes.
Similar to Theorem 6, below we show that this no longer
holds for CINDps.

Theorem 8: In the absence of finite domain attributes, the
implication problem for CINDps remains EXPTIME-complete. 2

Proof: The problem is in EXPTIME by Proposition 7. The
EXPTIME-hardness is shown by reduction from the impli-
cation problem for CINDs in the general setting, in which
finite-domain attributes may be present, that is known to be
EXPTIME-complete [30].

We next present the reduction from the implication prob-
lem for CINDs in the general setting. Given a set Σ ∪ {ψ}
of CINDs defined on a database schema R (R1, . . . , Rn),
we construct another database schema R′(R′

1, . . . , R
′
n), in

which each relationR′
i (i ∈ [1, n]) consists of infinite domain

attributes only, and a set Σ′∪{ψ′} of CINDps on R′ such that
Σ |= ψ iff Σ′ |= ψ′.
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Table 1
Summary of Complexity Results

General setting Infinite domain only
Σ Satisfiability Implication Satisfiability Implication

CFDs [22] NP-complete coNP-complete PTIME PTIME
CFDps NP-complete coNP-complete NP-complete coNP-complete

CINDs [30] O(1) EXPTIME-complete O(1) PSPACE-complete
CINDps O(1) EXPTIME-complete O(1) EXPTIME-complete

CFDs + CINDs [30] undecidable undecidable undecidable undecidable
CFDps + CINDps undecidable undecidable undecidable undecidable

(1) We start with constructing R′. For each Ri(A1, . . . , Ak)
of R, we define R′

i(A
′
1, . . . , A

′
k) such that for each attribute

A′
j(j ∈ [1, k]), let dom(A′

j) = dom(Aj) if dom(Aj) is infi-
nite, and let dom(A′

j) be integer, a totally ordered infinite
domain, if dom(Aj) is finite. Moreover, we define a map-
ping ρi,j for each finite domain dom(Aj) = {a1, . . . , ah}
to integer: (a) Randomly choose h consecutive integers
{b1, . . . , bh} such that for each i ∈ [1, h − 1], bi+1 = bi + 1.
(b) We now define the mapping ρi,j(ai) = bi for i ∈ [1, h].
Moreover, we require two extra integers b0 = b1 − 1 and
bh+1 = bh + 1, denoted as ρi,j .b0 and ρi,j .bh+1. Note that
this is always doable. For clarity, we also denote ρi,j as ρ
when it is clear from the context.

(2) We next define Σ′ and ψ′ on R′ based on the map-
pings defined above. For each CIND (Ra[X; A1, . . . , Am1] ⊆
Rb[Y ;B1, . . . , Bm2], Tp) in Σ and each tp ∈ Tp, we de-
fine another CINDp (R′

a[X
′;A′

1, . . . , A
′
m1, X

′
p] ⊆ R′

b[Y
′;

B′
1, . . . , B

′
m2, Y

′
p ], T

′
p), where (a) X ′ (resp. Y ′, A′

1, . . . , A
′
m1

and B′
1, . . . , B

′
m2) corresponds to X (resp. Y,A1, . . . , Am1

and B1, . . . , Bm2); (b) X ′
p (resp. Y ′

p) corresponds to
those finite domain attributes in Ra (resp. Rb), but
not in A1, . . . , Am1 (resp. B1, . . . , Bm2); and (c) T ′

p =
{t′p1, t′p2, t′p3} such that for each attribute A′ in A′

1, . . . , A
′
m1

or B′
1, . . . , B

′
m2, (i) t′p1[A

′] = tp[A] and t′p2[A
′] = t′p3[A

′] = ‘ ’
if dom(A) is infinite, and (ii) t′p1[A

′] = ρ(tp[A]) and t′p2[A
′] =

t′p3[A
′] = ‘ ’ if dom(A) is finite; and (iii) for the rest attributes

A′ in X ′
p or Y ′

p , t′p1[A
′] = ‘ ’, t′p2[A

′] = ‘> ρ.b0’, and t′p3[A
′] =

‘< ρ.bh+1’. Similarly, we can define a set Σψ of CINDps from
ψ based on the mappings.

Finally, one can easily verify that Σ |= ψ iff Σ′ |= Σψ , i.e.,
Σ′ |= ψ′ for each CINDp ψ′ ∈ Σψ . Following from this, the
problem is EXPTIME-hard. 2

Implication analysis of CFDps and CINDps. When CFDps
and CINDps are taken together, their implication analysis is
beyond reach in practice. This is not surprising since the
implication problem for FDs and INDs is already undecid-
able [3]. Since CFDps and CINDps subsume FDs and INDs,
respectively, from the undecidability result for FDs and INDs,
the corollary below follows immediately.

Corollary 9: The implication problem for CFDps and CINDps is
undecidable. 2

Remarks. Inference systems play an important role for the
implication analyses [3]. For the inference system of CFDps
and CINDps alone, we can readily extend the one for CFDs
[22] and CINDs [30], respectively, by deliberately handling
the entailment of ordered pattern values involved with
built-in predicates and their interaction with the wildcard

‘ ’. The details are left to interested readers. Note that it
is easy to know that the implication analysis of CFDps and
CINDps together is not finitely axiomatizable by Corollary 9.

Summary. The complexity bounds for reasoning about
CFDps and CINDps are summarized in Table 1. To give a
complete picture we also include in Table 1 the complexity
bounds for the static analyses of CFDs and CINDs, taken
from [22], [30]. The results tell us the following.

(1) Despite the increased expressive power, CFDps and
CINDps do not complicate the static analyses in the general
case: the satisfiability and implication problems for CFDps
and CINDps have the same complexity bounds as their coun-
terparts for CFDs and CINDs, taken separately or together.

(2) In the special case when CFDps and CINDps are defined
with infinite domain attributes only, however, their static
analyses do not get simpler, as opposed to their counterparts
for CFDs and CINDs. That is, the increased expressive power
of CFDps and CINDps comes at a price in this special case.

5 VALIDATION OF CFDpS AND CINDpS

If CFDps and CINDps are to be used as data quality rules, the
first question we have to settle is how to effectively detect
errors and inconsistencies as violations of these dependen-
cies, by leveraging functionality supported by commercial
DBMS. More specifically, consider a database schema R =
(R1, . . . , Rn), where Ri is a relational schema for i ∈ [1, n].
The error detection problem is stated as follows.

The error detection problem is to find, given a set Σ of
CFDps and CINDps defined on R, and a database instance
D = (I1, . . . , In) of R as input, the subset (I ′1, . . . , I

′
n) of D

such that for each i ∈ [1, n], I ′i ⊆ Ii and each tuple in I ′i
violates at least one CFDp or CINDp in Σ. We denote the set
as vio(D,Σ), referred to it as the violation set of D w.r.t. Σ.

In this section we develop SQL-based techniques for error
detection based on CFDps and CINDps. The main result of the
section is as follows.

Theorem 10: Given a set Σ of CFDps and CINDps defined on R
= (R1, . . . , Rn) and a database instance D of R, a set of SQL
queries can be automatically generated such that (a) the collection
of the answers to the SQL queries in D is vio(D,Σ), and (b) the
number and size of the set of SQL queries depend only on the
number n of relations and their arities in R, regardless of Σ. 2

Let Σicfdp be the set of all CFDps in Σ defined on the same
relational schema Ri, and Σ

(i,j)
cindp the set of all CINDps in Σ

from Ri to Rj , for i, j ∈ [1, n]. We show the following. (a)
The violation set vio(D,Σicfdp) can be computed by two SQL

queries. (b) Similarly, vio(D,Σ(i,j)
cindp) can be computed by a
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single SQL query. (c) These SQL queries use pattern tableaux
of CFDps (CINDps) encoded with data tables, and hence their
sizes are independent of Σ. From these Theorem 10 follows
immediately.

We next present the main techniques for the query
generation method, and the key idea is to encode CFDps
and CINDps with data tables so that data dependencies and
data themselves are uniformly represented, and SQL queries
are then automatically generated to detect those tuples that
violate certain CFDps or CINDps.

5.1 Encoding CFDps and CINDps with Data Tables
We first show the following, by extending the encoding
of [10], [22]. The pattern tableaux of all CFDps in Σicfdp can
be encoded with three data tables, and the pattern tableaux of
all CINDps in Σ

(i,j)
cindp can be represented as four data tables, no

matter how many dependencies are in the sets.

Encoding CFDps. We encode all pattern tableaux in
Σicfdp with three tables encL, encR and enc̸=, where encL
(resp. encR) encodes the non-negation (=, <,≤, >,≥) pat-
terns in LHS (resp. RHS), and enc̸= encodes those negation
(̸=) patterns. More specifically, we associate a unique id
cid with each CFDps in Σicfdp , and let encL consist of the
following attributes: (a) cid, (b) each attribute A appearing
in the LHS of some CFDps in Σicfdp , and (c) its four companion
attributes A>, A≥, A<, and A≤. That is, for each attribute,
there are five columns in encL, one for each non-negation
operator. Similarly, encR is defined. We use an enc̸= tuple to
encode a pattern A ̸= c in a CFDp, consisting of cid, att, pos,
and val, encoding the CFDp id, the attribute A, the position
(‘LHS’ or ‘RHS’), and the constant c, respectively. Note that
the arity of encL (encR) is bounded by 5 ∗ |Ri| + 1, where
|Ri| is the arity of Ri, and the arity of enc ̸= is 4.

Before we populate these tables, let us first describe a
preferred form of CFDps that would simplify the analysis
to be given. Consider a CFDp φ = R(X → Y, Tp). If φ is
not satisfiable we can simply drop it from Σ. Otherwise it is
equivalent to a CFDp φ′ = R(X → Y, T ′

p) such that for any
pattern tuples tp, t′p in T ′

p and for any attribute A in X ∪ Y ,
(a) if tp[A] is op a and t′p[A] is op b, where op is not ̸=, then
a = b, and (b) if tp[A] is ‘ ’ then so is t′p[A]. That is, for each
non-negation op (resp. ), there is a unique constant a such
that tp[A] = ‘op a’ (resp. tp[A] = ) is the only op (resp. )
pattern appearing in theA column of T ′

p. We refer to tp[A] as
T ′
p(op, A) (resp. T ′

p( , A)), and consider w.l.o.g. CFDps of this
form only. Note that there are possibly multiple tp[A] ̸= c
patterns in T ′

p,
We populate encL, encR and enc̸= as follows. For each

CFDp φ = R(X → Y, Tp) in Σicfdp , we generate a distinct cid
idφ for it, and do the following.

(1) Add a tuple t1 to encL such that (a) t1[cid] = idφ;
(b) for each A ∈ X , t1[A] = ‘ ’ if T ′

p( , A) is ‘ ’, and
for each non-negation predicate op, t1[Aop] = ‘a’ if
T ′
p(op, A) is ‘op a’; (c) we let t1[B] = null for all other

attributes B in encL.
(2) Similarly add a tuple t2 to encR for attributes in Y .
(3) For each attribute A ∈ X ∪ Y and each ̸= a pattern

in Tp[A], add a tuple t to enc̸= such that t[cid] = idφ,
t[att] = ‘A’, t[val] = ‘a’, and t[pos] = ‘LHS’ (resp. t[pos]
= ‘RHS’) if attribute A appears in X (resp. Y ).

Example 8: Recall from Fig. 2 CFDps φ2, φ3 and φ4 defined
on relation item. The three CFDps are encoded with the tables
shown in Fig. 4: (a) encL consists of attributes: cid, sale,
price, price> and price≤; (b) encR consists of cid, shipping,
price, price≥ and price<; those attributes in a table with only
‘null’ pattern values do not contribute to error detection,
and are thus omitted; And (c) enc̸= is empty since all these
CFDps have no negation patterns. One can easily reconstruct
these CFDps from tables encL, encR and enc̸= by collating
the tuples based on cid. 2

Encoding CINDps. All CINDps in Σ
(i,j)
cindp can be encoded

with four tables enc, encL, encR and enc ̸=. Here encL
(resp. encR) and enc̸= encode non-negation patterns on
relation Ri (resp. Rj) and negation patterns on relations Ri
or Rj , respectively, along the same lines as their counter-
parts for CFDps. We use enc to encode the INDs embedded
in CINDps, which consists of the following attributes: (1) cid
representing the id of a CINDp, and (2) those X attributes
of Ri and Y attributes of Rj appearing in some CINDps in
Σ

(i,j)
cindp . Note that the number of attributes in enc is bounded

by |Ri|+ |Rj |+ 1, where |Ri| is the arity of Ri.
For each CINDp ψ = (Ri[A1 . . . Am; Xp]⊆ Rj [B1 . . . Bm;

Yp], Tp) in Σ
(i,j)
cindp , we generate a distinct cid idψ for it, and

do the following.
(1) Add tuples t1 and t2 to encL and encR based on

attributes Xp and Yp, respectively, along the same
lines as their CFDp counterpart.

(2) Add tuples to enc̸= in the same way as their CFDp

counterparts.
(3) Add tuple t to enc such that t[cid] = idψ . For each

k ∈ [1,m], let t[Ak] = t[Bk] = k, and t[A] = null for
the rest attributes A of enc.

Example 9: Figure 5 shows the coding of CINDps ψ1 and ψ2

given in Fig. 3. We use stateL and stateR in enc to denote the
occurrences of attribute state in item and tax, respectively.
In encL and encR, the attributes with only ‘null’ patterns are
omitted, for the same reason as CFDps mentioned above. 2

Putting these together, it is easy to verify that at most
O(n2) data tables are needed to encode dependencies in Σ,
regardless of the size of Σ. Recall that n is the number of
relations in the database R.

5.2 SQL-based Detection Methods
We next show how to generate SQL queries based on the
encoding above. For each i ∈ [1, n], we generate two SQL
queries that, when evaluated on the Ii table of D, find
vio(D,Σicfdp). Similarly, for each i, j ∈ [1, n], we generate a
single SQL query Q(i,j) that, when evaluated on (Ii, Ij) of D,
returns vio(D,Σ(i,j)

cindp). Putting these query answers together,
we get vio(D,Σ), the violation set of D w.r.t. Σ.

SQL queries for CINDps. Below we show how the SQL

query Q(i,j) is generated for validating CINDps in Σ
(i,j)
cindp),

which has not been studied by previous work. For the lack
of space, we put the generation of detection queries for
CFDps in the supplementary material, which is an extension
of the SQL techniques for CFDs and eCFDs discussed in [22]
and [10], respectively.
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(1) encL (2) encR (3) enc̸=
cid sale price price> price≤
2 T null null null
3 F 20 40
4 T null null null

cid shipping price price≥ price<
2 0 null null null
3 6 null null null
4 null 2.99 9.99

cid pos att val

Figure 4. Encoding example of CFDps

(1) enc (2) encL (3) encR (4) enc̸=
cid stateL stateR
1 1 1
2 1 1

cid type state
1 null
2 DL

cid rate
1 null
2 0

cid pos att val
1 LHS type art
2 LHS type art

Figure 5. Encoding example of CINDps

The query Q(i,j) for the validation of Σ(i,j)
cindp is given as

follows, which capitalizes on the data tables enc, encL, encR
and enc ̸= that encode CINDps in Σ

(i,j)
cindp .

select Ri.∗ from Ri, encL L, enc ̸= N
where Ri.X ≍ L and Ri.X ≍ N and not exists (

select Rj .∗ from Rj , enc H , encR R, enc ̸= N
where Ri.X = Rj .Y and L.cid = R.cid and

L.cid = H .cid and Rj .Y ≍ R and Rj .Y ≍ N )

Here (1) X = {A1, . . . ,Am1} and Y = {B1, . . . ,Bm2} are
the sets of attributes of Ri and Rj appearing in Σ

(i,j)
cindp ,

respectively; (2) Ri.X ≍ L is the conjunction of

L.Ak is null or Ri.Ak = L.Ak or (L.Ak = ‘ ’ and
(L.Ak> is null or Ri.Ak > L.Ak> ) and
L.Ak≥ is null or Ri.Ak ≥ L.Ak≥ ) and
(L.Ak< is null or Ri.Ak < L.Ak< ) and
(L.Ak≤ is null or Ri.Ak ≤ L.Ak≤ ))

for each k ∈ [1,m1]; (3) Rj .Y ≍ R is defined similarly
for attributes in Y ; (4) Ri.X ≍ N is a shorthand for the
conjunction below, for each k ∈ [1,m1]:

not exists (select ∗ from N
where L.cid = N.cid and N.pos = ‘LHS’ and

N.att = ‘Ak’ and Ri.Ak = N.val);

(5) Rj .Y ≍ N is defined similarly, but with N.pos = ‘RHS’ ;
(6) Ri.X = Rj .Y represents the following: for each Ak (k ∈
[1,m1]) and each Bl (l ∈ [1,m2]), (H.Ak is null or H.Bl
is null or H.Bl ̸= H.Ak or Ri.Ak = Rj .Bl).

Intuitively, (1) Ri.X ≍ L and Ri.X ≍ N ensure that
the Ri tuples selected match the LHS patterns of some
CINDps in Σ

(i,j)
cindp ; (2) Rj .Y ≍ R and Rj .Y ≍ N check the

corresponding RHS patterns of these CINDps on Rj tuples;
(3) Ri.X = Rj .Y enforces the embedded INDs; (4) L.cid
= R.cid and L.cid = H .cid assure that the LHS and RHS
patterns in the same CINDp are correctly collated; and (5)
not exists inQ(i,j) ensures that theRi tuples selected violate
CINDps in Σ

(i,j)
cindp .

Example 10: Using the coding of Fig. 5, an SQL query Q for
checking CINDps ψ1 and ψ2 of Fig. 3 is given as follows:

select R1.∗ from item R1, encL L, enc ̸= N
where (L.type is null or R1.type = L.type or L.type = ‘ ’) and

not exist (select * from N
where N.cid = L.cid and N.pos = ‘LHS’ and

N.att = ‘type’ and R1.type = N.val) and
(L.state is null or R1.state = L.state or L.state = ‘ ’) and
not exist (select * from N

where N.cid = L.cid and N.pos = ‘LHS’ and
N.att = ‘state’ and R1.state =N.val) and

not exist (select R2.∗ from tax R2, enc H, encR R
where (H.stateL is null or H.stateR is null or

H.stateL! = H.stateR or R2.state = R1.state)
and L.cid = H.cid and L.cid = R.cid and
(R.rate is null or R2.rate = R.rate or
R.rate = ‘ ’) and not exist (select * from N
where N.cid = R.cid and N.pos = ‘RHS’
and N.att = ‘rate’ and R2.rate =N.val))

The SQL queries generated can be simplified as follows.
As shown in Example 10, when checking patterns imposed
by enc, encL or encR, the queries need not consider at-
tributes A if t[A] is null for each tuple t in the table. Simi-
larly, if an attribute A does not appear in any tuple in enc̸=,
the queries need not check A either. From this, it follows
that we do not even need to generate those attributes with
only null patterns for data tables enc, encL or encR when
encoding CINDps or CFDps. 2

6 EXPERIMENTAL STUDY

We next present an extensive experimental study of CFDps
and CINDps. Using real-life data, we conducted two sets of
experiments to evaluate the efficiency and effectiveness of
CFDps and CINDps vs. their counterparts CFDs and CINDs,
separately and taken together.

6.1 Experimental Settings

We first present our experimental settings.

Datasets. We used two real-life datasets that were stored in
an SQL Server 2012 database.
(1) HOSP (Hospital Compare) is a database publicly avail-
able from U.S. Department of Health & Human Services [1].
We used two tables hcahps and hcahps-state, which record
the hospital level and state level ratings of the Hospital
Consumer Assessment of Healthcare Providers and Systems
(HCAHPS), respectively. For table hcahps, it records (a)
the hospital information: hid (hospital ID), hname (hospital
name), addr (address), city, state, zip, county, phn (phone
number), and (b) the measure information: mid (measure
ID), mq (question), mad (answer description), map (answer
percentage), mncs (number of completed surveys), msrrp
(survey response rate percentage), mfn (footnote). And for
table hcahps-state, it records state level measure informa-
tion: state, mid, mq and map, among other things.

We designed 6 CFDps and 3 CINDps for HOSP, shown
below in an informal way for easy of understanding.

φ1: hcahps (zip = ‘ ’ and city = ‘ ’ → state = ‘ ’)
φ2: hcahps (hid = ‘ ’ → hname = ‘ ’ and county = ‘ ’ and addr = ‘ ’ and

phn = ‘ ’)
φ3: hcahps (hid = ‘ ’ → msrrp = ‘ ’)
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φ4: hcahps (mid = ‘ ’ → mq = ‘ ’ and mad = ’ ’)
φ5: hcahps (hid = ‘ ’ and mncs = ‘Not Available’ → mfn ≥ 1 and mfn ≤ 14)
φ6: hcahps (hid = ‘ ’ and mid = ‘ ’ and mncs ̸= ‘Not Available’ and

mncs ̸= ‘Fewer than 100’ → map ≥ 0 and map ≤ 100)
ψ1: hcahps (mid, mq; nil) ⊆ hcahps-state (mid, mq; nil)
ψ2: hcahps (mid, state; nil) ⊆ hcahps-state (mid, state; nil)
ψ3: hcahps (mid, state; mncs ̸= ’Not Available’) ⊆ hcahps-state (mid, state;

map ≥ 0 and map ≤ 100)

For comparison, we also designed the CFDs and CINDs
counterparts of the above CFDps and CINDps. Here φ1-φ4

and ψ1-ψ2 are indeed CFDs and CINDs, respectively, while
φ5, φ6 and ψ3 are not. We hence further designed φ′

5, φ′
6

and ψ′
3 to approximate φ5, φ6 and ψ3, respectively.

φ′
5: hcahps (hid = ‘ ’ and mncs = ‘Not Available’ → mfn = ‘ ’)
φ′
6: hcahps (hid = ‘ ’ and mid = ‘ ’ and mncs = ‘ ’ → map = ‘ ’)
ψ′
3: hcahps (mid, state; mncs = ‘ ’) ⊆ hcahps-state (mid, state; map = ‘ ’)

(2) DBLP is a repository of computer science publications
from 1946 to 2014 [2]. We further transformed its XML
format into two tables paper and proceeding that record the
paper and proceeding information, respectively, such that
paper (key, type, title, booktitle, year, crossref, isbn, publisher)
records books, journal articles and conference papers, and
proceeding (key, year, isbn, publisher) records the proceedings
of conference papers, respectively.

We generated 3482 CFDps and 2568 CINDps for the DBLP
data, with their representatives shown below.

ϕ1: paper (isbn = ’ ’ and booktitle = ’ ’ → publisher = ’ ’)
ϕ2: paper (title = ’ ’ and year = ’ ’ and booktitle = ’ ’ → type = ’ ’)
ϕ3: paper (booktitle = ’CleanDB’ → year = 2006)
ϕ4: paper (booktitle = ’VLDB’ and yearL = ’ ’ → yearR ≥ 1975 and

yearR ≤ 2007)
ϕ5: paper (booktitle = ’PVLDB’ and yearL = ’ ’ → yearR ≥ 2008)
ρ1: paper (crossref, isbn, publisher; type = ’inproceedings’ and

booktitle = ’CIKM-CNIKM’) ⊆ proceeding (key, isbn, publisher;
year = 2009)

ρ2: paper (crossref, isbn, publisher; type = ’inproceedings’ and
booktitle = ’VLDB’) ⊆ proceeding (key, isbn, publisher;
year ≥ 1975 and year ≤ 2007)

ρ3: paper (crossref, isbn, publisher; type = ’inproceedings’ and
booktitle = ’ICDE’) ⊆ proceeding (key, isbn, publisher; year ≥ 1984)

We collected all the booktitle and corresponding year
from DBLP to generate the other CFDps and CINDps by
instantiating the values of their booktitle and year attributes.
Observe that ϕ1-ϕ3 and ρ1 are CFDs and CINDs, respectively.
For comparison, we further designed the following CFDs
and CINDs to approximate ϕ4-ϕ5 and ρ2-ρ3.

ϕ′4: paper (booktitle = ’VLDB’ and yearL = ’ ’ → yearR = ’ ’)
ϕ′5: paper (booktitle = ’PVLDB’ and yearL = ’ ’ → yearR = ’ ’)
ρ′2: paper (crossref, isbn, publisher; type =’inproceedings’ and

booktitle = ’VLDB’) ⊆ proceeding (key, isbn, publisher; year = ’ ’)
ρ′3: paper (crossref, isbn, publisher; type = ’inproceedings’ and

booktitle = ’ICDE’) ⊆ proceeding (key, isbn, publisher; year = ’ ’)

Implementation. All the experiments were run within an
SQL Server 2012 database installed on a machine with an
Intel Core i5 (3.1GHz) CPU and 8GB of RAM. Each test was
repeated 5 times, and the average is reported here.

6.2 Experimental Results

We next present our findings. Three parameters were used
in our tests: (1) |I1|, the number of tuples in table hcahps
of HOSP or paper of DBLP, (2) |I2|, the number of tuples
in table hcahps-state of HOSP or proceeding of DBLP, and
(3) noise%, the percentage of dirty tuples in table hcahps of

HOSP or paper of DBLP, ranging from 0% to 9%. For easy
of comparison, we deliberately dirty the tuples in hcahps of
HOSP or paper of DBLP so that using the CFDps and CINDps
together can detect all the dirty tuples. A clean copy of HOSP
and DBLP is also kept to tell whether a tuple is dirty or clean.

6.2.1 Tests of Efficiency

In the first set of experiments, we evaluated the violation de-
tection efficiency of CFDps and CINDps vs. their counterparts
CFDs and CINDs, separately and taken together.

Exp-1.1: CFDps vs. CFDs. (1) To evaluate the impacts of |I1|,
we fixed noise% = 9%, and varied |I1| from 10K to 90K
for HOSP (resp. from 100K to 900K for DBLP); And (2) to
evaluate the impacts of noise%, we fixed |I1| = 90K for
HOSP (resp. 900K for DBLP), and varied noise% from 0%
to 9%. The results are reported in Figures 6(a) and 6(c) and
Figures 6(b) and 6(d), respectively.

The results tell us that for CFDs and CFDps, both their
running time (a) increases with the increment of the size
of I1, and (b) is insensitive to the noise. Furthermore, (c)
their running time is mainly affected by three factors: the
size of I1, the LHS and RHS complexity of dependencies.
For instance, (a) the LHS complexity of CFDs φ′

5 and φ′
6 is

higher than CFDps φ5 and φ6, as they match more I1 tuples,
but the RHS complexity of CFDs φ′

5 and φ′
6 is lower than

CFDps φ5 and φ6, as they are easier to check violations; And
(b) the LHS complexity of CFDs ϕ′4 and ϕ′5 is the same as
CFDps ϕ4 and ϕ5, but the RHS complexity of CFDs ϕ′4 and
ϕ′5 is similar to CFDps ϕ4 and ϕ5, as they are easier to check
violations. As a combined result, the running time of CFDs
is lower than CFDps on HOSP, but close to CFDps on DBLP.
Exp-1.2: CINDps vs. CINDs. (1) To evaluate the impacts of
|I1|, we fixed noise% = 9% and |I2| = 1.6K for HOSP (resp.
16K for DBLP), and varied |I1| from 10K to 90K for HOSP
(resp. from 100K to 900K for DBLP); (2) To evaluate the
impacts of |I2|, we fixed noise% = 9% and |I1| = 90K for
HOSP (resp. 900K for DBLP), and varied |I2| from 1K to
1.6K for HOSP (resp. from 10K to 16K for DBLP); And
(3) To evaluate the impacts of noise%, we fixed |I1| = 90K
for HOSP (resp. 900K for DBLP) and |I2| = 1.6K for HOSP
(resp. 16K for DBLP), and varied noise% from 0% to 9%.
The results are reported in Figures 7(a) and 7(d), Figures 7(b)
and 7(e), and Figures 7(c) and 7(f), respectively.

The results tell us that for CINDs and CINDps, both their
running time (a) increases with the increment of the size of
I1, (b) is not affected much by I2 as |I2| is relatively small
in the tests, and (c) is insensitive to the noise. Furthermore,
(d) their running time is mainly affected by four factors: the
size of I1, the size of I2, the LHS and RHS complexity of
dependencies. For instance, (a) the LHS complexity of CIND
ψ′
3 is higher than CINDp ψ3, as they match more I1 tuples,

but the RHS complexity of CIND ψ′
3 is lower than CINDp

ψ3, as they are easier to check violations; And (b) the LHS
complexity of CINDs ρ′2 and ρ′3 is the same as CINDps ρ2
and ρ3, but the RHS complexity of CINDs ρ′2 and ρ′3 is lower
than CINDps ρ2 and ρ3, as they are easier to check violations.
As a combined result, the running time of CINDs is close to
CINDps on HOSP, but is lower on DBLP.

Exp-1.3: CFDps + CINDps vs. CFDs + CINDs. Using the same
setting as Exp-1.2, we evaluated the impacts of |I1|, |I2| and
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Figure 8. Efficiency of detecting violations: CFDps + CINDps vs. CFDs + CINDs

noise%. The results are reported in Figures 8(a) and 8(d),
Figures 8(b) and 8(e) and Figures 8(c) and 8(f), respectively.
The results show similar findings to Exp-1.1 and Exp-1.2,
and are consistent with them.

6.2.2 Tests of Effectiveness
In the second set of experiments, we evaluated the viola-
tion detection effectiveness of CFDps and CINDps vs. their
counterparts CFDs and CINDs, separately and taken together.
Note that we did not report the results of varying |I2| as it
has no impacts on the effectiveness tests in our setting.

Given one of CFDs, CFDps, CINDs, CINDps, CFDs + CINDs
or CFDps + CINDps, denoted by x, its effectiveness of detect-
ing violations is evaluated with the following measure:

accuracy(x) = #dirty tuples found by x
#dirty tuples found by cfdps + cindps .

Exp-2. Using the same setting as Exp-1.1, Exp-1.2 and
Exp-1.3, respectively, we evaluated the impacts of |I1| and
noise% for (a) CFDps vs. CFDs, (b) CINDps vs. CINDs and (c)
CFDps + CINDps vs. CFDs + CINDs, respectively. The results
are reported in Figures 9, 10 and 11, respectively, and are
summarized in Table 2.

The results tell us that (1) the effectiveness of detecting
violations using all classes of dependencies are robust to
|I1| and noise%, (2) CFDps, CINDps and CFDps + CINDps
obviously outperform their counterparts CFDs, CINDs and
CFDs + CINDs, respectively, (3) the increase of effectiveness
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Figure 9. Effectiveness of detecting violations: CFDps vs. CFDs

0
 0.2
 0.4
 0.6
 0.8
1.0

10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y

| I1| (× 1000)

CINDs
CINDPs

(a) Varying |I1| for HOSP

0
 0.2
 0.4
 0.6
 0.8
1.0

1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y

noise%

CINDs
CINDPs

(b) Varying noise% for HOSP

0
 0.2
 0.4
 0.6
 0.8
1.0

10 20 30 40 50 60 70 80 90

A
cc

ur
ac

y

| I1| (× 10000)

CINDs
CINDPs

(c) Varying |I1| for DBLP

0
 0.2
 0.4
 0.6
 0.8
1.0

1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y

noise%

CINDs
CINDPs

(d) Varying noise% for DBLP

Figure 10. Effectiveness of detecting violations: CINDps vs. CINDs
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Figure 11. Effectiveness of detecting violations: CFDps + CINDps vs. CFDs + CINDs

Table 2
Summary of violation detection accuracy

Datasets varying CFDs (%) CFDps (%) CINDs (%) CINDps (%) CFDs + CINDs (%) CFDps + CINDps (%)
HOSP |I1| [74.8, 77.7] [85.5, 88.8] [32.1, 33.3] [44.6, 48.9] [74.8, 77.7] 100
HOSP noise% [76.6, 77.7] [87.5, 88.8] [32.8, 33.3] [44.5, 47.2] [76.6, 77.7] 100
DBLP |I1| [12.6, 17.6] [62.5, 64.5] [24.8, 25.4] [49.6, 50.9] [25.0, 29.5] 100
DBLP noise% [15.3, 20.1] [62.5, 64.5] [24.9, 26.3] [50.0, 51.1] [28.0, 31.9] 100

depends on the increase of the expressive power, and varies
from 22% to 75% on HOSP and DBLP, and, (4) the increased
effectiveness on DBLP is larger than on HOSP, as there are
more CFDps and CINDps on HOSP that can be expressed by
CFDs and CINDs than on DBLP in our tests.

Summary. From these experimental results on real-life data
HOSP and DBLP, we find the following. (1) The running
time of CFDps and CINDps is comparable to their CFDs and
CINDs counterparts, which is consistent with the the static
analyses: CFDps and CINDps retain the same complexity as
their CFDs and CINDs counterparts. (2) CFDps and CINDps
are able to capture more dirty tuples than CFDs and CINDs,
due to the increased expressive power.

7 CONCLUSIONS

We have proposed CFDps and CINDps, which further extend
CFDs and CINDs, respectively, by allowing patterns on data
values to be expressed in terms of ̸=, <,≤, > and ≥ predi-
cates. We have shown that CFDps and CINDps are more pow-
erful than CFDs and CINDs for detecting errors in real-life

data. In addition, the satisfiability and implication problems
for CFDps and CINDps have the same complexity bounds as
their counterparts for CFDs and CINDs, respectively. We have
also provided automated methods to generate SQL queries
for detecting errors based on CFDps and CINDps. These
provide commercial DBMS with an immediate capability to
capture errors commonly found in real-world data.

One topic for future work is to develop a dependency
language that is capable of expressing various extensions
of CFDs (e.g., CFDps, eCFDs [10] and CFDcs [13]), without
increasing the complexity of static analyses. Second, we
are to develop effective algorithms for discovering CFDps
and CINDps, along the same lines as [5], [28], [36]. Third,
we plan to extend the methods of [8], [17] to repair data
based on CFDps and CINDps, instead of using CFDs [17],
traditional FDs and INDs [8], denial constraints [7], and
aggregate constraints [25].
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