79 research outputs found
Genome-Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease
BACKGROUND: There are currently no treatments that stop or slow the progression of Parkinson's disease (PD). Case-control genome-wide association studies have identified variants associated with disease risk, but not progression. The objective of the current study was to identify genetic variants associated with PD progression. METHODS: We analyzed 3 large longitudinal cohorts: Tracking Parkinson's, Oxford Discovery, and the Parkinson's Progression Markers Initiative. We included clinical data for 3364 patients with 12,144 observations (mean follow-up 4.2 years). We used a new method in PD, following a similar approach in Huntington's disease, in which we combined multiple assessments using a principal components analysis to derive scores for composite, motor, and cognitive progression. These scores were analyzed in linear regression in genome-wide association studies. We also performed a targeted analysis of the 90 PD risk loci from the latest case-control meta-analysis. RESULTS: There was no overlap between variants associated with PD risk, from case-control studies, and PD age at onset versus PD progression. The APOE ε4 tagging variant, rs429358, was significantly associated with composite and cognitive progression in PD. Conditional analysis revealed several independent signals in the APOE locus for cognitive progression. No single variants were associated with motor progression. However, in gene-based analysis, ATP8B2, a phospholipid transporter related to vesicle formation, was nominally associated with motor progression (P = 5.3 × 10-6 ). CONCLUSIONS: We provide early evidence that this new method in PD improves measurement of symptom progression. We show that the APOE ε4 allele drives progressive cognitive impairment in PD. Replication of this method and results in independent cohorts are needed. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society
Developing and validating Parkinson's disease subtypes and their motor and cognitive progression
Objectives: To use a data-driven approach to determine the existence and natural history of subtypes of Parkinson’s disease (PD) using two large independent cohorts of patients newly diagnosed with this condition. //
Methods: 1601 and 944 patients with idiopathic PD, from Tracking Parkinson’s and Discovery cohorts, respectively, were evaluated in motor, cognitive and non-motor domains at the baseline assessment. Patients were recently diagnosed at entry (within 3.5 years of diagnosis) and were followed up every 18 months. We used a factor analysis followed by a k-means cluster analysis, while prognosis was measured using random slope and intercept models. //
Results: We identified four clusters: (1) fast motor progression with symmetrical motor disease, poor olfaction, cognition and postural hypotension; (2) mild motor and non-motor disease with intermediate motor progression; (3) severe motor disease, poor psychological well-being and poor sleep with an intermediate motor progression; (4) slow motor progression with tremor-dominant, unilateral disease. Clusters were moderately to substantially stable across the two cohorts (kappa 0.58). Cluster 1 had the fastest motor progression in Tracking Parkinson’s at 3.2 (95% CI 2.8 to 3.6) UPDRS III points per year while cluster 4 had the slowest at 0.6 (0.1–1.1). In Tracking Parkinson’s, cluster 2 had the largest response to levodopa 36.3% and cluster 4 the lowest 28.8%. //
Conclusions: We have found four novel clusters that replicated well across two independent early PD cohorts and were associated with levodopa response and motor progression rates. This has potential implications for better understanding disease pathophysiology and the relevance of patient stratification in future clinical trials
Genome-wide determinants of mortality and motor progression in Parkinson’s disease
\ua9 The Author(s) 2024.There are 90 independent genome-wide significant genetic risk variants for Parkinson’s disease (PD) but currently only five nominated loci for PD progression. The biology of PD progression is likely to be of central importance in defining mechanisms that can be used to develop new treatments. We studied 6766 PD patients, over 15,340 visits with a mean follow-up of between 4.2 and 15.7 years and carried out genome-wide survival studies for time to a motor progression endpoint, defined by reaching Hoehn and Yahr stage 3 or greater, and death (mortality). There was a robust effect of the APOE ε4 allele on mortality in PD. We also identified a locus within the TBXAS1 gene encoding thromboxane A synthase 1 associated with mortality in PD. We also report 4 independent loci associated with motor progression in or near MORN1, ASNS, PDE5A, and XPO1. Only the non-Gaucher disease causing GBA1 PD risk variant E326K, of the known PD risk variants, was associated with mortality in PD. Further work is needed to understand the links between these genomic variants and the underlying disease biology. However, these may represent new candidates for disease modification in PD
Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning
Data availability: Source data are not publicly available but non-commercial academic researcher requests may be made to the chief investigators of the seven source studies, subject to data access agreements and conditions that preserve participant anonymity. The underlying SuStaIn model code is publicly available at https://github.com/ucl-pond/pySuStaIn.68 .Supplementary data: available online at: https://academic.oup.com/braincomms/article/5/2/fcad048/7067775#398676040 .Copyright © The Author(s) 2023. To better understand the pathological and phenotypic heterogeneity of progressive supranuclear palsy and the links between the two, we applied a novel unsupervised machine learning algorithm (Subtype and Stage Inference) to the largest MRI data set to date of people with clinically diagnosed progressive supranuclear palsy (including progressive supranuclear palsy–Richardson and variant progressive supranuclear palsy syndromes).
Our cohort is comprised of 426 progressive supranuclear palsy cases, of which 367 had at least one follow-up scan, and 290 controls. Of the progressive supranuclear palsy cases, 357 were clinically diagnosed with progressive supranuclear palsy–Richardson, 52 with a progressive supranuclear palsy–cortical variant (progressive supranuclear palsy–frontal, progressive supranuclear palsy–speech/language, or progressive supranuclear palsy–corticobasal), and 17 with a progressive supranuclear palsy–subcortical variant (progressive supranuclear palsy–parkinsonism or progressive supranuclear palsy–progressive gait freezing). Subtype and Stage Inference was applied to volumetric MRI features extracted from baseline structural (T1-weighted) MRI scans and then used to subtype and stage follow-up scans. The subtypes and stages at follow-up were used to validate the longitudinal consistency of subtype and stage assignments. We further compared the clinical phenotypes of each subtype to gain insight into the relationship between progressive supranuclear palsy pathology, atrophy patterns, and clinical presentation.
The data supported two subtypes, each with a distinct progression of atrophy: a ‘subcortical’ subtype, in which early atrophy was most prominent in the brainstem, ventral diencephalon, superior cerebellar peduncles, and the dentate nucleus, and a ‘cortical’ subtype, in which there was early atrophy in the frontal lobes and the insula alongside brainstem atrophy. There was a strong association between clinical diagnosis and the Subtype and Stage Inference subtype with 82% of progressive supranuclear palsy–subcortical cases and 81% of progressive supranuclear palsy–Richardson cases assigned to the subcortical subtype and 82% of progressive supranuclear palsy–cortical cases assigned to the cortical subtype. The increasing stage was associated with worsening clinical scores, whilst the ‘subcortical’ subtype was associated with worse clinical severity scores compared to the ‘cortical subtype’ (progressive supranuclear palsy rating scale and Unified Parkinson’s Disease Rating Scale). Validation experiments showed that subtype assignment was longitudinally stable (95% of scans were assigned to the same subtype at follow-up) and individual staging was longitudinally consistent with 90% remaining at the same stage or progressing to a later stage at follow-up.
In summary, we applied Subtype and Stage Inference to structural MRI data and empirically identified two distinct subtypes of spatiotemporal atrophy in progressive supranuclear palsy. These image-based subtypes were differentially enriched for progressive supranuclear palsy clinical syndromes and showed different clinical characteristics. Being able to accurately subtype and stage progressive supranuclear palsy patients at baseline has important implications for screening patients on entry to clinical trials, as well as tracking disease progression.W.J.S. is supported by a Wellcome Trust Clinical PhD fellowship (220582/Z/20/Z). C.S. is supported by the UK Research and Innovation Medical Research Council (MR/S03546X/1). M.B. is supported by a fellowship award from the Alzheimer’s Society, UK (AS-JF-19a-004-517), and the UK Dementia Research Institute. D.M.C. is supported by the UK Dementia Research Institute, as well as Alzheimer’s Research UK (ARUK-PG2017-1946), and the University College London/University College London Hospitals, National Institute for Health and Care Research Biomedical Research Centre. H.H. is supported by the National Institutes of Health (R01AG038791, U19AG063911). A.L.Y. is supported by a Skills Development Fellowship from the Medical Research Council (MR/T027800/1). N.P.O. is a UK Research and Innovation Future Leaders Fellow (MR/S03546X/1). L.V.V. is supported by the National Institutes of Health (R01AG038791, K23AG073514) and the Alzheimer’s Association. D.C.A. is supported by the Engineering and Physical Sciences Research Council (EP/M020533/1), Medical Research Council (MR/T046422/1), and Wellcome Trust (UNS113739). J.B.R. is supported by the Wellcome Trust (220258), National Institute for Health and Care Research Cambridge Biomedical Research Centre (BRC-1215-20014), PSP Association, Evelyn Trust, and Medical Research Council (SUAG051 R101400). H.R.M. is supported by Parkinson’s UK, Cure Parkinson’s Trust, PSP Association, CBD Solutions, Drake Foundation, Medical Research Council, and the Michael J Fox Foundation. A.L.B. is supported by the National Institutes of Health (U19AG063911, R01AG038791, R01AG073482, and U24AG057437), the Rainwater Charitable Foundation, the Bluefield Project to Cure FTD, and the Alzheimer’s Association and the Association for Frontotemporal Degeneration. J.D.R. is supported by the Miriam Marks Brain Research UK Senior Fellowship and has received funding from a Medical Research Council Clinician Scientist Fellowship (MR/M008525/1) and the National Institute for Health and Care Research Rare Disease Translational Research Collaboration (BRC149/NS/MH). P.A.W. is supported by a Medical Research Council Skills Development Fellowship (MR/T027770/1).
The Dementia Research Centre is supported by Alzheimer’s Research UK, Alzheimer’s Society, Brain Research UK, and The Wolfson Foundation. This work was supported by the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility, and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd., funded by the UK Medical Research Council, Alzheimer’s Society, and Alzheimer’s Research UK. The PROSPECT study is funded by the PSP Association and CBD Solutions. The 4-Repeat Tauopathy Neuroimaging Initiative (4RTNI) and FTLDNI are funded by the National Institutes of Health Grant (R01 AG038791) and through generous contributions from the Tau Research Consortium. Both are coordinated through the University of California, San Francisco, Memory and Aging Center. 4RTNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California
Investigation of the genetic aetiology of Lewy body diseases with and without dementia
\ua9 The Author(s) 2024.Up to 80% of Parkinson\u27s disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson\u27s disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson\u27s disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be the key to understanding disease pathways and, ultimately, therapy development. Previous genome-wide association studies in Parkinson\u27s disease and dementia with Lewy bodies/Parkinson\u27s disease dementia have identified risk loci differentiating patients from controls. We collated data for 7804 patients of European ancestry from Tracking Parkinson\u27s, The Oxford Discovery Cohort, and Accelerating Medicine Partnership-Parkinson\u27s Disease Initiative. We conducted a discrete phenotype genome-wide association study comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk allele rs429358 tagging APOEe4 increases the odds of developing dementia, and that rs7668531 near the MMRN1 and SNCA-AS1 genes and an intronic variant rs17442721 tagging LRRK2 G2019S on chromosome 12 are protective against dementia. These results should be validated in autopsy-confirmed cases in future studies
Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials
Supplementary data is available online at https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awad105/7091433#supplementary-data .Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.Copyright © The Author(s) 2023. The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points.
In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer’s disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type.
Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific.
In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.The Progressive Supranuclear Palsy–Corticobasal Syndrome–Multiple System Atrophy (PROSPECT-M-UK) study is supported by grants for PROSPECT, cerebrospinal fluid biomarker measurements, and PROSPECT magnetic resonance imaging and Sara Koe Fellowship grants from the PSP Association UK, CBD Solutions, the MSA Trust, the Wellcome Trust (103838; 220258); the NIHR Cambridge Biomedical Research Centre and Cambridge Brain Bank (BRC 1215-20014; NIHR203312: The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care); Cambridge Centre for Parkinson-Plus; Medical Research Council (SUAG/092 116768); and the NIHR UCLH Biomedical Research Centre. Queen Square Brain Bank is supported by the Reta Lila Weston Institute for Neurological Studies and the MRC. The fluid biomarker measurements were supported in part by the UK Dementia Research Institute at UCL and a multiuser equipment grant from Wellcome Trust. The Cambridge Brain Bank is part of the Cambridge Human research Tissue Bank funded by the Biomedical Research Council. The Oxford Brain Bank is supported by the MRC, Brains for Dementia Research (Alzheimer’s Society and Alzheimer’s Research UK), and the NIHR Oxford Biomedical Research Centre. In addition, this study was supported by the Medical Research Council (MRC 548211) (Dr Jabbari); the Association of British Neurologists Clinical Research Training Fellowships (Dr Holland, Dr Goh and Dr Chelban); the MSA Trust (Dr Chelban, Dr Goh); Guarantors of Brain (Dr Chelban); CBD Solutions (Dr Revesz, and Dr Morris); the NIHR Oxford Health Clinical Research Facility (Dr Klein); the NIHR Queen Square Biomedical Research Centre based at UCLH (Dr Revesz and Dr Jaunmuktane) a Wallenberg Academy fellowship (Dr Zetterberg); the Monument Trust Discovery Award from Parkinson’s UK (Dr Hu). Dr Bocchetta is supported by a Fellowship award from the Alzheimer’s Society, UK (AS-JF-19a-004-517). Dr Bocchetta’s work was also supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. Professor Rohrer is supported by the Miriam Marks Brain Research UK Senior Fellowship and has received funding from an MRC Clinician Scientist Fellowship (MR/M008525/1) and the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). Professor Zetterberg is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C and #ADSF-21-831377-C), the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2019-0228), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), European Union Joint Program for Neurodegenerative Disorders (JPND2021-00694), and the UK Dementia Research Institute at UCL. Professor Roncaroli’s work is supported by The Manchester Brain Bank, which is part of BDR, jointly funded by Alzheimer’s Society and Alzheimer’s Research UK. For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission, under a Creative Commons Attribution 4.0 International License
Neurofilament light levels predict clinical progression and death in multiple system atrophy
Supplementary material: Supplementary material is available at Brain online.Copyright © The Author(s) 2022. Disease-modifying treatments are currently being trialled in multiple system atrophy. Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data on multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in multiple system atrophy. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection.
In this cohort study, we recruited cross-sectional and longitudinal cases in a multicentre European set-up. Plasma and CSF neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; receiver operating characteristic analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed-effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease neurofilament light chain levels.
We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival and degree of brain atrophy than the neurofilament light chain rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone.
In conclusion, neurofilament light chain correlates with clinical disease severity, progression and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.This study was supported by the MSA Trust (PROSPECT-M-UK). We are grateful to the Multiple System Atrophy Coalition, Medical Research Council (MRC UK MR/J004758/1, G0802760, G1001253), The Wellcome Trust (Synaptopathies) (WT093205MA and WT104033/Z/14/Z), the French Clinical Research Programme (AOI 2011-BIOAMS, API 2012-BIOPARK) and the PSP Association (PROSPECT-M-UK) and ‘Solve-RD’ from the Horizon 2020 research and innovation programme (grant 779257 to M.S. and H.H.) for their support.
V.C. received grants from the Multiple System Atrophy Trust/ABN Clinical Research Training fellowship grant F84 ABN 540868, Multiple System Atrophy Trust (PROSPECT-M-UK Project), Multiple System Atrophy Coalition grant 567540, The Guarantors of Brain grant 565908 and King Baudouin Foundation (Sophia Fund).
H.Z. is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), King Baudouin Foundation (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the Alzheimer’s Association (AD Strategic Fund #ADSF-21-831376-C, #ADSF-21-831381-C and #ADSF-21-831377-C), the Olav Thon Stiftelsen, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2019-0228), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 860197 (MIRIADE), European Union Joint Program for Neurodegenerative Disorders (JPND2021-00694) and the UK Dementia Research Institute at UCL. The Simoa instrument was funded by a Multi-User Equipment grant from the Wellcome Trust to H.Z. and A.H.
J.D.R. is an MRC Clinician Scientist (MR/M008525/1) and has received funding from the NIHR Rare Diseases Translational Research Collaboration (BRC149/NS/MH), the Bluefield Project and the Association for Frontotemporal Degeneration. M.B. is supported by a Fellowship award from the Alzheimer’s Society, UK (AS-JF-19a-004-517). M.B.’s work was also supported by the UK Dementia Research Institute, which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. K.S. is supported by a postdoctoral fellowship from the Canada First Research Excellence Fund (CFREF), awarded to McGill University for the Healthy Brains for Healthy Lives initiative (HBHL) and the Fonds de recherche du Québec – Santé (FRQS) postdoctoral fellowship. C.W. and M.S. are members of the European Reference Network for Rare Neurological Diseases Project ID no. 739510. C.W. was supported by the Clinician Scientist Program of the Medical Faculty Tübingen (grant 480-0-0). M.J.M. and C.J. acknowledge the Centres de Recerca de Catalunya (CERCA) Programme/Generalitat de Catalunya, the Institute of Neurosciences and the Institute of Biomedical Research August Pi i Sunyer (IDIBAPS) and CIBERNED. This study was sponsored by the PID2020-114640GB-I00/MCIN/AEI/10.13039/501100011033, by Generalitat de Catalunya (2017SGR748), and by MarÃa de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona) MDM-2017-0729, Ministry of Science, Innovation and Universities. Samples were generously donated by participants with MSA thanks to the funding by Fundacio Marato TV3 grant no. 20142730. C.P. received a grant Rio Hortega from Instituto de Salud Carlos III (CM18/00072). J.B.R. is supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014; The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care), Wellcome Trust (220258) and Medical Research Council (SUAG/092 G168768). For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission
Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030
- …