24 research outputs found

    Structural Basis of Cytotoxicity Mediated by the Type III Secretion Toxin ExoU from Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action

    Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic <it>Erwinia pyrifoliae </it>exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of <it>Yersinia pestis</it>. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells.</p> <p>Results</p> <p>Pla and Epo expressed in <it>Escherichia coli </it>are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed.</p> <p>Conclusions</p> <p>We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens.</p

    Optimal vaccination, treatment, and preventive campaigns in regard to the SIR epidemic model

    No full text
    The Susceptible-Infected-Recovered (SIR) model for the spread of an infectious disease in a population of constant size is considered. In order to control the spread of infection, we propose the model with four bounded controls which describe vaccination of newborns, vaccination of the susceptible, treatment of infected, and indirect strategies aimed at a reduction of the incidence rate (e. g. quarantine). The optimal control problem of minimizing the total number of the infected individuals on a given time interval is stated and solved. The optimal solutions are obtained with the use of the Pontryagin Maximum Principle and investigated analytically. Numerical results are presented to illustrate the optimal solutions. Š EDP Sciences, 2014

    Constant versus periodic fishing: Age structured optimal control approach

    No full text
    The paper investigates an age-structured infinite-horizon optimal control model of harvesting a biological resource, interpreted as fish. Time and age are considered as continuum variables. The main result shows that in case of selective fishing, where only fish of prescribed sizes is harvested, it may be advantageous in the log run to implement a periodic fishing effort, rather than constant (the latter suggested by single-fish models that disregard the age-heterogeneity). Thus taking into account the age-structure of the fish may qualitatively change the theoretically optimal fishing mode. This result is obtained by developing a technique for reliable numerical verification of second order necessary optimality conditions for the considered problem. This technique could be useful for other optimal control problems of periodic age-structured systems. Š EDP Sciences, 2014
    corecore