25 research outputs found
Equilibrium valleys in spin glasses at low temperature
We investigate the 3-dimensional Edwards-Anderson spin glass model at low
temperature on simple cubic lattices of sizes up to L=12. Our findings show a
strong continuity among T>0 physical features and those found previously at
T=0, leading to a scenario with emerging mean field like characteristics that
are enhanced in the large volume limit. For instance, the picture of space
filling sponges seems to survive in the large volume limit at T>0, while
entropic effects play a crucial role in determining the free-energy degeneracy
of our finite volume states. All of our analysis is applied to equilibrium
configurations obtained by a parallel tempering on 512 different disorder
realizations. First, we consider the spatial properties of the sites where
pairs of independent spin configurations differ and we introduce a modified
spin overlap distribution which exhibits a non-trivial limit for large L.
Second, after removing the Z_2 (+-1) symmetry, we cluster spin configurations
into valleys. On average these valleys have free-energy differences of O(1),
but a difference in the (extensive) internal energy that grows significantly
with L; there is thus a large interplay between energy and entropy
fluctuations. We also find that valleys typically differ by sponge-like space
filling clusters, just as found previously for low-energy system-size
excitations above the ground state.Comment: 10 pages, 8 figures, RevTeX format. Clarifications and additional
reference
The ground state energy of the Edwards-Anderson spin glass model with a parallel tempering Monte Carlo algorithm
We study the efficiency of parallel tempering Monte Carlo technique for
calculating true ground states of the Edwards-Anderson spin glass model.
Bimodal and Gaussian bond distributions were considered in two and
three-dimensional lattices. By a systematic analysis we find a simple formula
to estimate the values of the parameters needed in the algorithm to find the GS
with a fixed average probability. We also study the performance of the
algorithm for single samples, quantifying the difference between samples where
the GS is hard, or easy, to find. The GS energies we obtain are in good
agreement with the values found in the literature. Our results show that the
performance of the parallel tempering technique is comparable to more powerful
heuristics developed to find the ground state of Ising spin glass systems.Comment: 30 pages, 17 figures. A new section added. Accepted for publication
in Physica
Spin glass transition in a magnetic field: a renormalization group study
We study the transition of short range Ising spin glasses in a magnetic
field, within a general replica symmetric field theory, which contains three
masses and eight cubic couplings, that is defined in terms of the fields
representing the replicon, anomalous and longitudinal modes. We discuss the
symmetry of the theory in the limit of replica number n to 0, and consider the
regular case where the longitudinal and anomalous masses remain degenerate.
The spin glass transitions in zero and non-zero field are analyzed in a
common framework. The mean field treatment shows the usual results, that is a
transition in zero field, where all the modes become critical, and a transition
in non-zero field, at the de Almeida-Thouless (AT) line, with only the replicon
mode critical. Renormalization group methods are used to study the critical
behavior, to order epsilon = 6-d. In the general theory we find a stable
fixed-point associated to the spin glass transition in zero field. This
fixed-point becomes unstable in the presence of a small magnetic field, and we
calculate crossover exponents, which we relate to zero-field critical
exponents. In a finite magnetic field, we find no physical stable fixed-point
to describe the AT transition, in agreement with previous results of other
authors.Comment: 36 pages with 4 tables. To be published in Phys. Rev.
Novel order parameter to describe the critical behavior of Ising spin glass models
A novel order parameter for spin glasses is defined based on
topological criteria and with a clear physical interpretation. is first
investigated for well known magnetic systems and then applied to the
Edwards-Anderson model on a square lattice, comparing its properties
with the usual order parameter. Finite size scaling procedures are
performed. Results and analyses based on confirm a zero temperature
phase transition and allow to identify the low temperature phase. The
advantages of are brought out and its physical meaning is established.Comment: 13 pages, 4 figures, to appear in Physica
Dynamic scaling and aging phenomena in short-range Ising spin glass: CuCoCl-FeCl graphite bi-intercalation compound
Static and dynamic behavior of short-range Ising-spin glass
CuCoCl-FeCl graphite bi-intercalation compounds
(GBIC) has been studied with SQUID DC and AC magnetic susceptibility. The
dependence of the zero-field relaxation time above a spin-freezing
temperature (= 3.92 0.11 K) is well described by critical slowing
down. The absorption below decreases with
increasing angular frequency , which is in contrast to the case of 3D
Ising spin glass. The dynamic freezing temperature at which
dd, is determined as a function of
frequency (0.01 Hz 1 kHz) and magnetic field (0 5 kOe). The dynamic scaling analysis of the relaxation time
defined as at suggests the absence of
SG phase in the presence of (at least above 100 Oe). Dynamic scaling
analysis of and near
leads to the critical exponents ( = 0.36 0.03, = 3.5
0.4, = 1.4 0.2, = 6.6 1.2, = 0.24
0.02, and = 0.13 0.02). The aging phenomenon is studied through
the absorption below . It obeys a
power-law decay with an exponent . The rejuvenation effect is also observed under
sufficiently large (temperature and magnetic-field) perturbations.Comment: 14 pages, 19 figures; to be published in Phys. Rev. B (September 1,
2003
No spin-glass transition in the "mobile-bond" model
The recently introduced ``mobile-bond'' model for two-dimensional spin
glasses is studied. The model is characterized by an annealing temperature T_q.
On the basis of Monte Carlo simulations of small systems it has been claimed
that this model exhibits a non-trivial spin-glass transition at finite
temperature for small values of T_q.
Here the model is studied by means of exact ground-state calculations of
large systems up to N=256^2. The scaling of domain-wall energies is
investigated as a function of the system size. For small values T_q<0.95 the
system behaves like a (gauge-transformed) ferromagnet having a small fraction
of frustrated plaquettes. For T_q>=0.95 the system behaves like the standard
two-dimensional +-J spin-glass, i.e. it does NOT exhibit a phase transition at
T>0.Comment: 4 pages, 5 figures, RevTe
Aging and memory effects in beta-hydrochinone-clathrate
The out-of-equilibrium low-frequency complex susceptibility of the
orientational glass methanol(73%)-beta-hydrochinone-clathrate is studied using
temperature-stop protocols in aging experiments . Although the material does
not have a sharp glass transition aging effects including rejuvenation and
memory are found at low temperatures. However, they turn out to be much weaker,
however, than in conventional magnetic spin glasses.Comment: 5 pages RevTeX, 6 eps-figures include
Extended droplet theory for aging in short-ranged spin glasses and a numerical examination
We analyze isothermal aging of a four dimensional Edwards-Anderson model in
detail by Monte Carlo simulations. We analyze the data in the view of an
extended version of the droplet theory proposed recently (cond-mat/0202110)
which is based on the original droplet theory plus conjectures on the
anomalously soft droplets in the presence of domain walls. We found that the
scaling laws including some fundamental predictions of the original droplet
theory explain well our results. The results of our simulation strongly suggest
the separation of the breaking of the time translational invariance and the
fluctuation dissipation theorem in agreement with our scenario.Comment: 27 pages, 39 epsfiles, revised versio
Generating droplets in two-dimensional Ising spin glasses by using matching algorithms
We study the behavior of droplets for two dimensional Ising spin glasses with
Gaussian interactions. We use an exact matching algorithm which enables study
of systems with linear dimension L up to 240, which is larger than is possible
with other approaches. But the method only allows certain classes of droplets
to be generated. We study single-bond, cross and a category of fixed volume
droplets as well as first excitations. By comparison with similar or equivalent
droplets generated in previous works, the advantages but also the limitations
of this approach are revealed. In particular we have studied the scaling
behavior of the droplet energies and droplet sizes. In most cases, a crossover
of the data can be observed such that for large sizes the behavior is
compatible with the one-exponent scenario of the droplet theory. Only for the
case of first excitations, no clear conclusion can be reached, probably because
even with the matching approach the accessible system sizes are still too
small.Comment: 11 pages, 16 figures, revte
The two-dimensional random-bond Ising model, free fermions and the network model
We develop a recently-proposed mapping of the two-dimensional Ising model
with random exchange (RBIM), via the transfer matrix, to a network model for a
disordered system of non-interacting fermions. The RBIM transforms in this way
to a localisation problem belonging to one of a set of non-standard symmetry
classes, known as class D; the transition between paramagnet and ferromagnet is
equivalent to a delocalisation transition between an insulator and a quantum
Hall conductor. We establish the mapping as an exact and efficient tool for
numerical analysis: using it, the computational effort required to study a
system of width is proportional to , and not exponential in as
with conventional algorithms. We show how the approach may be used to calculate
for the RBIM: the free energy; typical correlation lengths in quasi-one
dimension for both the spin and the disorder operators; even powers of
spin-spin correlation functions and their disorder-averages. We examine in
detail the square-lattice, nearest-neighbour RBIM, in which bonds are
independently antiferromagnetic with probability , and ferromagnetic with
probability . Studying temperatures , we obtain precise
coordinates in the plane for points on the phase boundary between
ferromagnet and paramagnet, and for the multicritical (Nishimori) point. We
demonstrate scaling flow towards the pure Ising fixed point at small , and
determine critical exponents at the multicritical point.Comment: 20 pages, 25 figures, figures correcte