12 research outputs found

    Energy use and height in office buildings

    Get PDF
    The relationship between energy use and height is examined for a sample of 611 office buildings in England and Wales using actual annual metered consumption of electricity and fossil fuels. The buildings are of different ages; they have different construction characteristics and methods of heating and ventilation; and they include both public and commercial offices. When rising from five storeys and below to 21 storeys and above, the mean intensity of electricity and fossil fuel use increases by 137% and 42% respectively, and mean carbon emissions are more than doubled. A multivariate regression model is used to interpret the contributions of building characteristics and other factors to this result. Air-conditioning is important, but a trend of increased energy use with height is also found in naturally ventilated buildings. Newer buildings are not in general more efficient: the intensity of electricity use is greater in offices built in recent decades, without a compensating decrease in fossil fuel use. The evidence suggests it is likely – although not proven – that much of the increase in energy use with height is due to the greater exposure of taller buildings to lower temperatures, stronger winds and more solar gains

    All the way to the top! The energy implications of building tall cities

    Get PDF
    Density of urban form may be achieved under a variety of morphological designs that do not rely on tallness alone. Tall buildings have implications on the broader urban environment and infrastructure that lower buildings would not have, e.g. wind effects, sight-lines, or over-shading. They may also have an impact on energy use for reasons of buildings-physics, construction, and occupant practices. This study uses a statistical approach of neighbourhood level data to analyse the impact of building morphology (e.g. height, volume and density) on energy demand in 12 local authorities in London. The research shows that areas marked by tall buildings use more gas after adjusting for exposures surface area, volume, number of residents and other features. The implication for energy policy and planning is building taller without increasing density may have an energy penalty

    BIM for landscape design improving climate adaptation planning: the evaluation of software tools based on the ISO 25010 standard

    No full text
    This paper investigates the capabilities and limitations of different software tools simulating landscape design adaptability. The evaluation of tools is based on the ISO 25010 framework, which investigates software functionality, reliability, performance efficiency, usability, compatibility, and information quality. These quality characteristics of software are analysed during objective experiments where five software tools are used for a case study project at the conceptual design phase. These experiments reveal that the existing software tools for climate adaptation planning are focused on different aspects of climate adaptability, generating different types of information. Moreover, all tools deal with some limitations in terms of compatibility, performance efficiency, and functional operations. The ISO 25010 quality model provides a comprehensive framework to compare the capabilities of different software tools for climate adaptation planning. This paper is part of a wider study including an analysis of the needs of project stakeholders regarding climate adaptation software tools. However, this article focuses on technical capabilities of current climate adaptation software tools
    corecore