92 research outputs found

    Angiographic Findings of the Multicenter Randomized Study With the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL)

    Get PDF
    BACKGROUND: Restenosis remains the major limitation of coronary catheter-based intervention. In small vessels, the amount of neointimal tissue is disproportionately greater than the vessel caliber, resulting in higher restenosis rates. In the Randomized Study With the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL) trial, approximately 40% of the vessels were small (<2.5 mm). The present study evaluates the relationship between angiographic outcome and vessel diameter for sirolimus-eluting stents. METHODS AND RESULTS: Patients were randomized to receive either an 18-mm bare metal Bx VELOCITY (BS group, n=118), or a sirolimus-eluting Bx VELOCITY stent (SES group, n=120). Subgroups were stratified into tertiles according to their reference diameter (RD; stratum I, RD 2.84 mm). At 6-month follow-up, the restenosis rate in the SES group was 0% in all strata (versus 35%, 26%, and 20%, respectively, in the BS group). In-stent late loss was 0.01+/-0.25 versus 0.80+/-0.43 mm in stratum I, 0.01+/-0.38 versus 0.88+/-0.57 mm in stratum II, and -0.06+/-0.35 versus 0.74+/-0.57 mm in stratum III (SES versus BS). In SES, the minimal lumen diameter (MLD) remained unchanged (Delta -0.72 to 0.72 mm) in 97% of the lesions and increased (=late gain, DeltaMLD <-0.72 mm) in 3% of the lesions. Multivariate predictors for late loss were treatment allocation (P<0.001) and postprocedural MLD (P= 0.008). CONCLUSIONS: Sirolimus-eluting stents prevent neointimal proliferation and late lumen loss irrespective of the vessel diameter. The classic inverse relationship between vessel diameter and restenosis rate was seen in the bare stent group but not in the sirolimus-eluting stent group

    Hotline update of clinical trials and registries presented at the American College of Cardiology Congress 2010: ACCORD, INVEST, NAVIGATOR, RACE II, SORT OUT III, CSP-474, DOSE, ASPIRE and more

    Get PDF
    This article gives an overview on a number of novel clinical trials in the field of cardiovascular medicine, which were presented during the Late Breaking Clinical Trial Sessions at the 59th annual meeting of the American College of Cardiology in Atlanta, USA, from 14th March to 16th March 2010. The data were presented by leading experts in the field with relevant positions in the trials. These comprehensive summaries should provide the readers with the most recent data on diagnostic and therapeutic developments in cardiovascular medicine similar as previously reported (Schirmer SH, van der Laan AM, Bohm M, Mahfoud F in Clin Res Cardiol 98:691–699, 2009; Maier LS, Schirmer SH, Walenta K, Jacobshagen C, Bohm M in Clin Res Cardiol 98:413–419, 2009)

    Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences

    Get PDF
    Background: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods: Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings: Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance: Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood

    Bioreactors as engineering support to treat cardiac muscle and vascular disease

    Get PDF
    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements

    Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless ‘Frank–Starling Gain’ index

    Get PDF
    This paper briefly recapitulates the Frank–Starling law of the heart, reviews approaches to establishing diastolic and systolic force–length behaviour in intact isolated cardiomyocytes, and introduces a dimensionless index called ‘Frank–Starling Gain’, calculated as the ratio of slopes of end-systolic and end-diastolic force–length relations. The benefits and limitations of this index are illustrated on the example of regional differences in Guinea pig intact ventricular cardiomyocyte mechanics. Potential applicability of the Frank–Starling Gain for the comparison of cell contractility changes upon stretch will be discussed in the context of intra- and inter-individual variability of cardiomyocyte properties
    corecore