97 research outputs found
Precautionary Regulation in Europe and the United States: A Quantitative Comparison
Much attention has been addressed to the question of whether Europe or the United States adopts a more precautionary stance to the regulation of potential environmental, health, and safety risks. Some commentators suggest that Europe is more risk-averse and precautionary, whereas the US is seen as more risk-taking and optimistic about the prospects for new technology. Others suggest that the US is more precautionary because its regulatory process is more legalistic and adversarial, while Europe is more lax and corporatist in its regulations. The flip-flop hypothesis claims that the US was more precautionary than Europe in the 1970s and early 1980s, and that Europe has become more precautionary since then. We examine the levels and trends in regulation of environmental, health, and safety risks since 1970. Unlike previous research, which has studied only a small set of prominent cases selected non-randomly, we develop a comprehensive list of almost 3,000 risks and code the relative stringency of regulation in Europe and the US for each of 100 risks randomly selected from that list for each year from 1970 through 2004. Our results suggest that: (a) averaging over risks, there is no significant difference in relative precaution over the period, (b) weakly consistent with the flip-flop hypothesis, there is some evidence of a modest shift toward greater relative precaution of European regulation since about 1990, although (c) there is a diversity of trends across risks, of which the most common is no change in relative precaution (including cases where Europe and the US are equally precautionary and where Europe or the US has been consistently more precautionary). The overall finding is of a mixed and diverse pattern of relative transatlantic precaution over the period
Critical behavior of weakly-disordered anisotropic systems in two dimensions
The critical behavior of two-dimensional (2D) anisotropic systems with weak
quenched disorder described by the so-called generalized Ashkin-Teller model
(GATM) is studied. In the critical region this model is shown to be described
by a multifermion field theory similar to the Gross-Neveu model with a few
independent quartic coupling constants. Renormalization group calculations are
used to obtain the temperature dependence near the critical point of some
thermodynamic quantities and the large distance behavior of the two-spin
correlation function. The equation of state at criticality is also obtained in
this framework. We find that random models described by the GATM belong to the
same universality class as that of the two-dimensional Ising model. The
critical exponent of the correlation length for the 3- and 4-state
random-bond Potts models is also calculated in a 3-loop approximation. We show
that this exponent is given by an apparently convergent series in
(with the central charge of the Potts model) and
that the numerical values of are very close to that of the 2D Ising
model. This work therefore supports the conjecture (valid only approximately
for the 3- and 4-state Potts models) of a superuniversality for the 2D
disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.
- …