2,835 research outputs found

    Fractional Zero Forcing via Three-color Forcing Games

    Get PDF
    An rr-fold analogue of the positive semidefinite zero forcing process that is carried out on the rr-blowup of a graph is introduced and used to define the fractional positive semidefinite forcing number. Properties of the graph blowup when colored with a fractional positive semidefinite forcing set are examined and used to define a three-color forcing game that directly computes the fractional positive semidefinite forcing number of a graph. We develop a fractional parameter based on the standard zero forcing process and it is shown that this parameter is exactly the skew zero forcing number with a three-color approach. This approach and an algorithm are used to characterize graphs whose skew zero forcing number equals zero.Comment: 24 page

    Applications of analysis to the determination of the minimum number of distinct eigenvalues of a graph

    Get PDF
    We establish new bounds on the minimum number of distinct eigenvalues among real symmetric matrices with nonzero off-diagonal pattern described by the edges of a graph and apply these to determine the minimum number of distinct eigenvalues of several families of graphs and small graphs

    Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph

    Get PDF
    For a given graph G and an associated class of real symmetric matrices whose off-diagonal entries are governed by the adjacencies in G, the collection of all possible spectra for such matrices is considered. Building on the pioneering work of Colin de Verdiere in connection with the Strong Arnold Property, two extensions are devised that target a better understanding of all possible spectra and their associated multiplicities. These new properties are referred to as the Strong Spectral Property and the Strong Multiplicity Property. Finally, these ideas are applied to the minimum number of distinct eigenvalues associated with G, denoted by q(G). The graphs for which q(G) is at least the number of vertices of G less one are characterized.Comment: 26 pages; corrected statement of Theorem 3.5 (a

    Throttling for the game of Cops and Robbers on graphs

    Get PDF
    We consider the cop-throttling number of a graph GG for the game of Cops and Robbers, which is defined to be the minimum of (k+captk(G))(k + \text{capt}_k(G)), where kk is the number of cops and captk(G)\text{capt}_k(G) is the minimum number of rounds needed for kk cops to capture the robber on GG over all possible games. We provide some tools for bounding the cop-throttling number, including showing that the positive semidefinite (PSD) throttling number, a variant of zero forcing throttling, is an upper bound for the cop-throttling number. We also characterize graphs having low cop-throttling number and investigate how large the cop-throttling number can be for a given graph. We consider trees, unicyclic graphs, incidence graphs of finite projective planes (a Meyniel extremal family of graphs), a family of cop-win graphs with maximum capture time, grids, and hypercubes. All the upper bounds on the cop-throttling number we obtain for families of graphs are O(n) O(\sqrt n).Comment: 22 pages, 4 figure

    Throttling positive semidefinite zero forcing propagation time on graphs

    Get PDF
    Zero forcing is a process on a graph that colors vertices blue by starting with some of the vertices blue and applying a color change rule. Throttling minimizes the sum of the size of the initial blue vertex set and the number of the time steps needed to color the graph. We study throttling for positive semidefinite zero forcing. We establish a tight lower bound on the positive semidefinite throttling number as a function of the order, maximum degree, and positive semidefinite zero forcing number of the graph, and determine the positive semidefinite throttling numbers of paths, cycles, and full binary trees. We characterize the graphs that have extreme positive semidefinite throttling numbers.Comment: 20 pages, 7 figures, in press, Discrete Appl. Mat

    Entanglement and Sources of Magnetic Anisotropy in Radical Pair-Based Avian Magnetoreceptors

    Full text link
    One of the principal models of magnetic sensing in migratory birds rests on the quantum spin-dynamics of transient radical pairs created photochemically in ocular cryptochrome proteins. We consider here the role of electron spin entanglement and coherence in determining the sensitivity of a radical pair-based geomagnetic compass and the origins of the directional response. It emerges that the anisotropy of radical pairs formed from spin-polarized molecular triplets could form the basis of a more sensitive compass sensor than one founded on the conventional hyperfine-anisotropy model. This property offers new and more flexible opportunities for the design of biologically inspired magnetic compass sensors

    Optimizing the trade-off between number of cops and capture time in Cops and Robbers

    Get PDF
    The cop throttling number thc(G)th_c(G) of a graph GG for the game of Cops and Robbers is the minimum of k+captk(G)k + capt_k(G), where kk is the number of cops and captk(G)capt_k(G) is the minimum number of rounds needed for kk cops to capture the robber on GG over all possible games in which both players play optimally. In this paper, we construct a family of graphs having thc(G)=Ω(n2/3)th_c(G)= \Omega(n^{2/3}), establish a sublinear upper bound on the cop throttling number, and show that the cop throttling number of chordal graphs is O(n)O(\sqrt{n}). We also introduce the product cop throttling number thc×(G)th_c^{\times}(G) as a parameter that minimizes the person-hours used by the cops. This parameter extends the notion of speed-up that has been studied in the context of parallel processing and network decontamination. We establish bounds on the product cop throttling number in terms of the cop throttling number, characterize graphs with low product cop throttling number, and show that for a chordal graph GG, thc×=1+rad(G)th_c^{\times}=1+rad(G).Comment: 19 pages, 3 figure
    corecore