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PROOF OF A CONJECTURE OF GRAHAM AND LOV Asz CONCERNING

UNIMODALITY OF COEFFICIENTS OF THE DISTANCE CHARACTERISTIC 

POLYNOMIAL OF A TREE* 

GIIODRJ\TOLLAII AALIPOlJRt, AIDA AOIADi, ZIIANAR BERIKKYZY§, LESLIE IIOGBEN1, 

FRANKLIN H.J. KENTERII, .IEPHIAN C.-H. LIN§, AND MICHAEL TAIT# 

Abstract. The conjecture of Graham aud Lov{isz that the (normalized) coefficients of the distance characteristic poly nomial 
of a tree arc unimodal is proved; it is also shown that the (uormali�cd) coefficients arc log-concave. Upper aud lower bouuds 
on the location of the peak arc established. 
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1. Introduction. The distance matri:1; V(G) of a simple, finite, undirected, connected graph G is the
matrix indexed by the vertices of G with ( i, j)-entry equal to the distance between the vertices Vi and Vj, 

i.e., the length of a shortest path between Vi and Vj- The characteristic polynomial of 'D(G) is defined by 
Pv(a)(x) = det(:i;J - V(G)) and is ca.lied the distance characteristic polynomial of G. Since V(G) is a real 
symmetric matrix, all of the roots of the distance characteristic polynomial a.re real. Distance matrices were 
introduced in the study of a data communication problem in [9]. Thi'i problem involves finding appropriate 
addresses so that a message can move efficiently through a series of loops from its origin to its destination, 
choosing the best route at each switching point. Recently, there has been renewed interest in the loop 
switching problem [6). There has also been extensive work on distance spectra; sec [l] for a recent survey. 

A sequence a0 , a1, a2, ... , an of real numbers is 11,nimodal if there is a k such that ai-l :S ai for i :S k and
a; � a;+1 for i � k, and the sequence is log-concave if a; � aj-laj+l for all j = 1, .. . , n - 1. Recent surveys 
about unirnodality and related topics can be found in [2, 3], and a classical presentation is given in [5]. 

For a gTaph G on n vertices, the coefficient in dct(V(G) - :J:J) = (-l) nPD(a)(:i:) of :r;
k is denoted by 

Ok ( G) by Graham and Lov11sz [8), so the coefficient of xk in PD(G) (:r;) is ( -1 )no!.:( G). The following statement 
appears on page 83 in [8] (a tree is a connected graph that docs not have cycles, and n is its order, 1.c., 
number of vertices): 

It appears that in fact for each tree T, the q11,antities (-l)'1
-

1 ok(T)/211-k-2 are 11,nimodal
with the ma.r,im11,m vafoe occ11,rrin_q fork= l¥J. We see no way to prove this, however. 
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FACT I.I. [8, equation (44)] For a tree T on n  vertices, 
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Throughout this discussion, the order of a graph is assumed to be at least three (any sequence ao is 
trivially unimodal a.nd the peak location is 0). For a graph G of order n a.nd O ::::; k ::::; n - 2, define 
dk (G) = lbk(G)l/2n-k-2. We call the numbers dk (G) the normalized coefficients. If T is a tree, then
dk (T) = (-1)11-1bk(T)/2n-k-2 by Fact 1.1. For a tree, the normalized coefficients represent counts of
certain subforests of the tree [8]. The conjecture in [8] can be rephrased as: 

For a tree T of order n, the sequence of nmmalized coefficients do(T), ... , dn-2(T) is uni
modal and the peak occurs at l � J . 

The conjecture regarding the location of the peak was disproved by Collirn-; [4] who showed that for both 
stars and paths the sequence do (T), ... , dn-2(T) is unimodal, but for paths the peak is at approximately
(1 - Js) n (and at l�J for stars).1 Conjecture 9 in (4], which Collins attributes to Peter Shor, is:

CONJECTURE 1.2. ( Collins-Shor) The {normalized} coefficients of the distance characteristic polynomial 
for any tree T with n vertices are unimodal with peak between l � J and r ( 1 - )s) nl . 

In [4], Conjecture 9 is stated without the floor or ceiling; l � J is dearly the intended lower bound, since
(4, Theorem 1] establishes l � J as the peak location for a star. An examination of the proof of [4, Theorem 3]
shows that the ceiling is needed in the upper bound (although the pa.th P71 may attain either the floor or the 
ceiling depending on n). This conjecture is included in [l] as Conjecture 2.6 (aga.in without "normalized" and 
without the floor and ceiling), followed by the comment, "No more results are known ab<mt that con_jectnre." 

The log-concavity of the sequences dk (T) of normalized coefficients and lbk (T)I of absolute values of 
coefficients arc equivalent, and we show in Theorem 2.1 below that both sequences lbo(T)I, ... , lbn-2(T)I
and do (T), ... , �-2(T) arc log-concave and unimodal. In Section 3 we establish an upper bound of f �nl 
for the peak location of the normalized coefficients. We also show that the coefficient � can be improved 
when the tree is "star-like" with many paths of length 2. Further, we give a lower bound of d�l where d is 
the diameter of the tree (i.e., the rnunber of edges in a longest path in the tree). Finally, in Section 4 we 
give an example showing unimodality need not be true for gTaphs that a.re not trees. 

To establish these results, we need some additional definitions and facts. The next observation 1s 
immediate from the definition. 

OBSERVATION 1.3. Let ao, a1, a2, ... , an be a .sequence of real rmrnbers, let c and s be nonzero real num
bers, and define bk = sck ak. Then ao, a1, a2, ... , a,, is log- concave if and only if bo, b1, b2, ... , b,. is lo_q
concave. 

Consider a real polynornial p(:i;) = <LnXn 
+ · · · + a1x + ao. The coefficient sequence of p is the sequence 

ao, a1, a2, ... , <Ln - The polynomial pis real- rooted if a.ll roots of pa.re real (by convention, constant polynomials 
arc considered real-rooted). The next result is known (sec, for example, [2, 3, 51). It is straightforward to 
adapt the proof of [2, Lemma 1.1] or (5, Theorem B, p. 270], which arc stated with the additional assumption 
that the polynomial coefficients a.re nonnegative, to the more general case. 

1 Dcspilc use of lhc lerm cocfficienl lhroughoul [1], lhe sequence di:scusscd lhcre is dk (T), nol ok (T). 
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LEMMA 1.4. 

{ a) if p(:i;) = anxn 
+ · · · + a 1 :i; + ao is a real-rooted polynomial, then:

.2 (.) "; > a;+1";-1 
I . - 1 1 z (")2 _ ( ." ) ( ." ) 1 or J - , . . .  , n - . 

J ,+1 J-1 

(ii) The coefficient sequence ai of p is log-concave.
(b) If ao, a1, a2, . .. , an is positive and log-concave, then ao, a1, a2, . .. , an is unimodal.

2. Proof of Graham and Lov�1sz' unirnodality conjecture for the distance characteristic
polynomial of a tree. 

THEOREM 2.1. Let T be a tree of order n.

(i) The coefficient sequence of the distance characteristic polynomial Pv(T)(:i;) is log-concave.
(ii) The sequence IJo(T)I, ... , IJ,,_2(T)I of absolute values of coefficients of the distance characteristic

polynomial is log-concave and unimodal.
( iii) The sequence do (T), ... , d,,-2(T) of normalized coefficients of the distance characteristic 110lynomial

is log-concave and unimodal.

Proof. Let V(T) be the distance matrix of T. Since PD(T) (:i;) is real-rooted, the coefficient sequence 
(-l)nJo(T), ... , (-l)"J,,-2(T), 0, 1 is log-concave by Lemma. 1.4 (a) (i). 

Therefore, the sequence (-l)"'Jo(T), ... ,(-l)"'lln-2(T) is log-concave. By Fact 1.1, (-l)n-lJk(T) >

0 for O :S: k :s; n - 2, so we have (-1 )''Jk(T) < 0 for O :S: k :s; n - 2. Because all of the terms 
(-l)nJo(T), ... , (-l)"'Jn-2(T) a.re negative, the sequence of their absolute values { IJk(T)I} z::� is log-concave 
and positive. Then by Lemma 1.4 (b), the sequence IJo(T)I, ... , IJn-2(T)I is unimodal. 

Since dk(T) = {z,,1
_2) 2k 1Jk(T)I, the log-concavity of the sequence {dk(T)}Z::� then follows from Obser-

vation 1.3. Since {dk(T)}Z=:� is positive, it is llllimodal by Lemma 1.4(6). D 

3. Bounds on the peak location. For a tree T of order n, the question of the location of the peak of
the unimodal sequence of normalized coefficients { dk(T)} �=� remains open. Note that Conjecture 1.2 says 
that the peak location is between L0.5nj a.nd roughly ro.5528nl Computations on Sage [10, 11] confirm 
this conjecture for all trees of order at most 20. ln this section we show that the peak location is at most 
ro.6667nl for all trees of order n, and at lea.st l 't+� J for a. tree of diameter d and order n. Furthermore, the 
upper bound we establish is better for a. "star-like" tree, that is, when the tree has a. high fraction of the 
number of paths of length 2 in a. star (which attains the maximum possible number of paths of length 2). 

OBSERVATION 3.1. Let T be a tree on n vertices and define

1 
Pr(x) = -

2,
,_2 det( 2xl - V(T)) .

Then Pr(:i;) is a real-rooted polynomial urith coefficients -4 for x", 0 for x"-1
, and dk(T) > 0 for xk when

0 :S: k :S: n - 2. 

LEMMA 3.2. Let ao, a1, a2, ... , <Ln-2 be a unimodal sequence with ai > 0 for i = 0, ... , n - 2 such that
L�=O akxk is a real-rooted polynomial.

1. If for some index .i =/ n, n - 1
n -J a1 

----·-<l,
n(.j + 1) ao 
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then the peak location is at most j . 
2. if for some index .i =/- n, n - 1, 0

then the peak location is at least .i . 

(n - 2)(n - .i + 1) an-2 

. . ·-->1,
3.7 an-3

Proof. By Lemma 1.4 (a) (i), 

Then 

a2 > ('.;)
2

(j + l)(n -.i + 1) 
J _ 

( .
" 

) ( _
n 

) 
aj+laj-1 = 

,·en_ .) 
<Lj+laj-1• 

J+l J-1 .7 .7 

.i(n -j) aj 

(j + l)(n-j + 1) · aj-1 

< (-j-. .i -

1 ... �)
j+l .i 2 
n - .7 a1 

n(j + 1) ao 

( 
n -j n -.i + 1 n - 1

) 
a1 

n-j+l n-.i+2 n a0 

If this value is smaller than 1, then aj+l < aj a.nd the peak location is at most j.

Similarly, 

_!!L > (j + l)(n -.i + 1) . <Lj+1 

<Lj-1 - j(n -.i) aj 

2: (·i+ 1 . � + 2 ... n -�) (
n -.i + 1 . n 

� 
.i ... �) 

a
71_2 

.7 .7 + 1 n -;3 n -.7 n -.7 - 1 3 an-3 
(n - 2)(n - j + 1) aTl-2 

3.i a,._3 
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If this value is greater than 1, then aj > aj-l and the peak location is at lca8t j. □ 

THEOREM 3.3. Suppose T is a tree on n 2: ;3 vertices with at least p(n:;-1) paths of length 2 for some
nonnegative real nnmber p. Then the peak location of the normalized coefficients do(T), d1 (T), ... , <L,,-2(T) 
is at most r ;=:nl. Since p = 0 applies to every tree, the peak location is at most rnnl for every tree on n
vertices. 

Proof. By Observation 3.1, we may apply Lcrmna 3.2 to P.r(x). When O:::; .i :::; n - 2 and 

n-j d1 (T) ------<l 
n(j + 1) do(T) 

the peak location is at mo8t .i- Since do(T) and d1 (T) arc both positive numbcr8, the inequality is equivalent 
to 

. r n-n n2 +n 
.1>---=n----, 

n+r n+r 
dr (T) 

where r = --

do(T)
. 

The formula do (T) = n - 1 is given in [9, Theorem 3]. Defining N p_
1 
(T) to be the number of 8ubtrcc8 

of T that arc isomorphic to the path P.1 on three vcrticc8 (of length 2), the formula d1 (T) = 2n(n - 1) -
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2Np_,(T) -4 follows from (7, Theorem 4.1]2 by using the definition dk (T) = (-I)'•-1 ok (T)/2"-k-Z_ Since 
½ p ( n  -l)(n -2) = Np3

(T) 2'. n -2, 

Now 

2n(n - I) -2Np_,(T) -4 2n(n -1) -p ( n  - I)(n - 2) - 4 
r = -------- = ----------- < (2 - p)n + 2p. 

n-1 n-1 

n2 + n n2 + n n + I n 2 - p 
n ---- < n --,-----,---- = n -------,------,- < n --- = - - n. 

n + r (3 -p)n + 2p 3 -p + (2p/n) - 3 -p 3 -p 

The last inequality follows from 3�P :S (Zpin), which is justified by p :S 1.

Therefore, .i = r ;=:nl is an upper bound of the peak location. □

REMARK 3.4. If the number NP., (T) of paths of length two is known for every tree T in a particular 
family, then p can be set equal to (:�<,)). For example, for the star S,. on n vertices, NP., (Sn) = ('';1), so

p = I and r �nl = I� l- Thus, for a star, our upper bound is equal to (if n is even) or one more than (if

n is odd) the known value l � J for the peak of the normalized coefficients for Sn [4, Theorem I]. 

We will utilize a technique similar to the upper bound in order to derive a lower bound. However, we 
need the following lemma to provide an estimate for the necessary ratio. 

LEMMA 3.5. For any tree T on n vertices with diameter d 

Proof. Let V := V(T) denote the distance matrix ofT, and let Vij denote its ij-cntry. From (7, equations 
(4c) and ( 4d)], 

and 

On-2(T) = (-1)''-1 L'Dtj
i<j 

On-:i(T) = (-l)n-l L 2Vijvjkvki ·
i<j<k 

We will now express the corresponding normalized coefficients in terms of the traces of powers of V. 
First, let us consider d,,-2(T). Since the diagonal entries of V arc all zero, 

2Our uotatiou is slightly dillereut but exa.miuatiou of (7, Table 2) clarifies the uota.tiou. 
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where the second equality follows from V being symmetric. Similarly, for d:i(T), 
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where the third line follows because if any two of i, .i, k arc equal, then the corresponding entry in V is 0. 

Let A1 :S: A2 :S: · · · :S: A
11 

=: Amax denote the eigenvalues of V(T). Since tr(V2 ) = L Af and similarly 

tr(V:i) = LA?, we have 

dn-:i(T) 
dn-2(T)

where the la.st inequality comes from that the the row sums of V a.re bounded above by nd. □

THEOREM 3.6. Let T be a tree on n 2: 3 vertices with diameter d. Then, the peak location of the

normalized coefficients do(T),d1(T), ... A,-2(T) is at least l't+:�j. 
Proof. By Observation 3.1, we may apply Lemma 3.2 to fr(x). When 1 :S: .i :S: n - 2 and 

(n - 2)(n - .i + 1) . d.,-2(T) 
> 1 

3.i d
11_;i(T) '

the peak location is at least j. Since dn-2(T) and d.,-:i(T) arc both positive numbers, the inequality is 
equivalent to 

(n - 2)(n + 1) 
j < 

(n - 2) + (3/r)' 
d,,_2(T)

where r = ---. 
d,,_;i(T)

By applying Lemma 3.5, � < nd. Thus, 

S . l"-2J 
o, .7 = 1+d 

(n - 2)(n + 1) (n - 2)(n + 1) 
�-��-- > �----�
(n - 2) + (3/r) (1 + d)n - 2 

n-2 n+l 
---· 

1 + d n - 2/(1 + d) 

n-2
> 

l+d·

is a lower bound of the peak location. □
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4. Graphs that are not trees. Since the diHtance matrix of any gTaph G iH a real Hyrrnnetric matrix,

the coefficient Hequence of the diHtance cha.ractcriHtic polynomial of G iH log-concave. However, it need not be 
the caHc that all cocfficicntH of the diHtancc charactcriHtic polynomial have the H11mc Hign. ThuH, Hta.tcmcntH 
analogous to thoHc in Theorem 2.1 can be fa.lHc for graphs that arc not trees. 

EXAMPLE 4.1. The normalized coefficients and absolute valueH of the cocfficicntH of the diHtancc charac
tcriHtic polynomial a.re not unimodal (and hence not log-concave) for the Hcawood graph H Hhown in Fig11rc 

1. The coefficients of the distance characteristic polynomial arc log-concave but not unimodal.

.FIGURE 1. The Hcawood graph 11. 

The diHtancc characteristic polynomial of H iH 

Pv(I-I)(x) = :r:14 
- 441:r:12 - 6328x11 

- 36456:r:10 
- 75936:r:9 

+ 104720x8 

+ 573696x7 
- 118272.7;6 

- 1885184:1:5 
+ 973056x4 

+ 2795520:r:3 
- 3885056:r:2 

+ 1892:352x - 331776.

The valucH of dk(H), fork= 0, ... , 12, arc 

81, 924, 3794, 5460, 3801, 14728, 1848, 17928, 6545, 9492, 9114, 3164, 441. 
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