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Abstract. We establish new bounds on the minimum number of dis-
tinct eigenvalues among real symmetric matrices with nonzero off-diagonal
pattern described by the edges of a graph and apply these to determine
the minimum number of distinct eigenvalues of several families of graphs
and small graphs.

1. Introduction

Inverse eigenvalue problems appear in various contexts throughout math-
ematics and engineering, and refer to determining all possible lists of eigen-
values (spectra) for matrices fitting some description. The inverse eigen-
value problem of a graph (IEPG) refers to determining the possible spectra
of real symmetric matrices whose pattern of nonzero off-diagonal entries is
described by the edges of a given graph. Graphs often describe relationships
in a physical system and the eigenvalues of associated matrices govern the
behavior of the system. The IEPG and related variants have been of interest
for many years. Various parameters have been used to study this problem,
most importantly the maximum multiplicity of an eigenvalue of a matrix de-
scribed by the graph (see, for example, [6]). In [1] the authors introduce the
parameter q(G) as the minimum number of eigenvalues among the matrices
described by the graph. In this paper we establish additional techniques for
bounding q and determine its value for various families of graphs.

The Strong Multiplicity Property (SMP) and the Strong Spectral Prop-
erty (SSP) are recently developed tools that were introduced in [4] (see also
Section 2) and have enabled significant progress on the IEPG. The SMP and
SSP have their roots in the implicit function theorem. The SMP allows us to
perturb along the intersection of the pattern manifold and the fixed ordered
multiplicity list manifold (along the fixed spectrum manifold for SSP) under
suitable conditions. In this paper we apply the SMP and SSP and additional
matrix tools such as the Kronecker product of matrices (see Section 3) to
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establish bounds on the minimum number of distinct eigenvalues of a graph.
We then apply these results to determine the minimum number of distinct
eigenvalues of several families of graphs and of small graphs.

In this paper, a graph is a pair (V (G), E(G)) where V (G) = {1, 2, . . . , n}
and E(G) is a set of 2-element subsets of V (G), each having the form {u, v}
where 1 ≤ u < v ≤ n. We also denote an edge {u, v} as uv; in this
case vertices u and v are adjacent and are neighbors. The neighborhood of
vertex u is N(u) = {v ∈ V (G) : uv ∈ E(G)}. A leaf is a vertex with only
one neighbor. The order of G is the number of vertices, |V (G)|. A graph
G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. We say

that a subgraph G̃ = (Ṽ , Ẽ) is a spanning subgraph of G if Ṽ = V .
Let G be a graph of order n. The set S(G) of matrices representing G

is the set of real symmetric n × n matrices A = [aij ] such that for i 6= j,
aij 6= 0 if and only if ij ∈ E(G) (the diagonal is unrestricted). For a matrix
A, the number of distinct eigenvalues of A is denoted q(A) and the minimum
number of distinct eigenvalues of a graph G is

q(G) = min{q(A) : A ∈ S(G)}.
Section 2 contains a discussion of the SMP and SSP and applies them

to the determination of q. Section 3 presents bounds on q(G) for graphs
G constructed as Cartesian, tensor, or strong products. Section 4 presents
results about q(G) for certain types of block-clique graphs and joins. The
ability of these graph operations to raise or lower q is discussed in Section
5. We determine values of q(G) for all graphs of order 6 in Section 6 and
then summarize the values of all graphs G for which q is currently known in
Section 7. The remainder of this introduction contains additional definitions
and results from the literature that will be used.

1.1. Terminology and notation. Matrices discussed are real and sym-
metric, so all eigenvalues are real and each matrix has an orthonormal
basis of eigenvectors. Let A be an n × n matrix. The spectrum of A is
the multiset of eigenvalues of A (repeated according to multiplicity) and
is denoted by spec(A). The notation λk(A) denotes the kth eigenvalue of
A with λ1(A) ≤ · · · ≤ λn(A). If the matrix A has distinct eigenvalues
µ1 < µ2 < . . . < µq with multiplicities m1,m2, . . . ,mq, respectively, then
the ordered multiplicity list of A is m(A) = (m1,m2, . . . ,mq). In this pa-
per we denote the set of distinct eigenvalues of a matrix A by dev(A). A
principal submatrix of A is a submatrix obtained from A by deleting a set
of rows and the corresponding set of columns. For 1 ≤ k ≤ n, the principal
submatrix A(k) is the (n− 1)× (n− 1) matrix obtained from A by deleting
row k and column k from A. The formal definitions of the maximum nullity
(which is equal to the maximum multiplicity of an eigenvalue) and minimum
rank are

M(G) = max{null(A) : A ∈ S(G)} and mr(G) = min{rank(A) : A ∈ S(G)}.
It is easy to observe that mr(G)+M(G) = |V (G)|, so the study of maximum
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nullity is equivalent to the study of minimum rank.
A path of order n is a graph Pn with V (Pn) = {vi : 1 ≤ i ≤ n} and

E(Pn) = {{vi, vi+1} : 1 ≤ i ≤ n − 1}. The length of Pn is the number
of edges, i.e., n − 1. A graph G is connected if for every pair of distinct
vertices u and v, G contains a path from u to v. In a connected graph G,
the distance from u to v, denoted by distG(u, v), is the minimum length of
a path from u to v. If n ≥ 3, a cycle of order n is a graph Cn with V (Cn) =
{vi : 1 ≤ i ≤ n} and E(Cn) = {{vi, vi+1} : 1 ≤ i ≤ n− 1} ∪ {{vn, v1}}. A
complete graph of order n is a graph Kn with V (Kn) = {vi : 1 ≤ i ≤ n} and
E(Kn) = {{vi, vj} : 1 ≤ i < j ≤ n}. A complete bipartite graph with partite
sets X and Y of orders s and t is the graph Ks,t with V (Ks,t) = X ∪ Y
where X = {xi : 1 ≤ i ≤ s} and Y = {yi : 1 ≤ i ≤ t} are disjoint, and
E(Ks,t) = {{xi, yj} : 1 ≤ i ≤ s, 1 ≤ j ≤ t}.

1.2. Results cited.

Theorem 1.1 (Interlacing Theorem). [15, Theorem 8.10] For A ∈ Rn×n
and 1 ≤ k ≤ n,

λ1(A) ≤ λ1(A(k)) ≤ λ2(A) ≤ · · · ≤ λn−1(A) ≤ λn−1(A(k)) ≤ λn(A).

More generally, if B is a principal submatrix of A obtained by deleting the
rows and columns corresponding to a set of m indices, then

λk(A) ≤ λk(B) ≤ λk+m(A) for k = 1, . . . , n−m.

Proposition 1.2. [1, Proposition 2.5] For a graph G, q(G) ≤ mr(G) + 1.

Observation 1.3. [4, p. 23] For a graph G on n vertices, d n
M(G)e ≤ q(G).

Observation 1.4. [1, p. 678] If q(G) = 2, then there exists a symmetric
orthogonal matrix A ∈ S(G).

Proposition 1.5. For any n ≥ 2, q(Kn) = 2 [1, Lemma 2.2]. For any
n ≥ 1, q(Pn) = n [1, p. 676]. For any n ≥ 3, q(Cn) =

⌈
n
2

⌉
[1, Lemma 2.7].

Theorem 1.6. [1, Corollary 6.5] For any m,n with 1 ≤ m ≤ n,

q(Km,n) =

{
2 m = n
3 m < n

.

Theorem 1.7. [11, Theorem 5.2] Let G and G′ be connected graphs of
order n. Then q(G ∨ G′) = 2 and there is a matrix M ∈ S(G ∨ G′) with
m(M) = (n, n).

The next theorem is often referred to as the “unique shortest path theorem.”

Theorem 1.8. [1, Theorem 3.2] If there are vertices u and v in a connected
graph G such that distG(u, v) = d and the path of length d is unique, then
q(G) ≥ d+ 1.
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Theorem 1.9. [1, Theorem 4.4] For a connected graph G on n vertices, if
q(G) = 2, then for any independent set of vertices {v1, . . . , vk} we have∣∣∣∣∣∣

⋃
i 6=j

(N(vi) ∩N(vj))

∣∣∣∣∣∣ ≥ k or

∣∣∣∣∣∣
⋃
i6=j

(N(vi) ∩N(vj))

∣∣∣∣∣∣ = 0.

Theorem 1.10. [4, Theorem 51] A graph G has q(G) ≥ |V (G)| − 1 if and
only if G is one of the following: a path; the disjoint union of a path and an
isolated vertex; a path with one leaf attached to an interior vertex; a path
with an extra edge joining two vertices at distance 2.

A path on n vertices with one leaf attached to an interior vertex is called
a generalized star and is denoted by S(k − 1, n − k − 1, 1), where k is the
vertex with the extra leaf with path vertices numbered in path order. An
order n path with an extra edge joining the two vertices k + 1 and k + 3
(0 ≤ k ≤ n−3) is called a generalized bull and is denoted by GB(k, n−k−3).

2. Strong properties

The Strong Spectral Property (SSP) and Strong Multiplicity Property
(SMP) were introduced in [4] and additional properties and applications are
given in [3]. These properties can yield powerful results. In this section we
define and apply them.

The entry-wise product of A,B ∈ Rn×n is denoted by A◦B and the trace
(sum of the diagonal entries) of A is denoted by trA. An n× n symmetric
matrix A satisfies the Strong Spectral Property (SSP) [4] provided no nonzero
symmetric matrix X satisfies

• A ◦X = 0 = I ◦X and
• AX −XA = 0.

A n×n symmetric matrix A satisfies the Strong Multiplicity Property (SMP)
[4] provided no nonzero symmetric matrix X satisfies

• A ◦X = 0 = I ◦X,
• AX −XA = 0, and
• tr(AiX) = 0 for i = 0, . . . , n− 1.

If a matrix has SSP, then it also has SMP, but not conversely [4]. The defi-
nitions of the SMP and SSP just given are linear algebraic conditions that
allow the application of the Implicit Function Theorem to perturb one or
more pairs of zero entries to nonzero entries while maintaining the nonzero
pattern of other entries and preserving the ordered multiplicity list or spec-
trum (see [4] for more information). The next theorem will be applied to
give an upper bound on q.

Theorem 2.1. [4, Theorem 20] Let G be a graph and let G̃ be a spanning

subgraph of G. If Ã ∈ S(G̃) has SMP, then there exists A ∈ S(G) with SMP

having the same multiplicity list as Ã.
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The SMP minimum number of distinct eigenvalues of a graph H is defined
in [4] to be

qM (H) = min{q(A) : A ∈ S(H), A has SMP}.
The next result is clear from the definitions and Theorem 2.1.

Observation 2.2. Let G be a graph and let G̃ be a spanning subgraph of

G. Then q(G) ≤ qM (G) ≤ qM (G̃).

A Hamilton cycle in a graph is a cycle that includes every vertex. The next
result is a simplified form of [4, Corollary 49] and follows from qM (Cn) =

⌈
n
2

⌉
[4, Theorem 48].

Corollary 2.3. [4] Let G be a graph of order n that has a Hamilton cycle.
Then q(G) ≤

⌈
n
2

⌉
.

It is known (see, for example, [4]) that for any set of distinct eigenvalues
λ1 < · · · < λn and any graph G of order n there is a matrix A ∈ S(G) with
spec(A) = {λ1, . . . , λn}. The next result includes the additional requirement
that every entry of the diagonal of A is nonzero.

Theorem 2.4. Let G be a graph of order n. Then any set of n distinct
nonzero real numbers can be realized by some matrix A ∈ S(G) that has
SSP and has all diagonal entries nonzero.

Proof. Let λ1, . . . , λn be distinct nonzero real numbers. As noted in [4,
Remark 15], there is a matrix A ∈ S(G) that has SSP and spec(A) =
{λ1, . . . , λn}. The matrixA is obtained from the matrixD = diag(λ1, . . . , λn)
by a perturbation of the entries; note that D has SSP since the diago-
nal entries are distinct [4, Theorem 34]. Since such perturbation may be
chosen arbitrarily small, we may assume the diagonal entries of A are all
nonzero. �

The next two results about strong properties appear in [4] and [3] and are
used in Section 6. Theorem 2.5 allows verification of the SSP or SMP for
A ∈ S(G) by computation of the rank of a matrix constructed from A and
G. Lemma 2.6 allows us to import results from the solution of the IEPG for
graphs of order 5 to determine the value of q for order 6. Some definitions
are needed first. The support of a vector x is supp(x) = {i : xi 6= 0}. Let
H be a graph with vertex set {1, 2, . . . , n} and edge-set {e1, . . . , ep}. We
denote the endpoints of ek by ik and jk. For a symmetric n × n matrix
A = [aij ], we denote by vecH(A) the p × 1 vector whose kth coordinate is
aikjk . Thus vecH(A) makes a vector out of the elements of A corresponding
to the edges in H. The matrix Eij denotes the n × n matrix with a 1 in
the i, j-position and 0 elsewhere, and Kij denotes the n×n skew-symmetric

matrix Eij−Eji. The complement G of G is the graph with the same vertex
set as G and edges exactly where G does not have edges. The next theorem
is used to determine whether a matrix has SSP.
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Theorem 2.5. [4, Theorem 31] Let G be a graph, let A ∈ S(G) and let p be
the number of edges in G. Then A has SSP if and only if the p×

(
n
2

)
matrix

whose columns are vecG (AKij −KijA) for 1 ≤ i < j ≤ n has rank p.

Lemma 2.6 (Augmentation Lemma). [3, Lemma 7.5] Let G be a graph on
vertices {1, . . . , n} and A ∈ S(G). Suppose A has SSP and λ is an eigenvalue
of A with multiplicity k ≥ 1. Let α be a subset of {1, . . . , n} of cardinality
k+ 1 with the property that for every eigenvector x of A corresponding to λ,
| supp(x)∩α| ≥ 2. Construct H from G by appending vertex n+ 1 adjacent
exactly to the vertices in α. Then there exists a matrix B ∈ S(H) such that
B has SSP, the multiplicity of λ has increased from k to k + 1, and other
eigenvalues and their multiplicities are unchanged from those of A.

The Augmentation Lemma is usually applied to a specific matrix where
the eigenvectors can be determined (as in Section 6). However, it is also
possible to apply it without a specific matrix as is done in the next corollary.

Corollary 2.7. Suppose G is a graph, each vertex of G has at least two
neighbors, and H is constructed from G by adding a new vertex adjacent
to every vertex of G. If A ∈ S(G) has SSP and m(A) = (m1, . . . ,mr),
then for each j = 1, . . . , r there exists a matrix Bj ∈ S(H) such that Bj
has SSP, the distinct eigenvalues of Bj are the same as those of A, and
m(A) = (m1, . . . ,mj−1,mj + 1,mj+1, . . . ,mr).

Proof. We apply the Augmentation Lemma with α = {1, . . . , n}, so |α| ≥
mj+1. For any vector x, | supp(x)∩α| = | supp(x)|. Suppose | supp(x)| = 1
for some eigenvector x. Let k be the position containing the one nonzero
entry of x. Then Ax = λx implies the kth column of A has at most one
nonzero entry, which is impossible since A ∈ S(G) and every vertex of G has
at least two neighbors. So | supp(x) ∩ α| ≥ 2. Then there exists a matrix
Bj ∈ S(H) with the required properties by the Augmentation Lemma. �

Corollary 2.8. For n ≥ 4, q(Kn − e) = 2 and there is a matrix M ∈
S(Kn − e) with SSP and m(M) =

(⌈
n
2

⌉
,
⌊
n
2

⌋)
.

Proof. The graphs K4 − e and K5 − e are done in [4], so assume n ≥ 6. For
n = 2k, the result follows from joining Kk with Kk−e by Theorem 1.7, which
shows there exists a matrix A ∈ S(Kn − e) with m(A) = (k, k). We show
that A has SSP, and the result then follows from Corollary 2.7. Note that
A◦X = O = I ◦X implies X = [xij ] has only one symmetrically placed pair
of possibly nonzero entries, say x12 = x21 = x. Then (AX −XA)23 = xa23.
Since a23 6= 0, x = 0 and X = O. �

3. Graph products

In this section we compute bounds for q for Cartesian, tensor, and strong
products of graphs, and in some cases we determine the value of q for graphs
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constructed by these products. The Kronecker product of matrices plays a
central role in constructing matrices realizing graph parameters for graphs
that are products. For A ∈ Rn×n and A′ ∈ Rn′×n′

, the Kronecker product
of A and A′ is the nn′ × nn′ matrix

A⊗A′ =


a11A

′ a12A
′ · · · a1nA

′

a21A
′ a22A

′ · · · a2nA
′

...
...

. . .
...

an1A
′ an2A

′ · · · annA
′

.
For sets or multisets of real numbers S and T , we define sets or multisets

S + T = {s + t : s ∈ S, t ∈ T} and ST = {st : s ∈ S, t ∈ T} (for sets
duplicates are removed, but for multisets duplicates are left in place). It
is well known that spec(A ⊗ A) = spec(A) spec(A′) (see, for example, [15,
Theorem 4.8]); this implies dev(A⊗A) = dev(A) dev(A′).

3.1. Cartesian products. The Cartesian product of graphs G and G′,
denoted by G�G′, has vertex set V (G)× V (G′) and edge set {(u, v)(x, y) :
u = x and vy ∈ E(G′) or v = y and ux ∈ E(G)}. We present several
bounds on the value of q for Cartesian products of graphs that apply when
certain hypotheses on the constituent graphs are met.

Proposition 3.1. Let G1 and G2 be graphs. If q(Gi) can be realized by ma-
trices Ai ∈ S(Gi), i = 1, 2 with dev(Ai) = {1, 2, . . . , qi(G)}, then q(G1�G2) ≤
q(G1) + q(G2)− 1.

Proof. Assume the required Ai exist. We observe that dev(A1 ⊗ I + I ⊗
A2) = dev(A1) + dev(A2) = {2, . . . , q(G1) + q(G2)}. Therefore there are
q(G1) + q(G2) − 1 distinct eigenvalues of (A1 ⊗ I + I ⊗ A2) ∈ S(G1�G2),
and so q(G1�G2) ≤ q(G1) + q(G2)− 1. �

Since any set of distinct eigenvalues can be realized as the eigenvalues of
a path, we have the following result.

Corollary 3.2. If G is a graph such that q(G) can be realized by a matrix
A ∈ S(G) with dev(A) = {1, 2, . . . , q(G)}, then q(G�Ps) ≤ q(G) + s− 1.

For s = 2, the bound q(G�P2) ≤ 2q(G)− 2 given in [1, Theorem 6.7] is
better than that in Corollary 3.2 when q(G) = 2, and the bounds are equal
for q(G) = 3, but otherwise the bound in Corollary 3.2 is better.

Corollary 3.3. If G is a graph such that q(G) can be realized by a matrix
A ∈ S(G) with dev(A) = {1, 2, . . . , q(G)}, then q(G�Cn) ≤ q(G) +

⌈
n
2

⌉
.

Proof. Assume the hypotheses. For C2k+1 we can realize the ordered mul-
tiplicity list (2,...,2,1) with any spectrum by [7]. For C2k we can realize
the ordered multiplicity list (2,...,2) with any spectrum by [8] (cited in [1,
Lemma 2.7]). �
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Proposition 3.4. Let G and G′ be graphs and let d denote the length of the
unique shortest path between vertices of distance d in G. If q(G) = d + 1,
then q(G�G′) ≥ q(G).

Proof. Assume q(G) = d+1. Let v1, vd+1 ∈ V (G) such that distG(v1, vd+1) =
d and let v1, v2, . . . , vd+1 be the unique shortest path of length d from v1 to
vd+1 in G. Then for any v′ ∈ V (G′), (v1, v

′), (v2, v
′), . . . , (vd+1, v

′) is a path
of length d in G�H. It is clear that distG�H((v1, v

′), (vd+1, v
′)) = d. This

path is the unique path of length d since a path involving (vi, u
′) for some

other u′ ∈ V (G′) would be longer and any other path (v1, v
′), (w2, v

′), . . . ,
(wd, v

′), (vd+1, v
′) would contradict the uniqueness of the path in G. So by

Theorem 1.8, q(G�H) ≥ (q(G)− 1) + 1 = q(G). �

Corollary 3.5. For any path Ps on s ≥ 2 vertices, q(Ps�P2) = s.

Proof. By Proposition 3.4, we have s ≤ q(Ps�P2). Observe Ps�P2 has a
Hamilton cycle of order 2s, so by Corollary 2.3 we know q(Ps�P2) ≤ s.
Thus, q(Ps�P2) = s. �

The matrix Ĉs obtained from the adjacency matrix of Cs by changing
the sign on a pair of symmetrically placed ones is called the flipped cycle

matrix; note that Ĉs has every diagonal entry equal to zero. Set k =
⌈
s
2

⌉
.

The distinct eigenvalues of Ĉs are λj = 2 cos π(2j−1)s , j = 1, . . . , k, each with
multiplicity two except that λk = −2 has multiplicity one when s is odd [2].

Proposition 3.6. Let G be a graph of order t. If there exists a matrix
A ∈ S(G) such that q(A) = q(G) and −dev(A) = dev(A), then q(C4�G) ≤
q(G) + 1. If in addition 0 6∈ dev(A), then q(C4�G) ≤ q(G).

Proof. Assume A ∈ S(G), q(A) = q(G), and −dev(A) = dev(A). Define

M =


A It 0 −It
It −A It 0
0 It A It
−It 0 It −A

,
so

M2 =


A2 + 2It 0 0 0

0 A2 + 2It 0 0
0 0 A2 + 2It 0
0 0 0 A2 + 2It

.
This implies dev(M) ⊆ S := {±

√
λ2 + 2 : λ ∈ dev(A)}. If 0 6∈ dev(A),

then |{λ2 + 2 : λ ∈ dev(A)}| = q(A)
2 and |S| = q(A). If 0 ∈ dev(A), then

|{
√
λ2 + 2 : λ ∈ dev(A)}| = q(A)+1

2 and |S| = q(A) + 1. Observe that

M = Ĉ4⊗It+D⊗A for D = diag(1,−1, 1,−1). Thus, M ∈ S(C4�G). �

The next result shows that the bound in Proposition 3.6 is tight.
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Corollary 3.7. For k ≥ 1, s ≥ 2 and s 6≡ 2 mod 4,

• q(C4�P2k) = 2k, and
• q(C4�Cs) =

⌈
s
2

⌉
.

Proof. We present upper and lower bounds that are equal to the stated value.
For the upper bound we apply Proposition 3.6: Use the adjacency matrix A
for G = P2k, and note that − spec(A) = spec(A) and 0 6∈ spec(A). Use the

flipped cycle matrix Ĉs for G = Cs, and note that − spec(Ĉs) = spec(Ĉs),
and 0 6∈ spec(A) if s 6≡ 2 mod 4. For P2k, Proposition 3.4 provides the
lower bound. Since M(C4�Cs) ≤ 8,1 Observation 1.3 provides the lower
bound for Cs. �

3.2. Tensor products. The tensor product of graphs G and G′, denoted
G × G′, has vertex set V (G) × V (G′) and edge set {(u, u′)(v, v′) : uv ∈
E(G) and u′v′ ∈ E(G′)}.
Remark 3.8. For s ≥ 2, the graph Ps × P2 is two (disjoint) copies of Ps,
so q(Ps × P2) = s.

Proposition 3.9. Let G and G′ be connected graphs. Let A = [aij ] ∈ S(G)
with a zero diagonal and A′ = [a′ij ] ∈ S(G′) with a zero diagonal. Then

A⊗A′ ∈ S(G×G′).
Proof. Let u ∈ V (G) and u′ ∈ V (G′). Then, the vertices of G × G′ are
(u, u′) and the edges are (u, u′)(v, v′) where uv and u′v′ are edges in G and
G′, respectively. Since auu = a′u′u′ = 0, auv and a′u′v′ are both nonzero if
and only if uv ∈ E(G) and u′v′ ∈ E(G′). Thus, (A⊗A′) ∈ S(G×G′). �

Proposition 3.10. Let G be a graph. If there exists A ∈ S(G) such that
the diagonal of A is zero, q(A) = q(G), and −dev(A) = dev(A), then
q(C4 ×G) ≤ q(G). In particular:

(1) q(C4 × Ps) = s.
(2) q(C4 × C4) = 2.
(3) q(C4 × C2k) ≤ k.

Proof. Assume the hypotheses. Define

M =
1√
2


0 A 0 −A
A 0 A 0
0 A 0 A
−A 0 A 0

, so M2 =


A2 0 0 0
0 A2 0 0
0 0 A2 0
0 0 0 A2

.
This implies devM ⊆ dev(A) ∪ (−dev(A)) = dev(A), so q(M) = q(A). Let

B =


0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0

. Then M = B⊗A ∈ S(C4×G) and q(C4×G) ≤ q(G).

1This is well known (and is immediate from [2, Proposition 2.4 and Corollary 2.8]).
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Since spec(A) = − spec(A) for A the adjacency matrix of Ps or C2k,
q(C4 × Ps) ≤ s and q(C4 × C2k) ≤ k. The specific results then follow from
the general upper bound just established, and that C4 × Ps has a unique
shortest path on s vertices and q(C4) = 2. �

The next result gives a bound on the tensor product of two paths. Since
it is known that a path can be realized with any distinct spectrum, it would
be reasonable to ask for a spectrum that behaves well under products, e.g.,
{1, 2, 4, . . . , 2k−1} for k = s, t. However, much less is known about what
spectra can be realized by paths assuming a zero diagonal. It is not true
that a path can be realized with any spectrum and zero diagonal, because
the sum of the eigenvalues must be zero.

Proposition 3.11. For the tensor product of paths,

min{s, t} ≤ q(Ps × Pt) ≤


ts
2 for s, t even
(t−1)s

2 + 1 for s even, t odd
(t−1)(s−1)

2 + 1 for s, t odd

Proof. The lower bound is a direct application of Theorem 1.8.
For the upper bound, note that for paths the adjacency matrix achieves

q. We can find the eigenvalues of Ps × Pt by multiplying all possible pairs
of eigenvalues from the adjacency matrices for Ps and Pt. As a path is
bipartite, the adjacency eigenvalues of the path are symmetric about zero.
We then count the eigenvalues.

If s and t are both even, we have t
2 positive eigenvalues of Pt and since the

s eigenvalues of Ps are symmetric about zero, we have at most ts
2 distinct

eigenvalues for Ps × Pt.
If s is even and t is odd, then there are t−1

2 distinct positive eigenvalues of

Pt and s non-zero eigenvalues of Ps. Thus, we have at most (t−1)s
2 distinct

nonzero eigenvalues. Since t is odd, Pt contains a zero eigenvalue, and so
does Ps × Pt. Therefore we add 1 to our bound.

If s and t are odd, then there are t−1
2 distinct positive eigenvalues of Pt

and s−1 non-zero eigenvalues of Ps. Thus we have at most (t−1)(s−1)
2 distinct

nonzero eigenvalues. Since t is odd, Pt contains a zero eigenvalue, and so
does Ps × Pt. Therefore we add 1 to our bound. �

3.3. Strong products. The strong product 2 of graphs G and G′, denoted
G�G′, has vertex set V (G�G′) = V (G)× V (G′) and edge set

E(G�G′) = {(u, u′)(v, v′) : u = v and u′v′ ∈ E(G′)}
∪ {(u, u′)(v, v′) : u′ = v′ and uv ∈ E(G)}
∪ {(u, u′)(v, v′) : u′v′ ∈ E(G′) and uv ∈ E(G)}.

That is, E(G�G′) = E(G×G′) ∪ E(G�G′).

2The strong in strong product has no connection with the strong in Strong Multiplicity
Property (or Strong Spectral Property).
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Proposition 3.12. Let A ∈ S(G) and A′ ∈ S(G′) with both having every
diagonal entry nonzero. Then A⊗A′ ∈ S(G�G′).

Proof. Let DA denote the matrix containing the diagonal of A and similarly
for DA′ . We observe that

A⊗A′ = (A−DA +DA)⊗ (A′ −DA′ +DA′)

= (A−DA)⊗ (A′ −DA′) + (A−DA)⊗DA′ +

DA ⊗ (A′ −DA′) +DA ⊗DA′ .

Observe that (A−DA)⊗(A′−DA′) gives the edges of G×G′ by Proposition
3.9. The edges G�G′ are given by (A−DA)⊗DA′ +DA⊗ (A′−DA′). We
note that as the Cartesian and tensor products of graphs have no common
edges, so there is no cancellation, and that adding the preceding matrices
gives us the off-diagonal nonzero pattern of G�G′. Adding DA ⊗DA′ will
not affect the off-diagonal pattern. Therefore, A⊗A′ ∈ S(G�G′). �

Proposition 3.13. Let G be a graph. If A ∈ S(G), every diagonal entry of
A is nonzero, q(A) = q(G), and (−dev(A) = dev(A) or 0 ∈ dev(A)), then
q(G� P2) ≤ q(G).

Proof. Assume A ∈ S(G), every diagonal entry of A is nonzero, and q(A) =

q(G). If−dev(A) = dev(A), chooseB = 1√
2

[
1 1
1 −1

]
, so spec(B) = {−1, 1}.

If 0 ∈ dev(A), choose B = 1
2

[
1 1
1 1

]
, so spec(B) = {0, 1}. Then, A ⊗

B ∈ S(G � P2) and dev(A ⊗ B) = dev(A) dev(B) = dev(A). Therefore
q(G� P2) ≤ q(A⊗B) ≤ q(G). �

Proposition 3.14. Let A ∈ S(G) with every diagonal entry nonzero such
that q(A) = q(G) and dev(A) = −dev(A). Then

q(G� P3) ≤
{
q(G) + 1 if 0 /∈ dev(A)
q(G) if 0 ∈ dev(A)

.

Proof. We may realize the spectrum {−1, 0, 1} for P3 with the matrix

B =


−5

6

√
3
5 −5

6

√
3
5 0

−5
6

√
3
5

1
2

√
3
5

2
3

√
3
5

0 2
3

√
3
5

1
3

√
3
5

,
which has every diagonal entry nonzero. By similar reasoning as in Propo-
sition 3.13, dev(A ⊗ B) = dev(A) ∪ 0. The upper bound follows immedi-
ately. �

Corollary 3.15. q(P3 � P3) = 3.
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Proof. We observe that 3 ≤ q(P3�P3) since the diagonal vertices in P3�P3

have a unique shortest path of length 2. Furthermore, q(P3 � P3) ≤ 3 by
Proposition 3.14. �

The next result is worse for odd paths than Proposition 3.14 because
Theorem 2.4 does not apply when a zero eigenvalue is desired.

Proposition 3.16. For s′ ≥ s ≥ 2,

s ≤ q(Ps � Ps′) ≤
{
s+ s′ − 2 for s, s′ even
s+ s′ − 1 otherwise

.

Proof. With the vertices of Ps and Ps′ labeled by {1, . . . , s} and {1, . . . , s′},
there is a unique shortest path in Ps�Ps′ between vertices (1, 1) and (s, s),
so s ≤ q(Ps ⊗ Ps′). By Theorem 2.4, for any λ1, . . . , λn, there is a ma-
trix B ∈ S(Pn) and spec(B) = {λ1, . . . , λn}. Choose A ∈ S(Ps) with

spec(A) = {1, 2, . . . , 2s−1} and A′ ∈ S(Ps′) with spec(A) = {1, 2, . . . , 2s′−1}.
Then dev(A ⊗ A′) = {1, 2, . . . , 2s+s′−2}, so q(A ⊗ A′) = s + s′ − 1. In the

case s and s′ are both even, choose spec(A) = {±1, 2, . . . ,±2s/2−1} and

A′ ∈ S(Ps′) with spec(A) = {±1,±2, . . . ,±2s
′/2−1}. Then dev(A ⊗ A′) =

{±1,±2, . . . ,±2s/2+s
′/2−2}, so q(A⊗A′) ≤ s+ s′ − 2. �

4. Other graph operations

In this section we present results for block-clique graphs and for joins.

4.1. Block Clique-Graphs. Let G = (V,E) and G′ = (V ′, E′) be graphs.
The union of G and G′ is the graph G∪G′ = (V ∪V ′, E∪E′). If V ∩V ′ = ∅,
then the union is disjoint and can be denoted by G ∪̇G′. If V ∩ V ′ 6= ∅,
then the intersection of G and G′ is the graph G ∩ G′ = (V ∩ V ′, E ∩ E′).
If V ∩ V ′ = {v}, then G ∪ G′ is called the vertex sum of G and G′ and
can be denoted by G ⊕v G′; in this case v is called the summing vertex. A
block-clique graph is constructed from cliques by a sequence of vertex sums.
In this section we establish the value of q for two families of block-clique
graphs, clique-paths and clique-stars, which we define below.

Definition 4.1. For s ≥ 2 and nsi ≥ 2 for i = 1, . . . , s, we define a graph
KP (n1, n2, . . . , ns), called a clique-path, to be a graph constructed by vertex
sums using distinct summing vertices and cliquesKn1 ,Kn2 , . . . ,Kns in order.

Definition 4.2. For s ≥ 2 and nsi ≥ 2 for i = 1, . . . , s, we define a graph
KS(n1, n2, . . . , ns), called a clique-star, to be a graph constructed by vertex
sums using only one summing vertex and cliques Kn1 ,Kn2 , . . . ,Kns . The
vertex that is in every clique is called the center and every other vertex is
called noncentral.

Of course, KP (n1, n2) = KS(n1, n2).

Theorem 4.3. For s ≥ 2 and ni ≥ 2, i = 1, . . . , s, q(KP (n1, n2, . . . , ns)) =
s+ 1.
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Proof. We observe that there is a unique shortest path between the first
summing vertex and the last summing vertex. We can extend this path by 2
vertices, one in Kn1 and one in Kns to find a unique path of length s. Thus,
q(KP (n1, n2, . . . , ns)) ≥ s+ 1 by Theorem 1.8.

For the reverse inequality, number the vertices of Kni consecutively in or-
der of the cliques, with the first summing vertex inKni as first and the second
summing vertex in Kni last among the vertices of Kni for i = 2, . . . , n − 1;
the summing vertex of Kn1 is last and the summing vertex of Kns is first
among vertices in these cliques. Then the matrix

A=



Jn1−1 1n1−1
1T
n1−1 2 1T

n2−2 1
1n2−2 Jn2−2 1n2−2

1 1T
n2−2 2

. . .

. . .
. . .

2 1T
ns−1

1ns−1 Jns−1


∈S(KP (n1, , . . . , ns)).

Since rankA = s, q(KP (n1, n2, . . . , ns)) ≤ s+ 1 by Theorem 1.2. �

Theorem 4.4. For all s ≥ 2 and nsi ≥ 2, i = 1, . . . , s, the clique-star
G := KS(n1, n2, . . . , ns) has q(G) = 3.

Proof. Let `i = ni − 1 (the cardinality of the set of noncentral vertices of
Kni), n = 1 +

∑s
i=1 `i (the order of G), and number the noncentral vertices

of Kni consecutively in order of the cliques, with the center last (vertex n).
There is a unique path of length two from any noncentral vertex in one Kni

to any noncentral vertex in another Knj (j 6= i) through the center vertex
n, so q(G) ≥ 3 by Theorem 1.8.

Define J̃k = 1
kJk, 1̃k = 1

k1k, and

A =


J̃`1 1̃`1

. . .
...

J̃`s 1̃`s

1̃T`1 · · · 1̃T`s

∑s
i=1

1
`i

 ∈ S(G).

We show that q(A) = 3, implying q(G) = 3.

Observe that A(n) = J̃`1 ⊕ · · · ⊕ J̃`s . We can construct A from A(n)
by taking the sum of one row associated with each Kni to form a new last
row, and then adding the corresponding columns of this n× (n− 1) matrix
to form a new last column. Thus rankA = rankA(n) = s, which implies

multA(0) = n−s. Since xi := [0T , . . . ,0T , 1̃T`i ,0
T , . . . ,0T ]T is an eigenvector

for eigenvalue 1 of A(n), multA(n)(1) ≥ s. By interlacing (Theorem 1.1),
multA(1) ≥ s − 1, so multA(0) + multA(1) ≥ n − 1. Since q(A) ≥ 3, there
is exactly one more eigenvalue (necessarily different from 0 and 1 and of
multiplicity one) and q(A) = 3. �
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4.2. Joins. The join of disjoint graphs G = (V,E) and G′ = (V ′, E′), which
is denoted by G∨G′, has vertex set V ∪ V ′ and edge set E ∪E′ ∪ {vv′ : v ∈
V, v′ ∈ V ′}. It was shown in [1] that q(Kn ∨Kn) = 2 and q(Kn ∨Km) = 3
for n 6= m (see Theorem 1.6). Monfared and Shader showed in [11] that
q(G∨H) = 2 for connected graphs G and H of the same order (see Theorem
1.7). The next example shows that a join can require an arbitrarily large
number of distinct eigenvalues.

Example 4.5. Since Ps∨K1 has an induced Ps, mr(Ps∨K1) ≥ mr(Ps) = s−
1, and since Ps∨K1 is not a path, mr(Ps∨K1) ≤ s−1. Thus M(Ps∨K1) = 2,
which implies q(Ps ∨K1) ≥

⌈
s+1
2

⌉
by Observation 1.3. Since Ps ∨K1 has a

Hamilton cycle, q(Ps ∨K1) ≤
⌈
s+1
2

⌉
by Corollary 2.3.

Theorem 4.6. Let G and G′ be connected graphs such that |V (G)| = n and
|V (G′)| = n− ` for some 1 ≤ ` < n. Then q(G ∨G′) ≤ 2 + `.

Proof. Create a graph G′′ by adding new vertices v1, . . . , v` to G′ and adding
some combination of possible edges involving these vertices to make G′′ con-
nected. Then G ∨ G′ is a subgraph of G ∨ G′′. By Theorem 1.7 we have
q(G∨G′′) = 2 and there is a matrix A ∈ S(G∨G′′) with two eigenvalues each
of multiplicity n. Then λ1(A) = · · · = λn(A) < λn+1(A) = · · · = λ2n(A). By
deleting rows and columns of A corresponding to the new vertices v1, . . . , v`,
we obtain a principal submatrix B ∈ S(G ∨G′). Then by eigenvalue inter-
lacing (Theorem 1.1), we have

λ1(A) ≤ λ1(B) ≤ · · · ≤ λn−`(B) ≤ λn(A) = λ1(A)

λ1(A) = λn−`+1(A) ≤ λn−`+1(B) ≤ · · · ≤ λn(B) ≤ λn+`(A) = λ2n(A)

λn+1(A) ≤ λn+1(B) ≤ · · · ≤ λ2n−`(B) ≤ λ2n(A) = λn+1(A).

This gives us λ1(A) = λ1(B) = · · · = λn−`(B) and λn+1(A) = λn+1(B) =
· · · = λ2n−`(B). The remaining ` eigenvalues are bounded such that λ1(A) ≤
λn−`+1(B) ≤ · · · ≤ λn(B) ≤ λ2n(A). Therefore q(G ∨G′) ≤ 2 + `. �

5. Summary of the impact of graph operations

In this section we provide some new examples illustrating the impact of
graph operations on q and summarize what is known about the impact of
other operations. If we say that an operation · on two graphs G and H
raises q, this means that q(G ·H) > max{q(G), q(H)}. Saying that · on G
and H lowers q means that q(G ·H) < min{q(G), q(H)}, whereas saying ·
maintains q means that q(G · H) = q(G) = q(H). The meaning of raises,
lowers, and maintains is clear when the operation is on a single graph.

It is clear from Theorem 1.7 that the join operation is capable of decreas-
ing q; for example, q(Pn ∨ Pn) = 2 but q(Pn) = n. Of course, the join can
also maintain q. To see that the join can raise q, define the dth hypercube
recursively by Q1 = P2 and Qd = Qd−1�P2. The vertices of Qd are written
as strings of zeros and ones of length d, and two vertices are adjacent if and
only if they differ in exactly one place.
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Proposition 5.1. The join can raise the value of q, because q(Q5∨P2) ≥ 3.

Proof. The set of vertices S = {00000, 00111, 11110} in Q5 is an independent
set of Q5 ∨ P2. The only common neighbors of these vertices are v1, v2 ∈
V (P2). That is,∣∣∣∣∣∣

⋃
u,w∈S,u6=w

(N(u) ∩N(w))

∣∣∣∣∣∣ = |{v1, v2}| = 2 < 3 = |S|.

By the contrapositive of Theorem 1.9, we have q(Q5∨P2) 6= 2 and therefore
q(Q5 ∨ P2) ≥ 3. Note that q(Q5) = 2 [1, Corollary 6.9] and q(P2) = 2. �

Let G = (V,E) be a graph. For e ∈ E, the notation G − e means the
result of deleting edge e from G. For v ∈ V , the notation G − v means
the result of deleting v and all edges incident with v. The contraction of
edge e = uv of G, denoted by G/e, is obtained from G by identifying the
vertices u and v, deleting a loop if one arises in this process, and replacing
any multiple edges by a single edge. The subdivision of edge e = uv of G,
denoted by Ge, is the graph obtained from G by deleting e and inserting a
new vertex w adjacent exactly to u and v.

Examples are given in [1] showing that the difference between q(G) and
q(G− v) and the difference between q(G) and q(G− e) can grow arbitrarily
large in either direction as a function of the number of vertices. The con-
struction of a main example can be done with vertex sums. Let x and y be
two nonadjacent vertices of C4, and denote the other two vertices by w and
z. Suppose also that x is an endpoint of one Pk+1 and y is an endpoint of
another Pk+1. The graph Pk+1 ⊕x C4 ⊕y Pk+1 is denoted by Sk,k in [1] and
it is shown there that q(Sk,k) = k + 2 [1, Lemma 6.6].

Remark 5.2. Deleting the midpoint of P2k+1 creates 2Pk and lowers q.
Deleting a vertex from Kn creates Kn−1 and maintains q. Deleting the
vertex z from G = Pk+1 ⊕x C4 ⊕y Pk+1 results in a path on 2k + 3 vertices.
Since q(G) = k + 2 and q(P2n+3) = 2k + 3, the deletion of z has raised q.

Remark 5.3. Deleting the middle edge from P2k creates 2Pk and lowers
q. Deleting an edge from Kn creates Kn − e and maintains q for n ≥ 4
(see Proposition 2.8). Deleting the edge xz from G = Pk+1 ⊕x C4 ⊕y Pk+1

results in S(k + 2, k, 1), a path with an extra leaf. Since q(G) = k + 2 and
q(S(k + 2, k, 1)) = 2k + 3, the deletion of xz has raised q.

Remark 5.4. Contracting an edge of Pn creates Pn−1 and lowers q. Con-
tracting an edge of Kn creates Kn−1 and maintains q (for n ≥ 3). Contract-
ing the edge e = xz of G = Pk+1⊕x C4⊕y Pk+1 results in a generalized bull
GB(k, k). Thus q(G) = k + 2 and q(G/e) = 2k + 2, raising q.

Remark 5.5. Subdividing the edge {k + 1, k + 3} of GB(k, n − k − 3)
creates Pk+1 ⊕x C4 ⊕y Pk+1 and lowers q. Subdividing an edge of C2k+1

maintains q because q(C2k+1) = k+ 1 = q(C2k+2). Subdividing a cycle edge
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of Pk+1⊕xC4⊕y Pk+1 creates a unique shortest path on 2k+ 3 vertices and
raises q.

Table 1 summarizes the possible effect on q of various graph operations.

Table 1. Possible effects on q of various graph operations.
A column headed # gives the result # that describes the
example illustrating lowering, maintaining, or raising q.

Operation Lower q # Maintain q # Raise q #
Join Pn ∨ Pn, n ≥ 3 1.7 P2 ∨ P2 1.7 Q5 ∨ P2 5.1

Cartesian Product Ps �P2 3.5
Tensor Product C4 × Ps 3.10 K3×P2 =C6 1.5
Strong Product P3 � P3 3.15

Vertex Sum KS(n, n, n) 4.4 KP (3, 3) 4.3
Vertex Deletion Pn 5.2 Kn 5.2 Cn 1.5
Edge Deletion Pn 5.3 Kn 5.3 Cn 1.5
Edge Contract Pn 5.4 Kn 5.4 Pk+1 ⊕x C4 ⊕y Pk+1 5.4
Edge Subdivide GB(k, n− k − 3) 5.5 C2k+1 5.5 Pk+1 ⊕x C4 ⊕y Pk+1 5.5

6. Values of q for graphs of order at most 6

The IEPG has been solved for all connected graphs of order at most 4
in [5] and order 5 in [3]. Solution of the IEPG establishes the value of q;
the results for all connected graphs of order at most 5 are summarized in
Table 2. In this section we apply our previous results and additional ideas
to determine q for all connected graphs of order 6 (see Table 3).3

Note that if a graph G is disconnected with connected components Gi, i =
1, . . . , c then q(G) = max{q(Gi) : i = 1, . . . , c} and the solution to the IEPG
for G can be deduced immediately from the solutions for each Gi, so data is
customarily provided only for connected graphs. All graphs are numbered
using the notation in Atlas of Graphs [14].

We begin by establishing ordered multiplicity lists attaining the minimum
value of q that are attainable with SSP or SMP for some specific graphs. We
then apply those results to determine q for other graphs by using Observation
2.2. In many cases there is more than one way to establish the result, and in
a few cases (most notably K6 = G208) the result is already known. However,
we have grouped graphs by a subgraph having a matrix with SMP (or SSP,
which implies SMP) for efficiency. We begin with graphs having q(G) = 3.
Oblak and Šmigoc [12, Example 4.8] provide the matrix M96 in the next
lemma and state its spectrum {−1,−1, 0, 0, 2, 2}.

3Ahn, Alar, Bjorkman, Butler, Carlson, Goodnight, Harris, Knox, Monroe, and Wigal
have recently determined all possible ordered multiplicity lists for graphs of order 6; most
of their work is independent but in a few cases they cite results from this paper.
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Table 2. Values of q for graphs of order at most 5 (using the
graph numbering in [14]). All values of q can be determined
from the information in [3, Figure 1].

G# q(G#) G# q(G#) G# q(G#) G# q(G#) G# q(G#)

G1 1 G3 2 G6 3 G7 2 G13 3
G14 4 G15 3 G16 2 G17 2 G18 2
G29 3 G30 4 G31 5 G34 3 G35 4
G36 4 G37 3 G38 3 G40 3 G41 3
G42 3 G43 3 G44 3 G45 3 G46 3
G47 3 G48 2 G49 2 G50 2 G51 2
G52 2

Lemma 6.1. The matrix

M96 =



0 0 1√
2

0 0 0

0 0 1√
2

0 0 0
1√
2

1√
2

1 − 1√
2

0 − 1√
2

0 0 − 1√
2

0 1 0

0 0 0 1 1 −1
0 0 − 1√

2
0 −1 0


has SSP, m(M96) = (2, 2, 2), and M96 ∈ S(G96). Furthermore, q(G96) =
qM (G96) = 3.

Proof. It can be verified by computation that M96 has SSP (see [10], where
Theorem 2.5 is applied to M96). Since there is a unique shortest path on
three vertices, q(G96) = qM (G96) = 3. �

Corollary 6.2. The following graphs G have q(G) = qM (G) = 3: G111,
G114, G118, G121, G126, G133, G135, G136, G137, G140, G141, G144,
G145, G149, G150, G156 − G159, G161 − 167, G169 − 173, G177 − 180,
G182− 185, G193.

Proof. Each graph G has G96 as a spanning subgraph, so by Lemma 6.1 and
Observation 2.2, q(G) ≤ qM (G96) = 3. With three exceptions, each G has
a unique shortest path on three vertices, and so has q(G) = 3 by Theorem
1.8.

The exceptions are G161, G170, and G179. In each of these cases we
exhibit a set of independent vertices without enough common neighbors, so
q(G) 6= 2 by Theorem 1.9. The vertices are numbered as in Figure 1.
G161: The set {3, 4, 5, 6} is an independent set of four vertices, but the
union of neighborhood intersections is {1, 2}.
G170: The set {3, 4, 6} is an independent set of three vertices, but the union
of neighborhood intersections is {1, 2}.
G179: The set {3, 4, 5} is an independent set of three vertices, but the union
of neighborhood intersections is {1, 2}. �
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3 6

1

43 5

22

3 6

1

43 5

22

3 6

1

43 5

22

G161 G170 G179

Figure 1. Graphs to which the Theorem 1.9 is applied in
the proof of Corollary 6.2

Remark 6.3. Since each of the graphsG = G105, G127, G147, G148, G151−
G153 has a Hamilton cycle and each has a unique shortest path on three
vertices, q(G) = qM (G) = 3.

Lemma 6.4. The graph G125 has a matrix with SSP and ordered multi-
plicity list (2, 2, 2).

Proof. Observe that graph G125 can be constructed by adding a new vertex
6 adjacent to vertices 2 and 3 of the Banner = G37 (see Figure 2). It can
be verified by computation (see [10]) that Goodnight’s matrix [9]

M =



4
3 −

√
2
3

√
2
3 0 0

−
√

2
3 0 0 2

3 0√
2
3 0 0 2

3 0

0 2
3

2
3

4
3

2
3

0 0 0 2
3 0


∈ S(G37)

has SSP and eigenvalues µ1 = −2/3, µ2 = 0, and µ3 = 2 with multiplic-
ities 2, 1, 2, respectively, so the ordered multiplicity list of M is (2, 1, 2).
Furthermore, the vector x = [0,−1

2 ,−
1
2 , 0, 1]T is a basis for the eigenspace

of eigenvalue µ2 = 0. Since supp(x) = {2, 3, 5}, | supp(x) ∩ {2, 3}| = 2.
Therefore, we can apply the Augmentation Lemma (Lemma 2.6) to obtain
a matrix having eigenvalue µ2 = 0 with multiplicity 2 and also eigenvalues
µ1 and µ3 each with multiplicity 2. Thus the graph G125 has a matrix with
SSP and ordered multiplicity list (2, 2, 2). �

Corollary 6.5. The following graphs G have q(G) = qM (G) = 3: G138,
G143, G160.

Proof. Each graph G has G125 as a spanning subgraph, so by Lemma 6.4
and Observation 2.2, q(G) ≤ qM (G96) = 3. Since each has a unique shortest
path on three vertices, each has q(G) = qM (G) = 3 by Theorem 1.8. �

Lemma 6.6. The graph G129 has a matrix with SMP and ordered multi-
plicity list (2, 2, 2). Furthermore, q(G129) = qM (G129) = 3.
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G125 G190

Figure 2. Graphs to which the Augmentation Lemma is applied

Proof. Observe that graph G129 can be constructed by adding a new vertex
adjacent to two nonadjacent vertices v and w of C5 = G38. In [4, Theorem

48] it was shown that Ĉ5 =


0 1 0 0 −1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
−1 0 0 1 0

 has SMP. The eigenvalues

of Ĉ5 are µ1 = −2, µ2 = 1
2

(
1−
√

5
)
, and µ3 = 1

2

(
1 +
√

5
)

with ordered

multiplicity list (1, 2, 2). Furthermore, the vector [1,−1, 1,−1, 1]T is a ba-
sis for the eigenspace of eigenvalue µ1 = −2. Thus it is not possible for
an eigenvector x for µ1 to have a zero entry, so | supp(x) ∩ {v, w}| = 2.
Therefore, we can apply the Augmentation Lemma to obtain a matrix hav-
ing eigenvalue µ1 = −2 with multiplicity 2 and also eigenvalues µ2 and µ3
each with multiplicity 2. Thus the graph G129 has a matrix with SMP and
ordered multiplicity list (2, 2, 2). Since G129 has a unique shortest path on
three vertices, q(G129) = qM (G129) = 3. �

Remark 6.7. Oblak and Šmigoc show that G99 has a matrix with every
eigenvalue of even multiplicity [12, Example 3.1] and give a form to construct
such a matrix in [12, Theorem 3.1]. One such matrix is M99 below. They
also provided the matrix M115 [13], which they found in their research in
preparation for [12].

M99 =


0 1 0 0 0 0
1 0 1 0 0 −1
0 1 0 0 1 0
0 0 0 0 1 0
0 0 1 1 0 1
0 −1 0 0 1 0

, M115 =


−1 2 0 0 0 0
2 −3 −1 −1 0 0
0 −1 1 1 2 0
0 −1 1 1 −2 0

0 0 2 −2 −2
√

3

0 0 0 0
√

3 0

.

It is straightforward to verify that spec(M99) =
{
−
√

3,−
√

3, 0, 0,
√

3,
√

3
}

and spec(M115) =
{
−1− 2

√
3,−1− 2

√
3, 0, 0,−1 + 2

√
3,−1 + 2

√
3
}

. Since
each of G99 and G115 has a unique shortest path on three vertices, q(G99) =
3 = q(G115) by Theorem 1.8. Note that no matrix A ∈ S(G99) or A ∈
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S(G115) that has q(A) = 3 can have SMP because each is a spanning
subgraph of G134, which has a unique shortest path on four vertices.

Next we establish that q(G) = 2 for various graphs G, starting with some
that have SSP. The statement that q(G) can be realized by a matrix with
SSP implies qM (G) = q(G), because SSP implies SMP.

Lemma 6.8. Each matrix M# below is orthogonal with SSP, m(MG#) =
(3, 3), and M# ∈ S(G#) for the graphs G# = G174, G186. Thus q(G#) =
2.

M174 =



− 1√
10

√
2
5

√
2
5

1√
10

0 0√
2
5

− 1√
10

√
2
5

0 1√
10

0√
2
5

√
2
5

− 1√
10

0 0 1√
10

1√
10

0 0 1√
10

−
√

2
5
−
√

2
5

0 1√
10

0 −
√

2
5

1√
10

−
√

2
5

0 0 1√
10

−
√

2
5
−
√

2
5

1√
10


.

M186 =



1
9

(
−3−

√
3
)

1
18

(
2
√
3− 3

)
0 1

3

√
23
6
− 1√

3
− 1

3
− 1

2

1
18

(
2
√
3− 3

)
1
18

(
−3− 4

√
3
)

1
18

(
3− 2

√
3
)

0 2
3

− 1
2

0 1
18

(
3− 2

√
3
)

1
9

(
−3−

√
3
)

1
3

√
23
6
− 1√

3
1
3

1
2

1
3

√
23
6
− 1√

3
0 1

3

√
23
6
− 1√

3
1
9

(
3 +
√
3
)

0 0

− 1
3

2
3

1
3

0 1√
3

0

− 1
2

− 1
2

1
2

0 0 1
2

 .

Corollary 6.9. The graphs G = G188, G192, G194, G196 − G208 have
q(G) = 2 and the ordered multiplicity list (3, 3) can be realized by a ma-
trix with SSP.

Proof. Each of the graphsG188, G196, G198, G199, G202−G208 hasG174 as
a spanning subgraph and each of G192, G194, G197, G200, G201 has G186 as
a spanning subgraph. So by Lemma 6.8 and Observation 2.2, q(G) = 2. �

Lemma 6.10. The graph G190 has a matrix with SSP and ordered multi-
plicity list (3, 3).

Proof. The graphG190 is constructed by adding vertex 6 adjacent to {1, 2, 3}
of G48 (see Figure 2). The ordered multiplicity list (3, 2) of G48 is realized

by the matrix M =


1 0

√
2 1 1

0 1 −
√

2 1 1√
2 −

√
2 4 0 0

1 1 0 2 2
1 1 0 2 2

, which has SSP [3, Lemma

3.5]. Furthermore, the vectors [12 ,
1
2 , 0, 1, 1]T and [ 1

2
√
2
,− 1

2
√
2
, 1, 0, 0]T are a

basis for the eigenspace of eigenvalue 5. Thus, it is not possible for an eigen-
vector for λ = 5 to have more than two zero entries, and the only way to
achieve two zeros in an eigenvalue for λ = 5 is to have the zeros in positions
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4 and 5. Therefore, | supp(x)∩{1, 2, 3}| ≥ 2, and we can apply the Augmen-
tation Lemma to conclude there is a matrix B ∈ S(G190) which has SSP
and has eigenvalues λ=5 and λ=0 each with multiplicity 3. �

Corollary 6.11. For G = G195, q(G) = 2 and ordered multiplicity list
(3, 3) can be realized by a matrix with SSP.

Proof. The graph G195 has G190 as a spanning subgraph, so by Lemma
6.10 and Observation 2.2, q(G195) and ordered multiplicity list (3, 3) can be
realized by a matrix with SSP. �

The next result can be verified by computation.

Lemma 6.12. Each matrix M# below is orthogonal, m(MG#) = (3, 3), and
M# ∈ S(G#) for the graphs G#. Thus q(G#) = 2.

M154 =

1
2 − 1

4

√
1
2

(
7−
√
33
)

0 − 1
2 0 − 1

4

√
15−
√

33

7−
√

33

− 1
4

√
1
2

(
7−
√
33
)

− 1
2

1
2

√
9−
√

33

7−
√

33
0 − 1

4 0

0 1
2

√
9−
√

33

7−
√

33
1
2 − 1

4

√
1
2

(
9−
√
33
)

0 0

− 1
2 0 − 1

4

√
1
2

(
9−
√
33
)

− 1
2 − 1√

2(7−
√

33)
0

0 − 1
4 0 − 1√

2(7−
√

33)
1
2

1
4

√
1
2

(
15−

√
33
)

− 1
4

√
15−
√

33

7−
√

33
0 0 0 1

4

√
1
2

(
15−

√
33
)

− 1
2



M168 =



− 7
12

0 1
12

√
3
2

2
−
√

5
6

3
−
√

5
3

3

0 − 2
3

0 0

√
10
3

3
−
√

5
3

3

1
12

0 − 7
12

√
3
2

2

√
5
6

3

√
5
3

3√
3
2

2
0

√
3
2

2
1
2

0 0

−
√

5
6

3

√
10
3

3

√
5
6

3
0 2

3
0

−
√

5
3

3
−
√

5
3

3

√
5
3

3
0 0 2

3



M181 =



0 1√
2

1√
2

0 0 0

1√
2
− 1

4
1
4

1
8

√
23
8

0

1√
2

1
4

− 1
4

− 1
8

−
√
23
8

0

0 1
8

− 1
8

1
8

(
4−
√
23
)

1
8

1
4

√
11
2

+ 2
√
23

0
√
23
8

−
√

23
8

1
8

1
2
− 1

8
√
23

− 1
4

√
11
46

+ 2√
23

0 0 0 1
4

√
11
2

+ 2
√
23 − 1

4

√
11
46

+ 2√
23

3√
23
− 1

2


For graphs G = G154, G168, G181 and matrix A ∈ S(G), if q(A) = 2,

then A does not have SMP, because in each case it is possible to add an
edge to G and obtain a unique shortest path on 3 vertices.
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Remark 6.13. As it may be useful for future research, here we briefly
describe the method that was used to find the matrices M186 and M168.
The graph G186 has three independent vertices, which we label 4, 5, and
6. Vertices 1, 2, and 3 form a clique missing one edge. All but one of the
possible edges between vertices in {1, 2, 3} and {4, 5, 6} are present. Thus

we have the form M186 =

[
A C
CT D

]
where D is diagonal, C has one zero,

AT = A, and A has one pair of symmetrically placed zeros. In order for
M186 to be orthogonal, we must have CTC + D2 = I, so the columns of C
are orthogonal (but may have different lengths). Then AC + CD = 0, so
A = −CDC−1. The conditions

(i) D is diagonal with distinct diagonal entries strictly between zero and
one,

(ii) the columns of C are orthogonal and scaled so that CTC + D2 = I,
and

(iii) A = −CDC−1

suffice to ensure

[
A C
CT D

]
is orthogonal. The columns of C can be chosen

with a zero in the first column, and one diagonal entry of D can be used as
a parameter that is set to achieve the desired pair of zeros in A. The case of
M168 is similar except that now there are two pairs of zeros in A, and some
care must be taken in the choice of the vectors for C.

Next we show the two graphs G187 and G189 have q(G) = 3 by showing
they do not allow an orthogonal realization.

Lemma 6.14. The graph G187, the wheel on 6 vertices, does not allow an
orthogonal matrix and q(G) = 3.

Proof. Since G197 has a Hamilton cycle, q(G187) ≤ 3 by Corollary 2.3.
Showing that G187 does not allow an orthogonal matrix completes the proof
because q(G) = 2 implies G allows an orthogonal matrix by Observation 1.4.
We have the following matrix:

M =


a w 0 0 v q
w b x 0 0 r
0 x c y 0 s
0 0 y d z t
v 0 0 z e u
q r s t u f


Suppose M is orthogonal, so M2 = I where M2 =

a2 + q2 + v2 + w2 qr + aw + bw qs + wx qt + vz qu + av + ev aq + fq + uv + rw
qr + aw + bw b2 + r2 + w2 + x2 rs + bx + cx rt + xy ru + vw br + fr + qw + sx

qs + wx rs + bx + cx c2 + s2 + x2 + y2 st + cy + dy su + yz cs + fs + rx + ty
qt + vz rt + xy st + cy + dy d2 + t2 + y2 + z2 tu + dz + ez dt + ft + sy + uz

qu + av + ev ru + vw su + yz tu + dz + ez e2 + u2 + v2 + z2 eu + fu + qv + tz
aq + fq + uv + rw br + fr + qw + sx cs + fs + rx + ty dt + ft + sy + uz eu + fu + qv + tz f2 + q2 + r2 + s2 + t2 + u2

.

We denote the i, j-entry of M2 by hij , we know hij = 0 for i 6= j, and we
apply this repeatedly to specific entries.
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0 = h1,3 = qs + wx ⇒ x = −qs

w
(6.1)

0 = h2,5 = ru + vw ⇒ v = −ru

w
(6.2)

0 = h3,5 = su + yz ⇒ z = −su

y
(6.3)

0 = h3,6 = qs + wx ⇒ y = −qs

w
(6.4)

0 = h15 = qu + av + ev = 0 ⇒ w = − (a + e)r

q
and a + e 6= 0(6.5)

(6.1) and (6.5) ⇒ x = − qs

(a + e)r
(6.6)

(6.2) and (6.5) ⇒ v = − qu

a + e
(6.7)

(6.6) and (6.4) = ⇒ y =
s

t

(
q2 − (c + f)(a + e)

a + e

)
(6.8)

(6.8) and (6.3) = ⇒ z =
−tu(a + e)

q2 − (c + f)(a + e)
(6.9)

(6.5) and 0 = h1,2 = qr + aw + bw ⇒ q2 = −(a + b)(a + e)(6.10)

(6.5), (6.10), and(6.11)

0 = h2,3 = rs + bx + cx ⇒ r2 = −(a + b)(b + c)

(6.8), (6.10), and(6.12)

0 = h3,4 = st + cy + dy ⇒ t2 = (c + d)(a + b + c + f)

(6.9) and 0 = h4,5 = tu + dz + ez ⇒ q2 = (a + e)(c + d + e + f)(6.13)

(6.10), (6.13), and(6.14)

a + e 6= 0 ⇒ a + b + c + d + e + f = 0

(6.5), (6.7), (6.10), (6.12), (6.15), and(6.15)

0 = h1,6 = aq + fq + uv + rw ⇒ u2 = −(a + e)(d + e)

(6.5), (6.6), (6.10), (6.12), (6.15), and(6.16)

0 = h2,6 = br + fr + qw + sx ⇒ s2 = −(c + d)(b + c)

We then consider the following chart, which begins with two possible cases
for equation (6.10) using q2 > 0. Each of these cases is then applied succes-
sively to other equations that require positive values.

# equation Case 1 Case 2
(6.10) q2 = −(a+ e)(a+ b) > 0 (a+ e) > 0 (a+ e) < 0

and (a+ b) < 0 and (a+ b) > 0
(6.12) r2 = −(a+ b)(b+ c) > 0 (b+ c) > 0 (b+ c) < 0
(6.17) s2 = −(c+ d)(b+ c) > 0 (c+ d) < 0 (c+ d) > 0
(6.13) t2 = −(d+ e)(c+ d) > 0 (d+ e) > 0 (d+ e) < 0
(6.16) u2 = −(a+ e)(d+ e) > 0 (a+ e) < 0 (a+ e) > 0

In each case, we find the contradiction that (a+ e) < 0 and (a+ e) > 0. �

Lemma 6.15. Graph G189 does not allow an orthogonal matrix and q(G) =
3.
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Proof. Since G96 is a subgraph of G189, q(G189) ≤ 3 by Observation 2.2.
Showing that G189 does not allow an orthogonal matrix completes the proof
because q(G) = 2 implies G allows an orthogonal matrix by Observation 1.4.
We have the following matrix:

M =


a q r t 0 0
q b s 0 u v
r s c 0 w x
t 0 0 d y z
0 u w y e 0
0 v x z 0 f

.

Suppose M is orthogonal, so M2 is the identity matrix. Observe that M2

is



a2 + q2 + r2 + t2 aq + bq + rs ar + cr + qs at + dt qu + rw + ty qv + rx + tz
aq + bq + rs b2 + q2 + s2 + u2 + v2 qr + bs + cs + uw + vx qt + uy + vz bu + eu + sw bv + fv + sx
ar + cr + qs qr + bs + cs + uw + vx c2 + r2 + s2 + w2 + x2 rt + wy + xz su + cw + ew sv + cx + fx

at + dt qt + uy + vz rt + wy + xz d2 + t2 + y2 + z2 dy + ey dz + fz
qu + rw + ty bu + eu + sw su + cw + ew dy + ey e2 + u2 + w2 + y2 uv + wx + yz
qv + rx + tz bv + fv + sx sv + cx + fx dz + fz uv + wx + yz f2 + v2 + x2 + z2


and denote the i, j-entry of M2 by hij .

Note that h1,4 = h4,5 = h4,6 = 0 implies a = −d = e = f . We make these
substitutions in M and M2 becomes

a2 + q2 + r2 + t2 aq + bq + rs ar + cr + qs 0 qu + rw + ty qv + rx + tz
aq + bq + rs b2 + q2 + s2 + u2 + v2 qr + bs + cs + uw + vx qt + uy + vz au + bu + sw av + bv + sx
ar + cr + qs qr + bs + cs + uw + vx c2 + r2 + s2 + w2 + x2 rt + wy + xz su + aw + cw sv + ax + cx

0 qt + uy + vz rt + wy + xz a2 + t2 + y2 + z2 0 0
qu + rw + ty au + bu + sw su + aw + cw 0 a2 + u2 + w2 + y2 uv + wx + yz
qv + rx + tz av + bv + sx sv + ax + cx 0 uv + wx + yz a2 + v2 + x2 + z2

.

Denote the i, j-entry of this matrix by kij . We know kij = 0 for i 6= j, and
we apply this repeatedly to specific entries.

0 = k1,2 = aq + bq + rs and 0 = k1,3 = ar + cr + qs ⇒ q2 =
(a + c)

(a + b)
r2(6.17)

0 = k1,2 = aq + bq + rs and 0 = k1,3 = ar + cr + qs ⇒ s2 = (a + b)(a + c)(6.18)

0 = k2,6 = av + bv + sx and 0 = k3,6 = sv + ax + cx ⇒ v2 =
(a + c)

(a + b)
x2(6.19)

0 = k2,5 = au + bu + sw and 0 = k3,5 = su + aw + cw ⇒ u2 =
(a + c)

(a + b)
w2(6.20)

From (6.17) and (6.18), q = ±
√

(a+c)
(a+b)r and s = ±

√
(a+ b)(a+ c). If q

and s both use positive roots or both negative roots,

0 = k1,2 = aq + bq + rs ⇒ 2
√

(a+ b)(a+ c) = 0,

which is a contradiction. Therefore q and s must use roots of opposite sign.
Similarly, we can see v and u must use roots of sign opposite to the sign of
the root in the formula for s as well. Thus we have the following two cases.
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Case 1: For the first case, we let s =
√

(a+ b)(a+ c), q = −
√

(a+c)
(a+b)r,

v = −
√

(a+c)
(a+b)x, and u = −

√
(a+c)
(a+b)w.

0 = k1,5 = qu + rw + ty,(6.21)

(6.17), and (6.20) ⇒ y =
−rw(2a + b + c)

t(a + b)

0 = k1,6 = qv + rx + tz,(6.22)

(6.17), and (6.19) ⇒ z =
−rx(2a + b + c)

t(a + b)

0 = k5,6 = uv + wx + yz,(6.23)

(6.22), and (6.23) ⇒ t =

√
− (2a + b + c)2r2

(a + c)(a + b) + (a + b)2

Equation (6.24) yields a contradiction since t is imaginary.

Case 2: For the second case, we let s = −
√

(a+ b)(a+ c), q =
√

(a+c)
(a+b)r,

v =
√

(a+c)
(a+b)x, and u =

√
(a+c)
(a+b)w.

We observe that the same equations result from case 2 as in case 1 and
we obtain the same contradiction. �

Finally we establish the value of q for the few remaining graphs.

Remark 6.16. It is well known that the path is the only graph for which
q(G) = |V (G)| (see [1, Proposition 3.1]). Thus q(G83 = P6) = 6. It is shown
in [1] that G = S(k−1, n−k−1, 1) and G = GB(k, n−k−3) have q(G) = n−
1. Since G80 = S(2, 2, 1) and G81 = S(3, 1, 1), q(G80) = 5 = q(G81). Since
G97 = GB(2, 1) and G102 = GB(3, 0), q(G97) = 5 = q(G102). By Theorem
1.10, every graph other than G80, G81, G83, G97, G102 has q(G) ≤ 4. For
G = G78, G79, G93, G94, G95, G98, G100, G103, G104, G112, G113, G119,
G120, G122−G124, G130, G134, G139, G142, G has a unique shortest path
on 4 vertices, so q(G) = 4.

We have now established q for all graphs of order six. For each graph, a
reason is given.

Theorem 6.17. Tables 3 lists the value of q for each connected graph of
order six.
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Table 3. Values of q for graphs of order 6 using the graph
numbering in [14]. A column headed # gives the result #
that justifies the corresponding q(G#).

G# q(G#) # G# q(G#) # G# q(G#) #

G77 3 4.4 G78 4 6.16 G79 4 6.16
G80 5 6.16 G81 5 6.16 G83 6 6.16
G92 3 4.4 G93 4 6.16 G94 4 6.16
G95 4 6.16 G96 3 6.1 G97 5 6.16
G98 4 6.16 G99 3 6.7 G100 4 6.16
G102 5 6.16 G103 4 6.16 G104 4 6.16
G105 3 6.3 G111 3 6.2 G112 4 6.16
G113 4 6.16 G114 3 6.2 G115 3 6.7
G117 3 4.4 G118 3 6.2 G119 4 6.16
G120 4 6.16 G121 3 6.2 G122 4 6.16
G123 4 6.16 G124 4 6.16 G125 3 6.4
G126 3 6.2 G127 3 6.3 G128 3 3.5
G129 3 6.6 G130 4 6.16 G133 3 6.2
G134 4 6.16 G135 3 6.2 G136 3 6.2
G137 3 6.2 G138 3 6.5 G139 4 6.16
G140 3 6.2 G141 3 6.2 G142 4 6.16
G143 3 6.5 G144 3 6.2 G145 3 6.2
G146 3 1.6 G147 3 6.3 G148 3 6.3
G149 3 6.2 G150 3 6.2 G151 3 6.3
G152 3 6.3 G153 3 6.3 G154 2 6.12
G156 3 6.2 G157 3 6.2 G158 3 6.2
G159 3 6.2 G160 3 6.5 G161 3 6.2
G162 3 6.2 G163 3 6.2 G164 3 6.2
G165 3 6.2 G166 3 6.2 G167 3 6.2
G168 2 6.12 G169 3 6.2 G170 3 6.2
G171 3 6.2 G172 3 6.2 G173 3 6.2
G174 2 6.8 G175 2 1.6 G177 3 6.2
G178 3 6.2 G179 3 6.2 G180 3 6.2
G181 2 6.12 G182 3 6.2 G183 3 6.2
G184 3 6.2 G185 3 6.2 G186 2 6.8
G187 3 6.14 G188 2 6.9 G189 3 6.15
G190 2 6.10 G191 3 4.3 G192 2 6.9
G193 3 6.2 G194 2 6.9 G195 2 6.11
G196 2 6.9 G197 2 6.9 G198 2 6.9
G199 2 6.9 G200 2 6.9 G201 2 6.9
G202 2 6.9 G203 2 6.9 G204 2 6.9
G205 2 6.9 G206 2 6.9 G207 2 6.9
G208 2 6.9



MINIMUM NUMBER DISTINCT GRAPH EIGENVALUES 27

7. Values of q for families of graphs

The next table summarizes known values of q(G).

Table 4. Values of q for families of graphs

Graph G q(G) Reason

Kn 2 [1, Lemma 2.2]

Cn dn2 e [1, Lemma 2.7]

Pn n [1, Proposition 3.1]

Kn,m

{
2, if m = n

3, if m < n
[1, Corollary 6.5]

Qn 2 [1, Corollary 6.9]

GB(k, n− k − 3) n− 1 [1, Proposition 7.1]

S(k − 1, n− k − 1, 1) n− 1 [1, Proposition 7.2]

|V (G)| ≤ 6 Tables 2 and 3

KP (n1, n2, . . . , ns) for s ≥ 2, ni ≥ 2 s+ 1 Theorem 4.3

KS(n1, n2, . . . , ns) for s ≥ 2, ni ≥ 2 3 Theorem 4.4

Ps�P2 s Corollary 3.5

C4�P2s 2s Corollary 3.7

C4�Cs for s ≥ 4 & s 6≡ 2 mod 4
⌈
s
2

⌉
Corollary 3.7

Ps × P2 s Corollary 3.8

C4 × Ps s Proposition 3.10

P3 � P3 3 Corollary 3.15

Ps ∨K1

⌈
s+1
2

⌉
Example 4.5

Kn − e 2 Corollary 2.8
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S. M. Cioabă, D. Cvetković, S. M. Fallat, C. Godsil, W. Haemers, L. Hogben, R.
Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der
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