90 research outputs found

    Optimal Broadcast Encryption and CP-ABE from Evasive Lattice Assumptions

    Get PDF
    We present a new, simple candidate broadcast encryption scheme for NN users with parameter size poly(log⁥N)(\log N). We prove security of our scheme under a non-standard variant of the LWE assumption where the distinguisher additionally receives short Gaussian pre-images, while avoiding zeroizing attacks. This yields the first candidate optimal broadcast encryption that is plausibly post-quantum secure, and enjoys a security reduction to a simple assumption. As a secondary contribution, we present a candidate ciphertext-policy attribute-based encryption (CP-ABE) scheme for circuits of a-priori bounded polynomial depth where the parameter size is independent of the circuit size, and prove security under an additional non-standard assumption

    ABE for DFA from LWE against Bounded Collusions, Revisited

    Get PDF
    We present a new public-key ABE for DFA based on the LWE assumption, achieving security against collusions of a-priori bounded size. Our scheme achieves ciphertext size O~(ℓ+B)\tilde{O}(\ell + B) for attributes of length ℓ\ell and collusion size BB. Prior LWE-based schemes has either larger ciphertext size O~(ℓ⋅B)\tilde{O}(\ell \cdot B), or are limited to the secret-key setting. Along the way, we introduce a new technique for lattice trapdoor sampling, which we believe would be of independent interest. Finally, we present a simple candidate public-key ABE for DFA for the unbounded collusion setting

    Functional Encryption for Quadratic Functions from k-Lin, Revisited

    Get PDF
    We present simple and improved constructions of public-key functional encryption (FE) schemes for quadratic functions. Our main results are: - an FE scheme for quadratic functions with constant-size keys as well as shorter ciphertexts than all prior schemes based on static assumptions; – a public-key partially-hiding FE that supports NC1 computation on public attributes and quadratic computation on the private message, with ciphertext size independent of the length of the public attribute. Both constructions achieve selective, simulation-based security against unbounded collusions, and rely on the (bi-lateral) k-linear assumption in prime-order bilinear groups. At the core of these constructions is a new reduction from FE for quadratic functions to FE for linear functions

    Advances in Functional Encryption

    Get PDF
    Functional encryption is a novel paradigm for public-key encryption that enables both fine-grained access control and selective computation on encrypted data, as is necessary to protect big, complex data in the cloud. In this thesis, I provide a brief introduction to functional encryption, and an overview of my contributions to the area

    Dual System Encryption via Predicate Encodings

    Get PDF
    We introduce the notion of predicate encodings, an information-theoretic primitive reminiscent of linear secret-sharing that in addition, satisfies a novel notion of reusability. Using this notion, we obtain a unifying framework for adaptively-secure public-index predicate encryption schemes for a large class of predicates. Our framework relies on Waters’ dual system encryption methodology (Crypto ’09), and encompass the identity-based encryption scheme of Lewko and Waters (TCC ’10), and the attribute-based encryption scheme of Lewko et al. (Eurocrypt ’10). In addition, we obtain several concrete improvements over prior works. Our work offers a novel interpretation of dual system encryption as a methodology for amplifying a one-time private-key primitive (i.e. predicate encodings) into a many-time public-key primitive (i.e. predicate encryption)

    FABEO: Fast Attribute-Based Encryption with Optimal Security

    Get PDF
    Attribute-based encryption (ABE) enables fine-grained access control on encrypted data and has a large number of practical applications. This paper presents FABEO: faster pairing-based ciphertext-policy and key-policy ABE schemes that support expressive policies and put no restriction on policy type or attributes, and the first to achieve optimal, adaptive security with multiple challenge ciphertexts. We implement our schemes and demonstrate that they perform better than the state-of-the-art (Bethencourt et al. S&P 2007, Agrawal et al., CCS 2017 and Ambrona et al., CCS 2017) on all parameters of practical interest

    On the Inner Product Predicate and a Generalization of Matching Vector Families

    Get PDF
    Motivated by cryptographic applications such as predicate encryption, we consider the problem of representing an arbitrary predicate as the inner product predicate on two vectors. Concretely, fix a Boolean function P and some modulus q. We are interested in encoding x to x_vector and y to y_vector so that P(x,y) = 1 = 0 mod q, where the vectors should be as short as possible. This problem can also be viewed as a generalization of matching vector families, which corresponds to the equality predicate. Matching vector families have been used in the constructions of Ramsey graphs, private information retrieval (PIR) protocols, and more recently, secret sharing. Our main result is a simple lower bound that allows us to show that known encodings for many predicates considered in the cryptographic literature such as greater than and threshold are essentially optimal for prime modulus q. Using this approach, we also prove lower bounds on encodings for composite q, and then show tight upper bounds for such predicates as greater than, index and disjointness

    One-One Constrained Pseudorandom Functions

    Get PDF
    We define and study a new cryptographic primitive, named One-One Constrained Pseudorandom Functions. In this model there are two parties, Alice and Bob, that hold a common random string K, where Alice in addition holds a predicate f:[N] ? {0,1} and Bob in addition holds an input x ? [N]. We then let Alice generate a key K_f based on f and K, and let Bob evaluate a value K_x based on x and K. We consider a third party that sees the values (x,f,K_f) and the goal is to allow her to reconstruct K_x whenever f(x)=1, while keeping K_x pseudorandom whenever f(x)=0. This primitive can be viewed as a relaxation of constrained PRFs, such that there is only a single key query and a single evaluation query. We focus on the information-theoretic setting, where the one-one cPRF has perfect correctness and perfect security. Our main results are as follows. 1) A Lower Bound. We show that in the information-theoretic setting, any one-one cPRF for punctured predicates is of exponential complexity (and thus the lower bound meets the upper bound that is given by a trivial construction). This stands in contrast with the well known GGM-based punctured PRF from OWF, which is in particular a one-one cPRF. This also implies a similar lower bound for all NC1. 2) New Constructions. On the positive side, we present efficient information-theoretic constructions of one-one cPRFs for a few other predicate families, such as equality predicates, inner-product predicates, and subset predicates. We also show a generic AND composition lemma that preserves complexity. 3) An Amplification to standard cPRF. We show that all of our one-one cPRF constructions can be amplified to a standard (single-key) cPRF via any key-homomorphic PRF that supports linear computations. More generally, we suggest a new framework that we call the double-key model which allows to construct constrained PRFs via key-homomorphic PRFs. 4) Relation to CDS. We show that one-one constrained PRFs imply conditional disclosure of secrets (CDS) protocols. We believe that this simple model can be used to better understand constrained PRFs and related cryptographic primitives, and that further applications of one-one constrained PRFs and our double-key model will be found in the future, in addition to those we show in this paper

    Doubly Spatial Encryption from DBDH

    Get PDF
    Functional encryption is an emerging paradigm for public-key encryption which enables fine-grained control of access to encrypted data. Doubly-spatial encryption (DSE) captures all functionalities that we know how to realize via pairings-based assumptions, including (H)IBE, IPE, NIPE, CP-ABE and KP-ABE. In this paper, we propose a construction of DSE from the decisional bilinear Diffie-Hellman (DBDH) assumption. This also yields the first non-zero inner product encryption (NIPE) scheme based on DBDH. Quite surprisingly, we know how to realize NIPE and DSE from stronger assumptions in bilinear groups but not from the basic DBDH assumption. Along the way, we present a novel algebraic characterization of *NO* instances for the DSE functionality, which we use crucially in the proof of security

    Fully, (Almost) Tightly Secure IBE from Standard Assumptions

    Get PDF
    We present the first fully secure Identity-Based Encryption scheme (IBE) from the standard assumptions where the security loss depends only on the security parameter and is independent of the number of secret key queries. This partially answers an open problem posed by Waters (Eurocrypt 2005). Our construction combines Waters\u27 dual system encryption methodology (Crypto 2009) with the Naor-Reingold pseudo-random function (J. ACM, 2004) in a novel way. The security of our scheme relies on the DLIN assumption in prime-order groups
    • 

    corecore