
Fully, (Almost) Tightly Secure IBE from Standard Assumptions⋆

Jie Chen1,⋆⋆ and Hoeteck Wee2,⋆ ⋆ ⋆

1 East China Normal University, China
2 École Normale Supérieure, France

Abstract. We present the first fully secure Identity-Based Encryption scheme (IBE) from the standard assumptions
where the security loss depends only on the security parameter and is independent of the number of secret key
queries. This partially answers an open problem posed by Waters (Eurocrypt 2005). Our construction combines
Waters’ dual system encryption methodology (Crypto 2009) with the Naor-Reingold pseudo-random function
(J. ACM, 2004) in a novel way. The security of our scheme relies on the DLIN assumption in prime-order groups.

Table of Contents

1 Introduction . 1

2 Preliminaries . 5

3 Nested Dual System Groups . 6

4 (Almost) Tight IBE from Nested Dual System Groups . 9

5 Instantiations in Composite-Order Bilinear Groups . 17

6 Instantiations from d-LIN in Prime-Order Groups . 22

7 Concrete IBE Scheme from d-LIN in Prime-Order Groups . 31

⋆ A preliminary version of this work appeared as a merge with [12] at CRYPTO 2013 [11].
⋆⋆ Email: s080001@e.ntu.edu.sg. Supported in part by the National Research Foundation of Singapore under Research Grant

NRF-CRP2-2007-03. Work done while at Nanyang Technological University (NTU) in Singapore.
⋆ ⋆ ⋆ Email: hoeteck@alum.mit.edu. Supported in part by NSF Awards CNS-1237429 and CNS-1319021. Most of this work was

done at George Washington University and while visiting NTU.

1 Introduction

In an Identity-Based Encryption (IBE) scheme [27], encryption requires only the identity of the recipient
(e.g. an email address or an IP address) and a set of global public parameters, thus eliminating the need to
distribute a separate public key for each user in the system. The first realizations of IBE were given in 2001;
the security of these schemes were based on either Bilinear Diffie-Hellman or QR in the random oracle
model [7, 13]. Since then, tremendous progress has been made towards obtaining IBE and HIBE schemes
that are secure in the standard model based on pairings [9, 5, 6, 28, 15, 29] as well as lattices [16, 10,
2, 3]. Specifically, starting with [29], we now have very efficient constructions of IBE based on standard
assumptions which achieve the strongest security notion of full (adaptive) security, where the adversary may
choose the challenge identity after seeing both the public parameters and making key queries.

In this work, we focus on the issue of security reduction and security loss in the construction of fully
secure IBE. Consider an IBE scheme with a security reduction showing that attacking the scheme in time t

with success probability ϵ implies breaking some conjectured hard problem in time roughly t with success
probability ϵ/L; we refer to L as the security loss, and a tight reduction is one where L is a constant. All
known constructions of fully secure IBE schemes from standard assumptions incur a security loss that is
at least linear in the number of key queries q; the only exceptions are constructions in the random oracle
model [7] and those based on q-type assumptions [15]. Motivated by this phenomenon, Waters [28] posed
the following problem in 2005 (reiterated in [15, 4]):

“ Design an IBE with a tight security reduction to a standard assumption. ”
That is, we are interested in constructions based on “static” assumptions like the Decisional Linear (DLIN)
assumption or the subgroup decisional assumption and which do not rely on random oracles. Note that an
IBE with a tight security reduction would also imply signatures with a tight security reduction via Naor’s
transformation [7]; indeed, the latter were the focus in a series of very recent works [1, 19, 17].

We stress that tight reductions are not just theoretical issues for IBE, rather they are of utmost practical
importance: as L increases, we need to increase the size of the underlying groups in order to compensate for
the security loss, which in turn increases the running time of the implementation. Note that the impact on
performance is quite substantial, as exponentiation in a r-bit group takes time roughly O(r3).

While the ultimate goal is to achieve constant security loss (i.e. L = O(1)), even achieving L = poly(λ)

and independent of q is already of both practical and theoretical interest. For typical settings of parameters
(e.g. λ = 128 and q = 220), λ is much smaller than q. From the theoretical stand-point, we currently have
two main techniques for obtaining fully secure IBE from standard assumptions: random partitioning [28]
and dual system encryption framework [29]. For the former, we now know that an Ω(q) security loss is in
fact inherent [18]. For the latter, all known instantiations also incur an Ω(q) security loss; an interesting
theoretical question is whether this is in fact inherent to the dual system encryption framework.

1.1 Our results

Our main result is an IBE scheme based on the (generalized) d-LIN assumption with security loss O(λ) for
λ-bit identities:

1

Reference |MPK| security loss additive overhead assumption

BB1 [5] O(1) O(2n) q · poly(λ, n) DBDH

Waters [28] O(n) O(qn) q2ϵ−2 · poly(λ, n) DBDH

Gentry [15] O(1) O(1) q2 · poly(λ, n) q-ABDHE

BR [4] O(n) O(qn/ϵ) q · poly(λ, n) DBDH

LW[29, 23, 21] O(1) O(q) q · poly(λ, n) DLIN or composite

Ours O(n) O(n) q · poly(λ, n) DLIN or composite

O(d2n) O(n) d2q · poly(λ, n) d-LIN

Fig. 1. Comparison amongst IBE schemes, where {0, 1}n is the identity space, q is the number of adversary’s key queries, ϵ is the
adversary’s advantage, and additive overhead refers to that in the simulator’s running time in the security reduction. In all of these
constructions, |SK| = |CT| = O(1).

Theorem 1. There exists an IBE scheme for identity space {0, 1}n based on the d-LIN assumption with the
following property: for any adversary A that makes at most q key queries against the IBE scheme, there
exist an adversary B such that:

AdvIBE
A (λ) ≤ (2n+ 1) · Advd-LIN

B (λ) + 2−Ω(λ)

and

Time(B) ≈ Time(A) + q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

This follows by combining our constructions in Section 4 and Section 6 (see also Theorem 2 and Lemma 8
and 10). We compare our scheme with prior constructions in Figure 1. Applying Naor’s transformation, we
also obtain a d-LIN-based signature scheme with constant-size signatures and security loss independent of
the number of signature queries. This yields an alternative construction for an analogous result in [17].

Our approach. The inspiration for our construction comes from a recent connection between predicate
encryption and one-time symmetric-key primitives [30] — namely one-time MACs in the case of IBE —
via dual system encryption [29]. Our key observation is to extend this connection to “reusable MACs”,
namely that if we start with an appropriate pseudorandom function (PRF) with security loss L, we may
derive an IBE with the security loss O(L). More concretely, we begin with the Naor-Reingold DDH-based
PRF [25] which has security loss n for input domain {0, 1}n, and obtain a fully secure IBE with security
loss O(n) via a novel variant of the dual system encryption methodology. Our IBE scheme is essentially
that obtained by embedding Waters’ fully secure IBE based on DBDH [28] into composite-order groups,
and then converting this to a prime-order scheme following [12, 26, 21, 14] (along with some new technical
ideas). Here, we exploit the fact that Waters’ IBE and the Naor-Reingold PRF share a similar algebraic
structure based on bit-by-bit encoding of the identity and PRF input respectively.

2

1.2 Technical overview

We provide a more technical overview of our main results, starting with the proof idea and then the
construction. Here, we assume some familiarity with prior works. (The formal presentation and analysis
of our scheme is entirely self-contained.)

Proof idea. Our security proof combines Waters’ dual system encryption methodology [29] with ideas from
the analysis of the Naor-Reingold PRF. In a dual system encryption scheme [29], there are two types of keys
and ciphertexts: normal and semi-functional. A key will decrypt a ciphertext properly unless both the key
and the ciphertext are semi-functional, in which case decryption will fail with overwhelming probability.
The normal keys and ciphertexts are used in the real system, and keys are gradually introduced in the hybrid
security proof, one at a time. Ultimately, we arrive at a security game in which the simulator only has
to produce semi-functional objects and security can be proved directly. In all prior instantiations of this
methodology, the semi-functional keys are introduced one at a time. As a result, we require q hybrid games
to switch all of the keys from normal to semi-functional, leading to an Ω(q) security loss, since each step
requires a computational assumption.

We deviate from the prior paradigm by using only n hybrid games, iterating over the bits in the bit-
by-bit encoding of the identity, as was done in the Naor-Reingold PRF. That is, we introduce n types of
semi-functional ciphertexts and keys, where type i objects appear in game i, while gradually increasing the
entropy in the semi-functional components in each game. This strategy introduces new challenges specific
to the IBE setting, namely that the adversary could potentially use the challenge ciphertext to test whether
we have switched from type i − 1 keys to type i keys. Prior works exploit the fact that we only switch a
single key in each step, whereas we could be switching up to q keys in each step.

We overcome this difficulty as follows. At step i of the hybrid game, we guess the i’th bit bi of the
challenge identity ID∗, and abort if our guess is incorrect. This results in a security loss of 2, which we can
afford. If our guess bi is correct,

– for all identities whose i’th bit equals bi, the corresponding type i− 1 and type i object are the same;

– for all other identities, we increase the entropy of the keys going from type i − 1 to type i (via a tight
reduction to a computational assumption).

The first property implies that the adversary cannot use the challenge ciphertext to distinguish between
type i − 1 and type i keys; in the proof, the simulator will not be able to generate type i − 1 or type i

ciphertexts for identities whose i’th bit is different from bi (c.f. Remark 3 and Section 4.4). Interestingly,
decryption capabilities remain unchanged throughout the hybrid games: a type i key for ID∗ can decrypt a
type i ciphertext for ID∗ (c.f. Remark 5). This is again different from prior instantiations of the dual system
encryption methodology where decryption fails for semi-functional objects.

In the final transition, a semi-functional type n object for identity ID has semi-functional component
Rn(ID) where Rn is a truly random function. In particular, the semi-functional ciphertext has semi-
functional component Rn(ID∗). Moreover, Rn(ID∗) is truly random from the adversary’s view-point because
it only learns SKID and thus Rn(ID) for ID ̸= ID∗. We can then argue that the message which is masked by
Rn(ID∗) is information-theoretically hidden.

3

Property
Where it is used

nested dual system groups dual system groups

projective correctness correctness

normal to type 0 (Lemma 1) normal to semi-functional CT

associative correctness correctness

orthogonality normal to type 0 (Lemma 2) final transition

non-degeneracy final transition (Lemma 4) pseudo-normal to pseudo-SF Keys

final transition

H-subgroup type i− 1 to type i (Lemma 3) key delegation

left subgroup normal to type 0 (Lemma 1) normal to semi-functional CT

nested-hiding type i− 1 to type i (Lemma 3) unavailable

right subgroup unavailable normal to pseudo-normal keys

pseudo-SF to semi-functional keys

parameter-hiding unavailable pseudo-normal to pseudo-SF Keys

Fig. 2. Summary of (nested) dual system groups

Construction. As noted earlier, our IBE scheme is essentially that obtained by embedding Waters’ fully
secure IBE based on DBDH into composite-order groups, and then converting this to a prime-order scheme
(see Section 4 for an overview of the scheme). To achieve a modular analysis, we rely on a novel variant
of the dual system group framework in [12], with a so-called nested-hiding property (see Section 3.1 for
an overview). Roughly speaking, this says that it is computationally infeasible to distinguish q samples
from some distribution with another; specifically, it allows us to boost the entropy of the semi-functional
components. In the instantiation, we will need to establish this property with a tight reduction to some
standard assumption. The nested-hiding property allows us to “embed” the Naor-Reingold analysis into the
semi-functional space of a dual system encryption scheme. We stress that the nested-hiding property even
for q = 1 is qualitatively different from right subgroup indistinguishability in dual system groups.

Next, we provide new instantiations of such dual system groups in the composite-order and prime-order
settings:

– The composite-order instantiation is very similar to that in [12, 23]. We rely on composite-order group
whose order is the product of three primes p1, p2, p3. The subgroup Gp1 of order p1 serves as the
“normal space” and Gp2 of order p2 serves as the “semi-functional space”. We also require a new static,
generically secure assumption, which roughly speaking, states that DDH is hard in the Gp2 subgroup.
Here, we extend the techniques from [25] to establish nested-hiding indistinguishability without losing
a factor of q in the security reduction (c.f. Lemmas 6 and 7). Our IBE analysis may also be viewed as
instantiating the Naor-Reingold PRF in the Gp2 subgroup.

– For the prime-order instantiation based on d-LIN, we extend the prior instantiation in [12] in several
ways. First, we work with 2d× 2d matrices instead of (d+1)× (d+1) matrices. In both constructions,
the first d dimensions serve as the “normal space”; in our construction, we require a d-dimensional
semi-functional space instead of a 1-dimensional one so that we may embed the d-LIN assumption
into the semi-functional space. Next, we extend the techniques from [25, 22] to establish nested-hiding
indistinguishability without losing a factor of q in the security reduction (c.f. Lemmas 9 and 10).

4

The modular approach allows us to decouple our main result into two steps: the first builds an IBE
from nested dual system groups where we rely on the Naor-Reingold PRF argument and the dual system
encryption methodology; the second builds nested dual system groups from d-LIN where we handle all of
the intricate linear algebra associated with simulating composite-order groups in prime-order groups from
[12, 21] and with achieving a tight reduction via random self-reducibility.

Perspective. In spite of the practical motivation for tight security reductions, we clarify that our
contributions are largely of theoretical and conceptual interest. This is because any gain in efficiency from
using smaller groups is overwhelmed by the loss from the bit-by-bit encoding of identities. Our work raises
the following open problems:

– Can we reduce the size of the public parameters to a constant?

– Can we achieve tight security, namely L = O(1)?

We note that progress on either problem would likely require improving on the Naor-Reingold PRF: namely,
reducing respectively the seed length and the security loss to a constant, both of which are long-standing
open problems. We also note that the present blow-up in public parameters and security loss arise only in
using the Naor-Reingold approach to build an IBE from nested dual system groups; our instantiation of
nested dual system groups do achieve tight security.

Organization. We present nested dual system groups in Section 3 and our IBE scheme in Section 4. We
present instantiations of dual system groups in Sections 5 and 6. We present a self-contained description of
our IBE scheme in Section 7.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S and
by x, y, z ←R S that all x, y, z are picked independently and uniformly at random from S. By PPT, we
denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the security parameter. We
use · to denote multiplication (or group operation) as well as component-wise multiplication. We use lower
case boldface to denote (column) vectors over scalars or group elements and upper case boldface to denote
vectors of group elements as well as matrices. Given a group G, we use ord(G) to denote the smallest
positive integer c such that gc = 1 for all g ∈ G.

Identity-Based Encryption. An IBE scheme consists of four algorithms (Setup,Enc,KeyGen,Dec) :

Setup(1λ, 1n) → (MPK, MSK). The setup algorithm takes in the security parameter 1λ and the length
parameter 1n. It outputs public parameters MPK and a master secret key MSK.

Enc(MPK,x,m)→ CTx. The encryption algorithm takes in the public parameters MPK, an identity x, and
a message m. It outputs a ciphertext CTx.

KeyGen(MPK, MSK,y) → SKy. The key generation algorithm takes in the public parameters MPK, the
master secret key MSK, and an identity y. It outputs a secret key SKy.

5

Dec(MPK, SKy, CTx) → m. The decryption algorithm takes in the public parameters MPK, a secret key
SKy for an identity y, and a ciphertext CTx encrypted under an identity x. It outputs a message m if
x = y.

Correctness. For all (MPK, MSK) ← Setup(1λ, 1n), all identities x, all messages m, all decryption keys
SKy, all x such that x = y, we have

Pr[Dec(MPK, SKy,Enc(MPK,x,m)) = m] = 1.

Security Model. The security game is defined by the following experiment, played by a challenger and an
adversary A.

Setup. The challenger runs the setup algorithm to generate (MPK, MSK). It gives MPK to the adversary A.

Phase 1. The adversaryA adaptively requests keys for any identity y of its choice. The challenger responds
with the corresponding secret key SKy, which it generates by running KeyGen(MPK, MSK,y).

Challenge. The adversary A submits two messages m0 and m1 of equal length and a challenge identity x∗

with the restriction that x∗ is not equal to any identity requested in the previous phase. The challenger
picks β ←R {0, 1}, and encrypts mβ under x∗ by running the encryption algorithm. It sends the
ciphertext to the adversary A.

Phase 2. A continues to issue key queries for any identity y as in Phase 1 with the restriction that y ̸= x∗.

Guess. The adversary A must output a guess β′ for β.

The advantage AdvIBE
A (λ) of an adversary A is defined to be |Pr[β′ = β]− 1/2|.

Definition 1. An IBE scheme is fully secure if all PPT adversariesA, its advantage AdvIBE
A (λ) is a negligible

function in λ.

3 Nested Dual System Groups

In this section, we present nested dual system groups, a variant of dual system groups introduced in
[12] with a notable difference: we require (computational) nested-hiding indistinguishability, in place of
(computational) right subgroup indistinguishability and (information-theoretic) parameter-hiding. As noted
in the introduction, the nested-hiding property even for q = 1 is qualitatively different from right subgroup
indistinguishability in dual system groups.

3.1 Overview

Informally, nested dual system groups contain a triple of groups (G,H,GT) and a non-generate bilinear
map e : G × H → GT . For concreteness, we may think of (G,H,GT) as composite-order bilinear groups.
Nested dual system groups take as input a parameter 1n and satisfy the following properties:

6

(left subgroup G.) There are two computationally indistinguishable ways to sample correlated (n + 1)-
tuples from Gn+1: the “normal” distribution, and a higher-entropy distribution with “semi-functional
components”. We sample the normal distribution using SampG and the semi-functional components
using ŜampG. (This is exactly the same as in [12].)

(right subgroup H.) There is a single algorithm SampH to sample correlated (n + 1)-tuples from Hn+1.
We should think of these tuples as already having semi-functional components, generated by some
distinguished element h∗ ∈ H. It is convenient to think of h∗ as being orthogonal to each component in
the normal distribution over G (c.f. orthogonality and Remark 1). On the other hand, we require that h∗

is not orthogonal to the semi-functional components in G (c.f. non-degeneracy) in order to information-
theoretically hide the message in the final transition.

(nested-hiding.) We require a computational assumption over H which we refer to as nested-hiding, namely
that for each i = 1, . . . , n,

(h0, hi) and (h0, hi · (h∗)γ)

are computationally indistinguishable, where (h0, h1, . . . , hn) is sampled using SampH and γ is a
random exponent. In the formal definition, we provide the adversary with q samples from these
distributions, and in the instantiations, we provide a tight reduction (independent of q) to a static
assumption such as DLIN.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0, h1, . . . , hn) ∈ Hn+1 sampled using SampG

and SampH respectively, we have that for all i = 1, . . . , n,

e(g0, hi) = e(gi, h0).

We require this property for correctness. (This is exactly the same as in [12].)

3.2 Definitions

Syntax. Nested dual system groups consist of five randomized algorithms given by (SampP, SampGT,

SampG, SampH) along with ŜampG:

SampP(1λ, 1n): On input (1λ, 1n), output public and secret parameters (PP, SP), where:

– PP contains a triple of groups (G,H,GT) and a non-generate bilinear map e : G×H→ GT , a linear
map µ defined on H, along with some additional parameters used by SampG, SampH;

– given PP, we know ord(H) and can uniformly sample from H;

– SP contains h∗ ∈ H (where h∗ ̸= 1), along with some additional parameters used by ŜampG;

SampGT : Im(µ)→ GT. (As a concrete example, suppose µ : H→ GT and Im(µ) = GT.)

SampG(PP): Output g ∈ Gn+1.

SampH(PP): Output h ∈ Hn+1.

ŜampG(PP, SP): Output ĝ ∈ Gn+1.

7

The first four algorithms are used in the actual scheme, whereas the last algorithm is used only in the proof
of security. We define SampG0 to denote the first group element in the output of SampG, and we define
ŜampG0 analogously.

Correctness. The requirements for correctness are as follows:

(projective.) For all h ∈ H and all coin tosses s, we have SampGT(µ(h); s) = e(SampG0(PP; s), h).

(associative.) For all (g0, g1, . . . , gn) ← SampG(PP) and (h0, h1, . . . , hn) ← SampH(PP) and for all i =
1, . . . , n, we have e(g0, hi) = e(gi, h0).

Security. The requirements for security are as follows (we defer a discussion to the end of this section):

(orthogonality.) µ(h∗) = 1.

(non-degeneracy.) With probability 1 − 2−Ω(λ) over ĝ0 ← ŜampG0(PP, SP), we have that e(ĝ0, h∗)α is
identically distributed to the uniform distribution over GT , where α←R Zord(H).

(H-subgroup.) The output distribution of SampH(PP) is the uniform distribution over a subgroup of Hn+1.

(left subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvLS
A (λ) :=

∣∣Pr[A(PP, g) = 1]− Pr[A(PP, g · ĝ) = 1]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g← SampG(PP); ĝ← ŜampG(PP, SP).

For any g = (g0, . . . , gn) ∈ Gn+1, and any i ∈ [n], we use g−i to denote (g0, . . . , gi−1, gi+1, . . . , gn) ∈ Gn.

(nested-hiding indistinguishability.) For any adversary A, we define the advantage function:

AdvNS
A (λ, q) := max

i∈[n]

∣∣Pr[A(PP, h∗, ĝ−i, h1, . . . ,hq) = 1]−Pr[A(PP, h∗, ĝ−i, h′1, . . . ,h′q) = 1]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

ĝ← ŜampG(PP, SP);

hj := (h0,j , h1,j , . . . , hi,j , . . . , hn,j)← SampH(PP), j = 1, . . . , q;

h′j := (h0,j , h1,j , . . . , hi,j · (h∗)γj , . . . , hn,j), γj ←R Zord(H), j = 1, . . . , q.

Discussion. We provide additional justification and discussion on the preceding security properties.

8

Remark 1 (orthogonality). We may deduce from µ(h∗) = 1 that e(g0, h∗) = 1 for all g0 = SampG0(PP; s):
for all γ ∈ {0, 1},

e(g0, (h
∗)γ) = SampGT(µ((h∗)γ); s) (by projective)

= SampGT(µ(h∗)γ ; s) (by linearity of µ)

= SampGT(1; s) (by orthogonality)

Thus, we have e(g0, h
∗) = e(g0, 1) = 1. For the instantiation from composite-order groupsin Section 5, h∗

is orthogonal to each element in the output of SampG, that is,

e(g0, h
∗) = e(g1, h

∗) = · · · = e(gn, h
∗) = 1

for all (g0, g1, . . . , gn) ← SampG(PP). On the other hand, for the instantiation from prime-order groupsin
Section 6, h∗ is in general not orthogonal to g1, . . . , gn. (This is the same as in [12]).

Remark 2 (H-subgroup). We rely on H-subgroup to re-randomize the secret keys in the proof of security
for queries that share the same i-bit prefix; see Section 4.4 case 3. (In [12], the same property to used to
re-randomize secret keys in HIBE key delegation.)

Remark 3 (indistinguishability). Observe that in left subgroup indistinguishability, the distinguisher does
not get h∗; otherwise, it is possible to distinguish between the two distributions using orthogonality. It is
also crucial that for nested-hiding, the distinguisher gets ĝ−i and not ĝ := (ĝ0, ĝ1, . . . , ĝn). (Looking ahead
to the proof in Section 4.4, not having ĝ means that the simulator cannot generate ciphertexts to distinguish
between Type i−1 and Type i secret keys.) Otherwise, given ĝi, it is possible to distinguish between hj and
h′j by using the relation:

e(g0 · ĝ0, hi,j) = e(gi · ĝi, h0,j).

This relation follows from associative and left subgroup indistinguishability.

4 (Almost) Tight IBE from Nested Dual System Groups

We provide a construction of an IBE scheme from nested dual system groups where the ciphertext comprises
two group elements in G and one in GT .

Overview. We begin with an informal overview of the scheme. Fix a bilinear group with a pairing e :

G × G → GT . The starting point of our scheme is the following variant of Waters’ IBE [28] with identity
space {0, 1}n:

MPK := (g, u1, . . . , u2n, e(g, g)
α)

CTx := (gs, (

n∏
k=1

u2k−xk
)s, e(g, g)αs ·m)

SKy := (gr, MSK · (
n∏

k=1

u2k−yk)
r)

9

Note that MPK contains 2n + 1 group elements in G, which we will generate using SampP(1λ, 12n). We
will use SampG(PP) to generate the terms (gs, us1, . . . , u

s
2n) in the ciphertext, and SampH(PP) to generate

the terms (gr, ur1, . . . , u
r
2n) in the secret key.

4.1 Construction

Let {0, 1}n be the identity space.

– Setup(1λ, 1n): On input length parameter 1n, first sample

(PP, SP)← SampP(1λ, 12n).

Pick MSK ←R H and output the master public and secret key pair

MPK := (PP, µ(MSK)) and MSK.

– Enc(MPK,x,m): On input an identity x := (x1, . . . , xn) ∈ {0, 1}n and m ∈ GT , sample

(g0, g1, . . . , g2n)← SampG(PP; s), g′T ← SampGT(µ(MSK); s)

and output

CTx :=
(
C0 := g0, C1 := g2−x1 · · · g2n−xn , C2 := g′T ·m

)
∈ (G)2 ×GT .

– KeyGen(MPK, MSK,y): On input an identity y ∈ {0, 1}n, sample

(h0, h1, . . . , h2n)← SampH(PP)

and output

SKy := (K0 := h0, K1 := MSK · h2−y1 · · ·h2n−yn) ∈ (H)2.

– Dec(MPK, SKy, CTx): If x = y, compute

e(g0, MSK)← e(C0,K1)/e(C1,K0)

and recover the message as

m← C2 · e(g0, MSK)−1 ∈ GT .

Correctness. Fix x := (x1, . . . , xn) ∈ {0, 1}n, observe that

e(C0,K1)/e(C1,K0)

= e(g0, MSK · h2−x1 · · ·h2n−xn) · e(g2−x1 · · · g2n−xn , h0)
−1

= e(g0, MSK) ·
(
e(g0, h2−x1) · · · e(g0, h2n−xn)

)
·
(
e(g2−x1 , h0) · · · e(g2n−xn , h0)

)−1

= e(g0, MSK)

where the last equality relies on associative, namely, e(g0, h2i−xi) = e(g2i−xi , h0). In addition, by
projective, we have g′T = e(g0, MSK). Correctness follows readily.

10

4.2 Proof of Security

We prove the following theorem:

Theorem 2. Under the left subgroup and nested-hiding indistinguishability (described in Section 3) and the
additional requirement that ord(H) is prime, our IBE scheme in Section 4.1 is fully secure (in the sense of
Definition 1). More precisely, for any adversaryA that makes at most q key queries against the IBE scheme,
there exist adversaries B1,B2 such that:

AdvIBE
A (λ) ≤ AdvLS

B1
(λ) + 2n · AdvNS

B2
(λ, q) + 2−Ω(λ)

and

max{Time(B1),Time(B2)} ≈ Time(A) + q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

Remark 4. In our instantiations of nested dual system groups, the quantity AdvNS
B2

(λ, q) will be related to
the advantage function corresponding to some static assumption, with a constant overhead independent of q
(see Lemmas 7 and 10). Putting the two together, this means that AdvIBE

A (λ) is independent of q, as stated in
Theorem 1.

The proof follows via a series of games, summarized in Figure 3. To describe the games, we must first define
semi-functional keys and ciphertexts. Following [12, 30], we first define two auxiliary algorithms, and define
the semi-functional distributions via these auxiliary algorithms.

Auxiliary algorithms. We consider the following algorithms:

Ênc(PP,x,m; MSK′, t): On input x := (x1, . . . , xn) ∈ {0, 1}n, m ∈ GT , MSK′ ∈ H, and t :=

(T0, T1, . . . , T2n) ∈ G2n+1, output

CTx :=

(
T0,

n∏
k=1

T2k−xk
, e(T0, MSK′) ·m

)
.

K̂eyGen(PP, MSK′,y; t): On input MSK′ ∈ H, y := (y1, . . . , yn) ∈ {0, 1}n, and t := (T0, T1, . . . , T2n) ∈
H2n+1, output

SKy :=

(
T0, MSK′ ·

n∏
k=1

T2k−yk

)
.

Auxiliary distributions. For i = 0, 1, . . . , n, we pick a random function Ri : {0, 1}i → ⟨h∗⟩ (we use
{0, 1}0 to denote the singleton set containing just the empty string ε). More concretely, given (PP, h∗), we
sample the function Ri by first choosing a random function R′

i : {0, 1}i → Zord(H) (via lazy sampling), and
define Ri(x) := (h∗)R

′
i(x) for all x ∈ {0, 1}i.

11

Pseudo-normal ciphertext.

Ênc(PP,x,m; MSK, g · ĝ),

where g← SampG(PP) and ĝ← ŜampG(PP, SP) ; we can also write this distribution more explicitly as

(
g0 · ĝ0,

n∏
k=1

(g2k−xk
· ĝ2k−xk

), e(g0 · ĝ0, MSK) ·m
)
,

where (g0, g1, . . . , g2n)← SampG(PP) and (ĝ0, ĝ1, . . . , ĝ2n)← ŜampG(PP, SP).

Semi-functional ciphertext type i (for i = 0, 1, . . . , n).

Ênc(PP,x,m; MSK ·Ri(x|i) ,g · ĝ),

where g ← SampG(PP) and ĝ ← ŜampG(PP, SP) and x|i denotes the i-bit prefix of x; we can also write
this distribution more explicitly as(

g0 · ĝ0,
n∏

k=1

(g2k−xk
· ĝ2k−xk

), e(g0 · ĝ0, MSK ·Ri(x|i)) ·m
)
,

where (g0, g1, . . . , g2n)← SampG(PP) and (ĝ0, ĝ1, . . . , ĝ2n)← ŜampG(PP, SP).

Semi-functional secret key type i (for i = 0, 1, . . . , n).

K̂eyGen(PP, MSK ·Ri(y|i) ,y;h),

where a fresh h ← SampH(PP) is chosen for each secret key; we can also write this distribution more
explicitly as (

h0, MSK ·Ri(x|i) ·
n∏

k=1

h2k−yk

)
where (h0, h1, . . . , h2n)← SampH(PP).

Remark 5 (decryption capabilities). As noted in the introduction, decryption capabilities remain the same
throughout the hybrid games. A type i secret key for x∗ in Game2,i can decrypt a type i ciphertext for
x∗ since they share Ri(x

∗|i). In addition, a type i secret key for x∗ can decrypt a normal ciphertext for x∗

because e(g0, Ri(x
∗|i)) = 1, which follows readily from Ri(x

∗|i) ∈ ⟨h∗⟩ and e(g0, h
∗) = 1 (see Remark 1).

Game sequence. We present a series of games. We write Advxx(λ) to denote the advantage ofA in Gamexx.

– Game0: is the real security game (c.f. Section 2).

– Game1: is the same as Game0 except that the challenge ciphertext is pseudo-normal.

– Game2,i for i from 0 to n, Game2,i is the same as Game1 except that the challenge ciphertext and all
secret keys are of type i.

– Game3: is the same as Game2,n, except that the challenge ciphertext is a semi-functional encryption of
a random message in GT .

12

Game Ciphertext CTx∗ Secret Key SKy

0 : real game Enc(MPK,x∗,mβ) KeyGen(MPK, MSK,y)

(g0,
∏

g2k−xk , e(g0, MSK) ·mβ) (h0, MSK ·
∏

h2k−yk)

1 : pseudo-normal CT Ênc(PP,x∗,mβ; MSK, g · ĝ) K̂eyGen(PP, MSK,y;h)

via left subgroup (g0ĝ0,
∏
(g2k−xk ĝ2k−xk), e(g0ĝ0, MSK) ·mβ) (—,—)

2,i : (CT, SK) type i Ênc(PP,x∗,mβ; MSK ·Ri(x
∗|i) ,g · ĝ) K̂eyGen(PP, MSK ·Ri(y|i) ,y;h)

via nested-hiding (—,—, e(g0ĝ0, MSK ·Ri(x
∗|i)) ·mβ) (—, MSK ·Ri(y|i) ·

∏
h2k−yk)

3 : final game Ênc(PP,x∗, random ; MSK ·Rn(x
∗),g · ĝ) K̂eyGen(PP, MSK ·Rn(y),y;h)

(—,—, e(g0ĝ0, MSK ·Rn(x
∗)) · random) (—, MSK ·Rn(y) ·

∏
h2k−yk)

Fig. 3. Sequence of games, where we drew a box to highlight the differences between each game and the preceding one, a dash (—)
means the same as in the previous game. Recall that Ri : {0, 1}i → ⟨h∗⟩ is a random function. Here, the product Π denotes Πn

k=1.

In Game3, the view of the adversary is statistically independent of the challenge bit β. Hence, Adv3(λ) = 0.
We complete the proof by establishing the following sequence of lemmas.

4.3 Normal to Pseudo-Normal to Type 0

Lemma 1 (Game0 to Game1). For any adversary A that makes at most q key queries, there exists an
adversary B1 such that:

|Adv0(λ)− Adv1(λ)| ≤ AdvLS
B1
(λ),

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. The adversary B1 gets as input

(PP, t) ,

where t is either g or g · ĝ and

g← SampG(PP), ĝ← ŜampG(PP, SP),

and proceeds as follows:

Setup. Pick MSK ←R H and output

MPK := (PP, µ(MSK)) .

Key Queries. On input the j’th secret key query y, output

SKy ← K̂eyGen(PP, MSK,y; SampH(PP)).

Ciphertext. Upon receiving a challenge identity x∗ and two equal length messages m0,m1, pick β ←R

{0, 1} and output

CTx∗ ← Ênc(PP,x∗,mβ; MSK, t).

13

Guess. When A halts with output β′, B1 outputs 1 if β′ = β and 0 otherwise.

Observe that when t = g, CTx∗ is properly distributed as Enc(MPK,x∗,mβ) from projective, the output is
identical to that in Game0; and when t = g · ĝ, the output is identical to that in Game1. We may therefore
conclude that: |Adv0(λ)− Adv1(λ)| ≤ AdvLS

B1
(λ). ⊓⊔

Lemma 2 (Game1 to Game2,0). For any adversary A,

Adv1(λ) = Adv2,0(λ)

Proof. Observe that MSK and MSK·R0(ε) (where MSK ←R H) are identically distributed, so we may replace
MSK in Game1 by MSK ·R0(ε). The resulting distribution is identically distributed to that in Game2,0 except
we use µ(MSK · R0(ε)) instead of µ(MSK) in MPK. Now, by orthogonality, these two quantities are in fact
equal. ⊓⊔

4.4 Type i − 1 to Type i

We begin with an informal overview of our proof strategy. For simplicity, suppose the adversary only
requests secret keys for two identities y0 and y1 that differ only in the i’th bit, that is,

y0 = (y1, . . . , yi−1, 0 , yi+1, . . . , yn) and y1 = (y1, . . . , yi−1, 1 , yi+1, . . . , yn)

Recall that Type i− 1 secret keys for y0 and y1 are of the form:

SKy0 =
(
h0, MSK · Ri−1(y1, . . . , yi−1) · h2−y1 · · · h2i · · ·h2n−yn

)
and

SKy1 =
(
h0, MSK · Ri−1(y1, . . . , yi−1) · h2−y1 · · · h2i−1 · · ·h2n−yn

)
whereas Type i secret keys for y0 and y1 are of the form:

SKy0 =
(
h0, MSK · Ri(y1, . . . , yi−1, 0) · h2−y1 · · · h2i · · ·h2n−yn

)
and

SKy1 =
(
h0, MSK · Ri(y1, . . . , yi−1, 1) · h2−y1 · · · h2i−1 · · ·h2n−yn

)
In order to show that Type i − 1 and Type i secret keys for y0 and y1 are indistinguishable, it suffices to
show that

(Ri−1(y1, . . . , yi−1) · h2i, Ri−1(y1, . . . , yi−1) · h2i−1) and

(Ri(y1, . . . , yi−1, 0) · h2i, Ri(y1, . . . , yi−1, 1) · h2i−1)

are computationally indistinguishable (*).

Now, suppose for simplicity that the i’th bit of the identity x∗ for challenge ciphertext is 1. Then, nested-
hiding indistinguishability with index 2i tells us that

h2i and h2i · (h∗)γ

are computationally indistinguishable, where γ ←R Zord(H). Moreover, this holds even if the distinguisher is
given ĝ−2i, which we will need to simulate the semi-functional ciphertext for x∗. (On the other hand, given

14

only ĝ−2i, we cannot simulate semi-functional ciphertext for identities whose i’th bit is 0.) This means that

(Ri−1(y1, . . . , yi−1) · h2i, Ri−1(y1, . . . , yi−1) · h2i−1) and

(Ri−1(y1, . . . , yi−1) · h2i · (h∗)γ , Ri−1(y1, . . . , yi−1) · h2i−1)

are computationally indistinguishable, even given the semi-functional ciphertext for x∗.

To achieve (*), we can then implicitly set:

Ri(y1, . . . , yi−1, 0) := Ri−1(y1, . . . , yi−1) · (h∗)γ and

Ri(y1, . . . , yi−1, 1) := Ri−1(y1, . . . , yi−1)

This corresponds to Case 2 and Case 1 below respectively.

More generally, we guess at random the i’th bit of x∗ to be bi and use nested-hiding indistinguishability
with index 2i − bi. In addition, we need to handle q keys and not just two keys, along with an additional
complication arising from the fact that multiple queries may share the same i-bit prefix (see Case 3 below).

Lemma 3 (Game2,i−1 to Game2,i). For i = 1, . . . , n, for any adversaryA that makes at most q key queries,
there exists an adversary B2 such that:

|Adv2,i−1(λ)− Adv2,i(λ)| ≤ 2AdvNS
B2

(λ, q),

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. On input i ∈ [n], B2 picks a random bit bi ←R {0, 1} (that is, it guesses the i’th bit of the challenge
identity x∗) and requests nested-hiding instantiation for index 2i− bi. The adversary B2 gets as input(

PP, h∗, ĝ−(2i−bi)
, t1, . . . , tq

)
,

where (t1, . . . , tq) is either (h1, . . . ,hq) or (h′1, . . . ,h′q) and

hj := (h0,j , h1,j , . . . , h2n,j)← SampH(PP), h′j := (h0,j , h1,j , . . . , h2i−bi,j
· (h∗)γj , . . . , h2n,j),

and proceeds as follows:

Setup. Pick MSK ←R H, and output

MPK := (PP, µ(MSK)) .

Programming Ri−1, Ri. Pick a random function R̃i−1 : {0, 1}i−1 → ⟨h∗⟩ (which we use to program
Ri−1, Ri). Recall that we can sample a uniformly random element in ⟨h∗⟩ by raising h∗ to a uniformly
random exponent in Zord(H). For all prefixes x′ ∈ {0, 1}i−1, we implicitly set

Ri(x
′∥bi) := R̃i−1(x

′) and Ri−1(x
′) := R̃i−1(x

′).

(We set Ri(x
′∥bi) later.) This means that for any x = (x1, . . . , xn) such that xi = bi, we have:

Ri(x|i) = Ri−1(x|i−1) = R̃i−1(x|i−1).

Key Queries. On input the j’th secret key query y = (y|i−1, yi, . . . , yn), we consider three cases:

15

– Case 1: yi = bi. Here, B2 can compute

Ri(y|i) = Ri−1(y|i−1) = R̃i−1(y|i−1)

and simply outputs

K̂eyGen(PP, MSK · R̃i−1(y|i−1),y; h̃
j),

where h̃j ← SampH(PP).

– Case 2: yi = bi and Ri(y|i) has not been previously set. Here, we implicitly set

Ri(y|i−1∥bi) := R̃i−1(y|i−1) · (h∗)γj ,

where γj is as defined in the nested-hiding instantiation. Observe that this is the correct distribution
since Ri(y|i−1∥bi) and Ri(y|i−1∥bi) are two independently random values. Then B2 outputs:

K̂eyGen(PP, MSK · R̃i−1(y|i−1),y; t
j).

– Case 3: yi = bi and Ri(y|i) has been previously set. Let j′ be the index of key query in which we
set Ri(y|i), recall that

Ri(y|i−1∥bi) := R̃i−1(y|i−1) · (h∗)γj′ .

Then B2 outputs:

K̂eyGen(PP, MSK · R̃i−1(y|i−1),y; t
j′ · h̃j).

where h̃j ← SampH(PP). Here, we rely on the H-subgroup property to re-randomize tj
′
.

Ciphertext. Upon receiving a challenge identity x∗ := (x∗1, . . . , x
∗
n) and two equal length messages m0,m1

from A, output a random bit and halt if x∗i ̸= bi. Observe that up to the point when A submits x∗, its
view is statistically independent of bi. Therefore, the probability that we halt is exactly 1/2. Suppose
that we do not halt, which means we have x∗i = bi. Hence, B2 knows

Ri(x
∗|i) = Ri−1(x

∗|i−1) = R̃i−1(x
∗|i−1).

Then, B2 picks β ←R {0, 1} and outputs the semi-functional challenge ciphertext as:

Ênc(PP,x∗,mβ; MSK · R̃i−1(x
∗|i−1),g · ĝ),

Here, B2 picks g ← SampG(PP), whereas g is as defined in the nested-hiding instantiation. Observe
that B2 can compute the output of Ênc using just ĝ−(2i−bi)

since since x∗i = bi.

Guess. When A halts with output β′, B2 outputs 1 if β′ = β and 0 otherwise.

Suppose x∗i = bi. Then, when (t1, . . . , tq) = (h1, . . . ,hq), the output is identical to that in Game2,i−1; and
when (t1, . . . , tq) = (h′1, . . . ,h′q), the output is identical to that in Game2,i. Hence,

AdvNS
B2

(λ, q) =
∣∣∣Pr[x∗i ̸= bi] · 0 + Pr[x∗i = bi]

·(Pr[A outputs β′ = β in Game2,i−1]− Pr[A outputs β′ = β in Game2,i])
∣∣∣

= 1/2 ·
∣∣∣Pr[A outputs β′ = β in Game2,i−1]− Pr[A outputs β′ = β in Game2,i]

∣∣∣
≥ 1/2 · |Adv2,i−1(λ)− Adv2,i(λ)|.

16

We may therefore conclude that |Adv2,i−1(λ)− Adv2,i(λ)| ≤ 2AdvNS
B2

(λ, q). ⊓⊔

4.5 Final Transition

Lemma 4 (Game2,n to Game3). For any adversary A:

|Adv2,n(λ)− Adv3(λ)| ≤ 2−Ω(λ).

Proof. Observe that the challenge ciphertext in Game2,n is given by:

Ênc(PP,x∗,mβ; MSK ·Rn(x
∗),g · ĝ) = (C0, C1, C

′
2 ·mβ),

where (C0, C1) depend only on g · ĝ = (g0 · ĝ0, . . .), and C ′
2 is given by:

C ′
2 = e(g0 · ĝ0, MSK ·Rn(x

∗)) = e(g0 · ĝ0, MSK) · e(ĝ0, Rn(x
∗)) ,

where in the last equality, we use the fact that e(g0, Rn(x
∗)) = 1 (see Remarks 1 and 5). In addition,

MPK and all of the secret key queries reveal no information about Rn(x
∗). Then, by non-degeneracy, with

probability 1 − 2−Ω(λ) over ĝ0, we have e(ĝ0, Rn(x
∗)) is uniformly distributed over GT . This implies that

the challenge ciphertext is identically distributed to a semi-functional encryption of a random message in
GT , as in Game3. We may then conclude that: |Adv2,n(λ)− Adv3(λ)| ≤ 2−Ω(λ). ⊓⊔

Remark 6. In our composite-order instantiation, we only have the weaker guarantee that e(ĝ0, Rn(x
∗)) has

at least 2λ bits of min-entropy, instead of being uniform over GT . We will modify the IBE scheme as
follows: the message space is now {0, 1}λ, and we replace the term g′T ·m in the ciphertext with:

H(g′T)⊕m,

where H : GT → {0, 1}λ is a pairwise independent hash function. By the left-over hash lemma, we still
have |Adv2,n(λ)− Adv3(λ)| ≤ 2−Ω(λ).

5 Instantiations in Composite-Order Bilinear Groups

In this section, we present an instantiation of nested dual system groups in composite-order bilinear groups
(introduced in [8] and used in [20, 23, 24]). The construction is very similar to that in [12, 23]. We require
a new static, generally secure assumption in composite-order groups. In addition, we extend the techniques
from [25] to establish nested-hiding indistinguishability without losing a factor of q in the security reduction
(c.f. Lemmas 6 and 7). Specifically, the differences from the prior composite-order instantiation in [12] are
as follows:

– To establish nested-hiding indistinguishability, we rely on a new, generically secure assumption, which
basically asserts that the DDH problem is hard in the Gp2-subgroup (see Assumption 2); this replaces a
subgroup decisional assumption used in the prior work for right subgroup indistinguishability.

– In the prior construction, SampG and SampH sample coin tosses from ZN whereas ŜampG and ŜampH

sample coin tosses from Z∗
N . In the current construction, all of SampG, SampH, ŜampG sample coin

tosses from ZN . (This is for simplicity as we no longer need to achieve parameter-hiding.)

– The output of SampH have (semi-functional) Gp2-components, whereas in the prior construction, only
the output of ŜampH (but not SampH) has (semi-functional) Gp2-components.

17

5.1 Composite-Order Bilinear Groups

A generator G takes as input a security parameter λ and outputs a description (GN , GT , e), where N is
product of distinct primes of Θ(λ) bits, GN and GT are cyclic groups of order N (specified using their
respective generators), and e : GN ×GN → GT is a non-degenerate bilinear map. We require that the group
operations in GN and GT as well the bilinear map e are computable in deterministic polynomial time with
respect to λ. We consider groups G whose orders are products of three distinct primes p1, p2, p3 (that is,
N = p1p2p3). For every divisor n of N , we denote by Gn the subgroup of GN of order n. We use g1, g2, g3
to denote random generators of the subgroups Gp1 , Gp2 , Gp3 of order p1, p2, and p3 respectively.

Assumption 1 For any adversary A, we define the advantage function:

AdvDS1
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

where

(N,GN , GT , g1, g2, g3, e)← G(1λ);
h123 ←R GN ;

D := ((N,GN , GT , e); g1, g3, h123);

T0 ←R Gp1 , T1 ←R Gp1p2 .

Assumption 2 For any adversary A, we define the advantage function:

AdvDS2
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

where

(N,GN , GT , g1, g2, g3, e)← G(1λ);
x, τ ←R ZN , z ←R Z∗

p2 , X3, Y3 ←R Gp3 ;

D := ((N,GN , GT , e); g1, g2, g3, g
x
2X3, g

τ
2Y3);

T0 = gxτ2 , T1 = gxτ+z
2 .

5.2 Construction

SampP(1λ, 1n): On input (1λ, 1n), do:

– run (N,GN , GT , g1, g2, g3, e) ← G(1λ), where G(1λ) is a symmetric composite-order group
generator;

– define (G,H,GT , e) := (GN , GN , GT , e);

– define µ : GN → GT by µ(h) := e(g1, h);

– sample w ←R Zn
N , h123 ←R GN , h∗ ←R Gp2p3 (we assume that h123 is a generator of GN and h∗

is a generator of Gp2p3 ; these occur with overwhelming probability) and R3 ←R Gn
p3 (using g3);

Output

PP := ((N,G,H,GT , e); g1, g
w
1 , h123, h

w
123 ·R3, g3) and SP := (h∗, g2, g

w
2) .

Note that ord(H) = N and ord(h∗) = p2p3.

18

SampGT(gT): Pick s←R ZN and output gsT ∈ GT .

SampG(PP): Pick s←R ZN and output (gs1, g
sw
1) ∈ Gn+1

p1 .

SampH(PP): Pick r ←R ZN , X3 ←R Gn
p3 and output (hr123, h

rw
123 ·X3) ∈ Gn+1

N . Clearly, this satisfies the
H-subgroup property.

ŜampG(PP, SP): Pick ŝ←R ZN and output (gŝ2, g
ŝw
2) ∈ Gn+1

p2 .

Correctness. We check correctness properties as follows:

(projective.) For all h ∈ GN and s ∈ ZN , we have

SampGT(µ(h); s) = SampGT(e(g1, h); s) = e(g1, h)
s = e(gs1, h) = e(SampG0(PP; s), h).

(associative.) We may write w := (w1, . . . , wn), then for all

(gs1, g
sw1
1 , . . . , gswn

1)← SampG(PP) and (hr123, h
rw1
123 ·X3,1, . . . , h

rwn
123 ·X3,n)← SampH(PP)

and for all i = 1, . . . , n, we have

e(gs1, h
rwi
123 ·X3,i) = e(g1, h123)

srwi = e(gswi
1 , hr123).

Security. We check security properties as follows:

(orthogonality.) This follows readily from the fact that g1 and h∗ lie in orthogonal subgroups Gp1 and
Gp2p3 .

(non-degeneracy.) For all gŝ2 ← ŜampG0(PP, SP; ŝ), we have

e(gŝ2, h
∗) = e(g2, h

∗)ŝ ̸= 1 (i.e., ord(e(gŝ2, h
∗)) = p2)

whenever ŝ ̸= 0 (mod p2), which occurs with probability 1− 1/p2; thus, e(gŝ2, h
∗)α has at least log p2

bits of min-entropy with probability 1 − 2−Ω(λ), where α ←R ZN . Here, we use the fact that h∗ is a
generator of Gp2p3 and ŝ←R ZN .

(H-subgroup.) This follows readily from the fact that ZN is an additive group.

We establish left subgroup and nested-hiding indistinguishability in next three subsections, under computa-
tional assumptions in composite-order groups.

5.3 Left Subgroup Indistinguishability

We may rewrite the corresponding advantage function as:

AdvLS
A (λ) :=

∣∣Pr[A(PP,g) = 1]− Pr[A(PP,g · ĝ) = 1]
∣∣

19

where

(PP, SP)← SampP(1λ, 1n);

g := (gs1, g
sw
1), s←R ZN ;

ĝ := (gŝ2, g
ŝw
2), ŝ←R ZN .

Lemma 5 (DS1 to LS). For any adversary A, there exists an adversary B such that:

AdvLS
A (λ) ≤ AdvDS1

B (λ) + 1/p1 + 1/p2 + /p3.

and Time(B) ≈ Time(A) + poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. The adversary B gets as input

((N,GN , GT , e); g1, g3, h123, T) ,

where either T ←R Gp1 or T ←R Gp1p2 , and proceeds as follows:

Simulating PP. Pick w←R Zn
N and output

PP := ((N,G,H,GT , e); g1, g
w
1 , h123, h

w
123, g3) .

Observe that PP is properly distributed as long as h123 is a generator of GN ; this occurs with probability
at least 1− 1/p1 − 1/p2 − 1/p3.

Simulating the challenge. Output (T, Tw).

Observe that when T ←R Gp1 , the output is identical to (PP,g); and when T ←R Gp1p2 , the output is
identical to (PP,g · ĝ). The lemma then follows readily. ⊓⊔

5.4 Many-Tuple Lemma

We want to prove a many-tuple lemma which will be used in the proofs. The proof is essentially the same
as that in [25, Lemma 3.2].

Lemma 6. There exists an efficient algorithm that on input 1q and(
g2, g3, g

x
2X3, g

τ
2Y3, g

xτ+z
2

)
,

we can generate q tuples of the form:

(g
r̂j
2 ·X3,j , Tj)

where

Tj =

{
g
r̂jτ
2 · Y3,j if z = 0 (mod p2)

g
r̂jτ
2 · Y3,j · g

γj
2 if z ̸= 0 (mod p2)

and r̂j , γj ←R ZN , X3,j , Y3,j ←R Gp3 .

20

Proof. The algorithm proceeds as follows: for j = 1, . . . , q, we pick r̃j , γ̃j ←R ZN , X̃3,j , Ỹ3,j ←R Gp3 and
output

(g
r̂j
2 ·X3,j , Tj) :=

(
(gx2X3)

γ̃j · gr̃j2 · X̃3,j , T
γ̃j · (gτ2Y3)r̃j · Ỹ3,j

)
,

where we have implicitly set r̂j := γ̃jx + r̃j . It is easy to see that r̂j is uniformly distributed over ZN .
Observe that the exponent in the Gp2-component of Tj is given by:

γ̃j(xτ + z) + r̃jτ = r̂j · τ + γ̃jz,

it remains to analyze the distribution of the Gp2-components of the q tuples:

– The case z = 0 is straight-forward;

– If z ̸= 0, we implicitly set γj := γ̃jz. Observe that (r̂j , γj) are pairwise-independent since z ̸= 0.

The lemma follows readily. ⊓⊔

5.5 Nested-Hiding Indistinguishability

We may rewrite the corresponding advantage function as:

AdvNS
A (λ, q) := max

i∈[n]

∣∣Pr[A(PP, h∗,g−i, h1, . . . ,hq) = 1]− Pr[A(PP, h∗,g−i, h′1, . . . ,h′q) = 1]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

ŝ, rj , γj ←R ZN , X3,j ←R Gn
p3 , j = 1, . . . , q;

g−i := (gŝ2, g
ŝw
2)−i;

hj := (hrj , hrjw ·X3,j), j = 1, . . . , q;

h′j := (hrj , hrjw ·X3,j · (h∗)γjei), j = 1, . . . , q.

Lemma 7 (DS2 to NS). For any adversary A, there exists an adversary B such that:

AdvNS
A (λ, q) ≤ AdvDS2

B (λ).

and Time(B) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. The adversary B gets as input

((N,GN , GT , e); g1, g2, g3, g
x
2X3, g

τ
2Y3, T) ,

where T is either gxτ2 or gxτ+z
2 , additional input i ∈ [n], and proceeds as follows:

Generating q tuples. Run the algorithm in Lemma 6 on input 1q and (g2, g3, g
x
2X3, g

τ
2Y3, T) to obtain

(g
r̂j
2 ·X3,j , Tj), j = 1, . . . , q.

21

Programming w. Pick w̃←R Zn
N and implicitly set

w := w̃ (mod p1p3)

w := w̃ + τei (mod p2)

Simulating auxiliary input PP, h∗, ĝ−i. Pick r̃, r̃′ ←R Z∗
N , ŝ←R ZN , R′

3 ←R Gn
p3 , set h123 := (g1g2g3)

r̃,
and output

PP :=
(
(N,G,H,GT , e); g1, g

w̃
1 , h123, h

w̃
123 · (gτ2Y3)r̃ei ·R′

3, g3
)
, h∗ := (g2g3)

r̃′ , ĝ−i := (gŝ2, g
ŝw̃
2)−i.

Simulating the challenge. For j = 1, . . . , q, B picks r̃j ←R ZN , X̃3,j ←R Gn
p3 and outputs as the j’th

challenge: (
h
r̃j
123 · g

r̂j
2 ·X3,j , (h

r̃j
123 · g

r̂j
2 ·X3,j)

w̃ · ((gτ2Y3)r̃j ·r̃ · Tj)
ei · X̃3,j

)
,

where B has implicitly set hrj123 := h
r̃j
123 · g

r̂j
2 ·X3,j .

Observe that:

– if T = gxτ2 , then Tj = g
r̂jτ
2 · Y3,j and thus the j’th output challenge equals ĥj ;

– If T = gxτ+z
2 , then Tj = g

r̂jτ
2 · Y3,j · g

γj
2 . Now, observe that

(h∗, g
γj
2 · Y3,j) and (h∗, (h∗)γj · Y3,j)

are identically distributed for γj ←R ZN and Y3,j ←R Gp3 . Thus, the j’th output challenge has the same
distribution as ĥ′j .

The claim then follows readily. ⊓⊔

6 Instantiations from d-LIN in Prime-Order Groups

We provide an instantiation of nested dual system groups from d-LIN in prime-order bilinear groups. We
extend the instantiation in [12] in several ways. First, we work with 2d×2d matrices instead of (d+1)×(d+
1) matrices. In both constructions, the first d dimensions serve as the “normal space”; in our construction,
we require a d-dimensional semi-functional space instead of a 1-dimensional one so that we may embed the
d-LIN assumption into the semi-functional space. Next, we extend the techniques from [25, 22] to establish
nested-hiding indistinguishability without losing a factor of q in the security reduction (c.f. Lemmas 9 and
10).

Combined with our IBE scheme in Section 4, we obtain an IBE based on d-LIN with the following
parameters (omitting the G2 terms MPK):

|MPK| = 2d2(2n+ 1)|G1|+ d|GT | and |SK| = 4d|G2| and |CT| = 4d|G1|+ |GT |

A self-contained description of our IBE scheme is given in Section 7.

22

6.1 Prime-Order Bilinear Groups

A generator G takes as input a security parameter λ and outputs a description (p,G1, G2, GT , g1, g2, e),
where p is a prime of Θ(λ) bits; G1, G2 and GT are cyclic groups of order p; g1, g2 are generators of G1

and G2 respectively; and e : G1 ×G2 → GT is a non-degenerate bilinear map.

Assumption 3 (d-LIN: the d-linear assumption in G1) For any adversary A, we define the advantage
function:

Advd-LIN
A (λ) := |Pr[A(D,T0)− Pr[A(D,T1)]|

where

(p,G1, G2, GT , g1, g2, e)← G(1λ);
s1, . . . , sd ←R Zp; a1, . . . , ad, sd+1 ←R Z∗

p;

D := ((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , ga1s11 , . . . , gadsd1);

T0 := g
ad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+sd+1

1 .

Remark 7. Typically, we sample a1, . . . , ad, sd+1 ←R Zp; this yields a (d + 1)/p negligible difference in
the advantage.

Matrix-in-the-exponent. Given two vectors x = (x1, . . . , xn)
⊤,y = (y1, . . . , yn)

⊤ over scalars, we
use ⟨x,y⟩ to denote the standard dot product x⊤y. Given a group element g, we write gx to denote
(gx1 , . . . , gxn)⊤; we define gA where A is a matrix in an analogous way. Note that given a matrix of group
elements gA, and a matrix B of “exponents”, one can efficiently compute gAB; we will also denote this
computation by (gA)B. On the other hand, if G1,G2,GT are three groups endowed with an efficient bilinear
map e : G1×G2 → GT , then given gA1 , gB2 for g1 ∈ G1, g2 ∈ G2, one can efficiently compute e(g1, g2)A

⊤B

via (e(g1, g2)A
⊤B)ij =

∏
k e(g

Ak,i

1 , g
Bk,j

2). We will use e(gA1 , gB2) = e(g1, g2)
A⊤B to denote this operation.

6.2 Construction

Let πL, πR be the projection maps that map a 2d × 2d matrix to the left d columns and right d columns
respectively.

SampP(1λ, 1n): On input (1λ, 1n), do:

– run (p,G1, G2, GT , g1, g2, e)← G(1λ), where G(1λ) is an asymmetric prime-order group generator;

– define (G,H,GT , e) := (G2d
1 , G2d

2 , GT , e);

– sample B,R←R GL2d(Zp), along with A1, . . . ,An ←R Z2d×2d
p and set B∗ := (B−1)⊤; define

D := πL(B), Di := πL(BAi), F := πR(B), Fi := πR(BAi)

D∗ := B∗R, D∗
i := B∗A⊤

iR,
;

– define µ : G2d
2 → Gd

T by µ(gk2) = e(gD1 , gk2) for all k ∈ Z2d
p ;

– set h∗ := gB
∗e2d

2 ;

23

Output

PP :=

 (p,G,H,GT , e);
gD1 , gD1

1 , . . . , gDn
1

gD
∗

2 , g
D∗

1
2 , . . . , g

D∗
n

2

 and SP :=
(

gB
∗e2d

2 , gF1 , g
F1
1 , . . . , gFn

1

)
.

Note that ord(H) = p and ord(h∗) = p.

SampGT(gpT): Pick s←R Zd
p and output gs

⊤p
T ∈ GT .

SampG(PP): Pick s←R Zd
p and output (gDs

1 , gD1s
1 , . . . , gDns

1) ∈ (G2d
1)n+1.

SampH(PP): Pick r ←R Z2d
p and output (gD

∗r
2 , g

D∗
1r

2 , . . . , g
D∗

nr
2) ∈ (G2d

2)n+1. Clearly, this satisfies the
H-subgroup property.

ŜampG(PP, SP): Pick ŝ←R Zd
p and output (gFŝ

1 , gF1ŝ
1 , . . . , gFnŝ

1) ∈ (G2d
1)n+1.

Correctness. We check correctness properties as follows:

(projective.) For all k ∈ Z2d
p and all coin tosses s ∈ Zd

p, we have µ(gk2) = e(gD1 , gk2) and

SampGT(µ(gk2); s) = e(g1, g2)
s⊤(D⊤k) = e(gDs

1 , gk2) = e(SampG0(PP; s), gk2),

where in the second equality, we use the fact that s⊤(D⊤k) = (Ds)⊤k.

(associative.) We need to show that for all

(gDs
1 , gD1s

1 , . . . , gDns
1)← SampG(PP) and (gD

∗r
2 , g

D∗
1r

2 , . . . , g
D∗

nr
2)← SampH(PP)

and for all i = 1, . . . , n, we have

e(gDs
1 , g

D∗
i r

2) = e(gDis
1 , gD

∗r
2).

Observe that for all i,

B⊤(B∗A⊤
iR) = (B⊤B∗)A⊤

iR = A⊤
iR = A⊤

i (B
⊤B∗)R = (BAi)

⊤(B∗R).

This implies

[D∥F]⊤D∗
i = [Di∥Fi]

⊤D∗

and thus D⊤D∗
i = D⊤

iD
∗. Associative follows readily.

Security. We check security properties as follows:

(orthogonality.) For gD1 and gB
∗e2d

2 , we have

µ(gB
∗e2d

2) = e(gD1 , gB
∗e2d

2) = (1, . . . , 1)⊤,

where in the equality, we use the fact that

D⊤(B∗e2d) = πL(B)⊤(B∗e2d) = (0, . . . , 0)⊤.

24

(non-degeneracy.) For all gFŝ
1 ← ŜampG0(PP, SP; ŝ), we have

e(gFŝ
1 , gB

∗e2d
2) = e(g1, g2)

e⊤d ŝ ̸= 1,

whenever e⊤dŝ ̸= 0, which occurs with probability 1 − 1/p over ŝ; thus, e(gFŝ
1 , gB

∗e2d
2)α is identically

distributed to the uniform distribution over GT with probability 1− 2−Ω(λ), where α←R Zp.

(H-subgroup.) This follows readily from the fact that Z2d
p is an additive group.

We establish left subgroup and nested-hiding indistinguishability in next three subsections, under the d-LIN
assumption in prime-order groups.

6.3 Left Subgroup Indistinguishability

We may rewrite the corresponding advantage function as:

AdvLS
A (λ) :=

∣∣Pr[A(PP,g) = 1]− Pr[A(PP,g · ĝ) = 1]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g := (gDs
1 , gD1s

1 , . . . , gDns
1), s←R Zd

p;

ĝ := (gFŝ
1 , gF1ŝ

1 , . . . , gFnŝ
1), ŝ←R Zd

p.

Lemma 8 (d-LIN to LS). For any adversary A, there exists an adversary B such that:

AdvLS
A (λ) ≤ Advd-LIN

B (λ).

and Time(B) ≈ Time(A) + d2 · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. We may write (PP,g,g · ĝ) in term of B,B∗,A1, . . . ,An,R as follows:

PP :=

 (p,G,H,GT , e);
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

gB
∗R

2 , g
B∗A⊤

1R
2 , . . . , g

B∗A⊤
nR

2

 ,

and

g := (g
B
(
s
0

)
1 , g

BA1

(
s
0

)
1 , . . . , g

BAn

(
s
0

)
1),

g · ĝ := (g
B
(
s
ŝ

)
1 , g

BA1

(
s
ŝ

)
1 , . . . , g

BAn

(
s
ŝ

)
1),

where s, ŝ←R Zd
p (and thus

(
s
0

)
,
(
s
ŝ

)
∈ Z2d

p).

The adversary B gets as input(
(p,G1, G2, GT , e); g1, g2, g

a1
1 , . . . , gad1 , g

ad+1

1 , ga1s11 , . . . , gadsd1 , g
ad+1(s1+...+sd)+sd+1

1

)
,

where either sd+1 = 0 or sd+1 ←R Z∗
p, and proceeds as follows:

Programming s, ŝ. B picks γ1, . . . , γd ←R Zp and implicitly sets

s := (s1, . . . , sd)
⊤ and ŝ := (sd+1γ1, . . . , sd+1γd)

⊤

25

where (s1, . . . , sd, sd+1) are as defined in its input. Later on, B will output g if sd+1 = 0 and ŝ = 0 and
g · ĝ if sd+1 ←R Z∗

p and ŝ = (sd+1γ1, . . . , sd+1γd)
⊤.

Programming B,B∗,A1, . . . ,An,R. We define

W :=

a1

a2
. . .

ad

γ1ad+1 γ1ad+1 · · · γ1ad+1 1

γ2ad+1 γ2ad+1 · · · γ2ad+1 1
...

...
...

. . .

γdad+1 γdad+1 · · · γdad+1 1

,

and set W∗ = (W−1)⊤. It follows immediately that

g
W
(
s
ŝ

)
1 =

ga1s11

...

gadsd1

g
γ1(ad+1(s1+···+sd)+sd+1)
1

...

g
γd(ad+1(s1+···+sd)+sd+1)
1

.

Next, B samples B̃, R̃←R GL2d(Zp), along with Ã1, . . . , Ãn ←R Z(2d)×(2d)
p , and implicitly sets:

B̃∗ := (B̃−1)⊤;

R := W⊤R̃;

(B,B∗) := (B̃W, B̃∗W∗);

Ai := W−1ÃiW.

It is clear that (B,B∗), A1, . . . ,An, and R are properly distributed and completely hide (γ1, . . . , γd)

(so that ŝ is uniformly distributed over Zd
p whenever sd+1 ̸= 0). Moreover, we have:

BAi = (B̃W)(W−1ÃiW) = B̃ÃiW and B∗R = (B̃∗W∗)(W⊤R̃) = B̃∗R̃

and B∗A⊤
iR = (B̃∗W∗)(W⊤Ã⊤

i (W
−1)⊤)(W⊤R̃) = B̃∗Ã⊤

i R̃.

Simulating PP. Observe that for all i = 1, . . . , n, B can compute

g
πL(B)
1 = g

πL(B̃W)
1 and g

πL(BAi)
1 = g

πL(B̃ÃiW)
1

gB
∗R

2 = gB̃
∗R̃

2 and g
B∗A⊤

i R
2 = g

B̃∗Ã⊤
i R̃

2

since it knows (B̃, B̃∗, Ã1, . . . , Ãn), g
W
1 as well as R̃.

26

Simulating the challenge. B outputs the challenge as

g
B
(
s
ŝ

)
1 = g

B̃W
(
s
ŝ

)
1 = g

B̃

a1s1
...

adsd

γ1(ad+1(s1 + · · ·+ sd) + sd+1)
...

γd(ad+1(s1 + · · ·+ sd) + sd+1)

1

along with

g
BAi

(
s
ŝ

)
1 = g

B̃ÃiW
(
s
ŝ

)
1 = g

B̃Ãi

a1s1
...

adsd

γ1(ad+1(s1 + · · ·+ sd) + sd+1)
...

γd(ad+1(s1 + · · ·+ sd) + sd+1)

1 i = 1, . . . , n

Observe that if sd+1 = 0, then ŝ = 0 and the output challenge equals g. On the other hand, if sd+1 ←R

Z∗
p, then ŝ = (sd+1γ1, . . . , sd+1γd)

⊤ is uniformly distributed over Zd
p and the output challenge equals

g · ĝ.

The lemma then follows readily. ⊓⊔

6.4 Many-Tuple Lemma

We want to prove a many-tuple lemma which will be used in the proofs. This lemma is implicit in [25, 22]
(see [22, Lemma 2]):

Lemma 9. There exists an efficient algorithm that on input 1q, a group G and

(g, ga1 , . . . , gad , gad+1 , ga1r1 , . . . , gadrd , gad+1(r1+...+rd)+rd+1) ∈ G2d+3,

where either rd+1 = 0 or rd+1 ←R Z∗
p, outputs (gVZ, gZ) for some matrix V ∈ Zd×d

p , along with q tuples

(gr̂j , gtj), j = 1, . . . , q,

where

tj =

{
Vr̂j if rd+1 = 0

Vr̂j + γjed if rd+1 ←R Z∗
p

and r̂j ←R Zd
p, γj ←R Zp and Z is an invertible diagonal matrix.

27

Proof. The algorithm proceeds as follows:

Defining V,Z. We implicitly define

V :=

1

. . .

1

r1 · · · rd−1 rd

 ∈ Zd×d
p , Z :=

a1

. . .

ad

 ∈ Zd×d
p , P :=

a1 ad+1

. . .
...

ad ad+1

 ∈ Zd×(d+1)
p .

Clearly, we can compute gVZ, gZ, and gP. In addition, we can compute

gC :=

ga1 gad+1

. . .
...

gad−1 gad+1

ga1r1 · · · gad−1rd−1 gadrd gad+1(r1+···+rd)+rd+1

 ∈ Gd×(d+1).

Observe that gC = gVP if rd+1 = 0.

Generating q tuples. For j = 1, . . . , q, we pick r̃j ←R Zd+1
p and output

(gr̂j , gtj) :=
(
gPr̃j , gCr̃j

)
,

where we have implicitly set r̂j := Pr̃j and tj := Cr̃j . It is easy to see that r̂j is uniformly distributed
over Zd

p.

It remains to analyze the distribution of the q tuples:

– If rd+1 = 0, we have C = VP and thus tj = Vr̂j . (Alternatively, this may be viewed a special case
corresponding to rd+1 = 0 and thus γj = 0.)

– If rd+1 ←R Z∗
p, we have implicitly set γj := rd+1e

⊤
d+1r̃j , and thus tj = Vr̂j + γjed+1. A simple

calculation shows that

r̂j

γj

 =

a1 ad+1

. . .
...

ad ad+1

0 . . . 0 rd+1

 r̃j

Moreover, whenever a1, . . . , ad, rd+1 ̸= 0, the matrix on the right has full rank, and thus (r̃j , γj) is
properly distributed.

The lemma then follows readily. ⊓⊔

28

6.5 Nested-Hiding Indistinguishability

We may rewrite the corresponding advantage function as:

AdvNS
A (λ, q) := max

i∈[n]

∣∣Pr[A(PP, h∗, ĝ−i, h1, . . . ,hq) = 1]− Pr[A(PP, h∗, ĝ−i, h′1, . . . ,h′q) = 1]]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

ĝ := (gFŝ
1 , gF1ŝ

1 , . . . , gFnŝ
1); ŝ←R Zd

p;

hj := (g
D∗rj
2 , g

D∗
1rj

2 , . . . , g
D∗

i rj
2 , . . . , g

D∗
nrj

2); rj ←R Z2d
p ; j = 1, . . . , q;

h′j := (g
D∗rj
2 , g

D∗
1rj

2 , . . . , g
D∗

i rj
2 · (h∗)γj , . . . , g

D∗
nrj

2); γj ←R Zp; j = 1, . . . , q.

Lemma 10 (d-LIN to NS). For any adversary A, there exists an adversary B such that:

AdvNS
A (λ, q) ≤ Advd-LIN

B (λ).

and Time(B) ≈ Time(A) + d2q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. We note that it is sufficient to bound the following advantage function for any adversary A:

AdvNS’
A (λ) :=

∣∣Pr[A((p,G1, G2, e); g1, g2, g
πL(A)
1 , gR2 , gA

⊤R
2 , gRr1

2 , . . . , g
Rrq
2 , gu1

2 , . . . , g
uq

2) = 1]−

Pr[A((p,G1, G2, e); g1, g2, g
πL(A)
1 , gR2 , gA

⊤R
2 , gRr1

2 , . . . , g
Rrq
2 , gu1+γ1e2d

2 , . . . , g
uq+γqe2d
2) = 1]]

∣∣
where

(p,G1, G2, GT , g1, g2, e)← G(1λ);

A←R Z(2d)×(2d)
p , R←R GL2d(Zp);

γj ←R Zp, rj ←R Z2d
p , uj := A⊤Rrj , j = 1, . . . , q.

We defer the proof of the claim for now, and first explain how the lemma follows from the claim. We sample
B ←R GL2d(Zp), A1, . . . ,Ai−1,Ai+1, . . . ,An ←R Z(2d)×(2d)

p , ŝ ←R Zd
p and implicitly set Ai := A.

Observe that:

PP :=

 (p,G,H,GT , e);
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

gB
∗R

2 , g
B∗A⊤

1R
2 , . . . , g

B∗A⊤
nR

2

 , h∗ := gB
∗e2d

2 ,

and

ĝ−i := (g
πR(B)ŝ
1 , g

πR(BA1)ŝ
1 , . . . , g

πR(BAi−1)ŝ
1 , g

πR(BAi+1)ŝ
1 , . . . , g

πR(BAn)ŝ
1)

hj := (g
B∗Rrj
2 , g

B∗A⊤
1Rrj

2 , . . . , g
B∗A⊤

i Rrj
2 , . . . , g

B∗A⊤
nRrj

2)

h′j := (g
B∗Rrj
2 , g

B∗A⊤
1Rrj

2 , . . . , g
B∗A⊤

i Rrj
2 · gγjB

∗e2d
2 , . . . , g

B∗A⊤
nRrj

2),

– we can simulate PP and h∗ since we know B,A1, . . . ,Ai−1,Ai+1, . . . ,An and g
πL(A)
1 , gR2 , gA

⊤R
2 ;

29

– we can simulate ĝ−i since we know B,A1, . . . ,Ai−1,Ai+1, . . . ,An and ŝ;

– given either gu1
2 , . . . , g

uq

2 or gu1+γ1e2d
2 , . . . , g

uq+γqe2d
2 , we can simulate either h1, . . . ,hq or h′

1, . . . ,h
′
q

respectively since we know B,A1, . . . ,Ai−1,Ai+1, . . . ,An, gRr1
2 , . . . , g

Rrq
2 .

The lemma then follows readily. ⊓⊔

Proof (of claim). We use 0 to denote the all zeroes vector in Zd
p, and 0d to denote the all zeroes matrix in

Zd×d
p . The adversary B gets as input(

(p,G1, G2, GT , e); g1, g2, g
a1
2 , . . . , gad2 , g

ad+1

2 , ga1r12 , . . . , gadrd2 , g
ad+1(r1+...+rd)+rd+1

2

)
,

where either rd+1 = 0 or rd+1 ←R Z∗
p, and proceeds as follows:

Generating q tuples. Run the algorithm in Lemma 9 on input 1q, the group G2 and the DLIN-tuple to
obtain

(gVZ
2 , gZ) and (g

r̂j
2 , g

tj
2), j = 1, . . . , q.

Programming A. Sample Ã←R Z2d×2d
q and implicitly set:

A := Ã+

0d 0d

0d V
⊤

Note that gπL(A)

1 = g
πL(Ã)
1 .

Programming R. We pick R̃←R GL2d(Zp) and implicitly set

R :=

 Id 0d

0d Z

 R̃.

Observe that R is properly distributed as long as a1, . . . , ad ̸= 0. Moreover, we can compute gR2 since
R̃ and gZ2 are known.

Simulating gA
⊤R

2 . We can write A⊤R as

A⊤R = Ã⊤R+

0d 0d

0d V

 Id 0d

0d Z

 R̃ = Ã⊤R+

 0d 0d

0d VZ

 R̃.

Observe that we can compute gA
⊤R

2 since we know (Ã, gR2) and (gVZ
2 , R̃).

Simulating gRr1
2 , . . . , g

Rrq
2 . For j = 1, . . . , q, we pick r̃j ←R Zd

p and implicitly set

rj := R−1

r̃j

r̂j

 .

Observe that rj is properly distributed as long as R ∈ GL2d(Zp). In addition, we can compute g
Rrj
2

since we know r̃j and g
r̂j
2 .

30

Simulating the challenge. For j = 1, . . . , q, observe that

A⊤Rrj = Ã⊤(Rrj) +

0d 0d

0d V

r̃j

r̂j

 = Ã⊤(Rrj) +

 0

Vr̂j

 .

Note that we can compute g
Ã⊤(Rrj)
2 since we know (Ã, g

Rrj
2). Now we replace g

Vr̂j
2 with g

tj
2 , and

output the j’th challenge as

g
Ã⊤(Rrj)
2 ·

g02

g
tj
2

 .

Observe that:

– if rd+1 = 0, we have tj = Vr̂j and therefore the j’th output challenge equals gA
⊤Rrj

2 .

– if rd+1 ←R Z∗
p, we have tj = Vr̂j + γjed and therefore the j’th output challenge equals gA

⊤Rrj+γje2d
2 .

The claim then follows readily. ⊓⊔

7 Concrete IBE Scheme from d-LIN in Prime-Order Groups

In this section, we provide a self-contained description of the IBE scheme under the d-LIN assumption in
prime-order bilinear groups (G1, G2, GT , e). Recall that πL : Z2d×2d

p → Z2d×d
p is the projection map that

maps a 2d× 2d matrix to the left d columns.

Setup(1λ, 1n): On input (1λ, 1n), sample

B,B∗,R←R GL2d(Zp), A1, . . . ,A2n ←R Z(2d)×(2d)
p , k←R Z2d

p

such that B⊤B∗ = I, and output the master public and secret key pair

MPK :=
(
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BA2n)
1 ; e(g1, g2)

k⊤πL(B)
)
∈ (G2d×d

1)2n+1 ×Gd
T

MSK :=
(
gk2 , g

B∗R
2 , g

B∗A⊤
1R

2 , . . . , g
B∗A⊤

2nR
2

)
∈ G2d

2 × (G2d×2d
2)2n+1

Note that g2-components in PP are not required for encryption, we moved them into MSK.

Enc(MPK,x,m): On input an identity vector x := (x1, . . . , xn) ∈ Zn
p and m ∈ GT , pick s ←R Zd

p and
output

CTx :=
(
C0 := g

πL(B)s
1 , C1 := g

πL(B(A2−x1+···+A2n−xn))s
1 , C2 := e(g1, g2)

k⊤πL(B)s ·m
)

∈ G2d
1 ×G2d

1 ×GT .

KeyGen(MPK, MSK,y): On input an identity vector y := (y1, . . . , yn) ∈ Zn
p , pick r←R Z2d

p and output

SKy :=
(
K0 := gB

∗Rr
2 , K1 := g

k+B∗(A2−y1+···+A2n−yn)
⊤Rr

2

)
∈ G2d

2 ×G2d
2 .

31

Dec(MPK, SKy, CTx): If x = y, compute

e(g1, g2)
k⊤πL(B)s ← e(C0,K1)/e(C1,K0),

and recover the message as

m← C2 · e(g1, g2)−k⊤πL(B)s ∈ GT .

Acknowledgments. We thank Dennis Hofheinz and the anonymous reviewers for helpful feedback on the
write-up.

References

[1] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly-secure signatures from lossy identification schemes.
In EUROCRYPT, pages 572–590, 2012.

[2] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In EUROCRYPT, pages 553–572, 2010.
[3] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In

CRYPTO, pages 98–115, 2010.
[4] M. Bellare and T. Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete security for

Waters’ IBE scheme. In EUROCRYPT, pages 407–424, 2009.
[5] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In EUROCRYPT,

pages 223–238, 2004.
[6] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In CRYPTO, pages 443–459, 2004.
[7] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput., 32(3):586–615, 2003.
[8] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In TCC, pages 325–341, 2005.
[9] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT, pages 255–271, 2003.

[10] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In EUROCRYPT, pages
523–552, 2010.

[11] J. Chen and H. Wee. Fully, (almost) tightly secure ibe and dual system groups. In CRYPTO (2), pages 435–460, 2013.
[12] J. Chen and H. Wee. Dual system groups and its applications — compact HIBE and more. Full version in preparation, 2013.
[13] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int. Conf., pages 360–363, 2001.
[14] D. M. Freeman. Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In

EUROCRYPT, pages 44–61, 2010.
[15] C. Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pages 445–464, 2006.
[16] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In STOC,

pages 197–206, 2008.
[17] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In CRYPTO, pages 590–607, 2012. Also

Cryptology ePrint Archive, Report 2012/311.
[18] D. Hofheinz, T. Jager, and E. Knapp. Waters signatures with optimal security reduction. In Public Key Cryptography, pages

66–83, 2012.
[19] S. A. Kakvi and E. Kiltz. Optimal security proofs for full domain hash, revisited. In EUROCRYPT, pages 537–553, 2012.
[20] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In

EUROCRYPT, pages 146–162, 2008.
[21] A. Lewko. Tools for simulating features of composite order bilinear groups in the prime order setting. In EUROCRYPT, pages

318–335, 2012.
[22] A. B. Lewko and B. Waters. Efficient pseudorandom functions from the decisional linear assumption and weaker variants. In

ACM Conference on Computer and Communications Security, pages 112–120, 2009.
[23] A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In

TCC, pages 455–479, 2010.
[24] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption: Attribute-based

encryption and (hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

32

[25] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. J. ACM, 51(2):231–262,
2004.

[26] T. Okamoto and K. Takashima. Hierarchical predicate encryption for inner-products. In ASIACRYPT, pages 214–231, 2009.
[27] A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.
[28] B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages 114–127, 2005.
[29] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In CRYPTO, pages

619–636, 2009.
[30] H. Wee. Dual system encryption via predicate encodings. In TCC, 2014. To appear.

33

