
Doubly Spatial Encryption from DBDH

Jie Chen1,⋆ and Hoeteck Wee2,⋆⋆

1 Department of Computer Science and Technology, East China Normal University
2 École Normale Supérieure, Paris

Abstract. Functional encryption is an emerging paradigm for public-key encryption which enables

fine-grained control of access to encrypted data. Doubly-spatial encryption (DSE) captures all

functionalities that we know how to realize via pairings-based assumptions, including (H)IBE, IPE,

NIPE, CP-ABE and KP-ABE. In this paper, we propose a construction of DSE from the decisional

bilinear Diffie-Hellman (DBDH) assumption. This also yields the first non-zero inner product encryption

(NIPE) scheme based on DBDH. Quite surprisingly, we know how to realize NIPE and DSE from

stronger assumptions in bilinear groups but not from the basic DBDH assumption. Along the way,

we present a novel algebraic characterization of no instances for the DSE functionality, which we use

crucially in the proof of security.

1 Introduction

Functional encryption is an emerging paradigm for public-key encryption which enables fine-grained

control of access to encrypted data [18, 13]. In traditional public-key encryption, access to the

encrypted data is all or nothing: given the secret key, one can decrypt and read the entire plaintext,

but without it, nothing about the plaintext is revealed (other than its length). In functional

encryption, ciphertext is associated with a value x and a secret key with a value y, and the secret key

decrypts the ciphertext if and only if x and y satisfies some predicate. The security requirement is

that of collusion resilience, namely any group of users collectively learns nothing about the plaintext

if none of them is individually authorized to decrypt the ciphertext.

Much of the literature on functional encryption started with constructions based on the

decisional bilinear Diffie-Hellman (DBDH) assumption [5]. Fix prime-order groups (G,GT),

endowed with an efficient symmetric bilinear map e : G × G → GT . Let g denote a random

generator of G. The DBDH assumption stipulates that given g, ga, gb, gc, the quantity e(g, g)abc is

pseudorandom. The DBDH assumption is extremely appealing in its simplicity: the assumption is

simple to state, the ensuing schemes as well as the proof of security are typically extremely simple

too; these schemes have also been standardized [8]. Furthermore, we continue to draw on the

techniques developed in these early works: the development of lattice-based (hierarchical) identity-

based encryption ((H)IBE) schemes in [11, 1, 2] parallel corresponding DBDH-based schemes in

[10, 4, 20] and the simplest instantiations of the dual system encryption framework in [16, 17]

proceed by “embedding” prior DBDH-based schemes into composite-order groups. The fundamental

role that the DBDH assumption plays in functional encryption motivates us to understand the

limitations on the functionalities that we can realize from the DBDH assumption: namely,

⋆ Email: s080001@e.ntu.edu.sg. Supported by Science and Technology Commission of Shanghai Municipality under
Grants 14YF1404200, 13JC1403500, and the National Natural Science Foundation of China Grant No. 61172085.
Part of this work was done at Nanyang Technological University, supported by the National Research Foundation
of Singapore under Research Grant NRF-CRP2-2007-03.

⋆⋆ Email: wee@di.ens.fr. CNRS (UMR 8548) and INRIA. Supported in part by the French ANR-12-INSE-0014
SIMPATIC Project. Part of this work was done at George Washington University, supported by NSF Award
CNS-1319021, and at Ruhr-Universität Bochum as a Research Fellow of the Alexander von Humboldt Foundation.

Can we realize every functionality achievable via bilinear maps from the DBDH

assumption?

State-of-the-art. The state-of-the-art for functional encryption from the DBDH assumption

is roughly speaking, that of spatial encryption [6, 12], which generalizes (H)IBE, inner product

encryption (IPE) and key-policy attribute-based encryption (KP-ABE) [4, 13, 15], as well as

that of ciphertext-policy attribute-based encryption (CP-ABE) [19] (which is not captured by

spatial encryption). In spatial encryption, a ciphertext is associated with a vector and a secret key

with an affine space, and decryption is possible iff the affine space contains the vector. A further

generalization of spatial encryption is that of doubly-spatial encryption (DSE) [14] where both the

ciphertext and the secret key are associated with affine spaces, and decryption is possible iff the

two affine spaces have non-empty intersection. Doubly-spatial encryption captures all functionalities

that we know how to realize via pairings-based assumptions, including (H)IBE, IPE, non-zero inner

product encryption (NIPE), CP-ABE and KP-ABE; in particular, we know how to capture NIPE

and CP-ABE from doubly-spatial encryption but not from spatial encryption. Quite surprisingly,

we know how to realize NIPE and DSE from stronger assumptions in bilinear groups [3, 14, 12]1

but not from the basic DBDH assumption.

1.1 Our Results

Our main result is a construction of doubly-spatial encryption (DSE) from the basic DBDH

assumption. This also yields the first NIPE scheme based on DBDH, which in turn yields identity-

based revocable crypto-systems [3]. Along the way, we present a novel algebraic characterization

of no instances for the DSE functionality (c.f. Lemma 1), which we use crucially in the proof of

security. We compare our (D)SE schemes with prior works in Fig 1.

Reference |mpk| |sk| |ct| assumption

SE

BH [6] (n+2)|G|+ |GT | (m+2)|G| 2|G|+ |GT | n-DBDHE

ZC [20] (n+2)|G|+ |GT | (n+m+1)|G| (n+1)|G|+ |GT | DBDH

Ours (2n2 +6n+5)|G|+ |GT | (n+2)|G| (n+2)|G|+ |GT | DBDH

DSE
Ham[14] (n+2)|G|+ |GT | (m+2)|G| (d+2)|G|+ |GT | n-DBDHE

Ours (2n2 +6n+5)|G|+ |GT | (n+2)|G| (nd+n+ d+2)|G|+ |GT | DBDH

Fig. 1. Comparison amongst selectively-secure DSE schemes, where the ciphertext is associated with (x0,X) ∈
Zn

p × Zn×d
p and the secret key is associated with (y0,Y) ∈ Zn

p × Zn×m
p and decryption works whenever (x0 +

span(X)) ∩ (y0 + span(Y)) ̸= ∅. Note that d,m ≤ n. The parameters for our DSE scheme refers to that obtained by
combining the construction in Section 3 and transformation in Appendix A. For SE, we set d = 0.

Warm-up. Before we present our construction, we define DSE more formally. In DSE, we associate

a ciphertext with a vector matrix pair (x0,X) specifying an affine space x0+span(X), and a secret

1 In particular, the DSE and NIPE schemes in [12, 3] are based on the DLIN assumption, which implies the DBDH
assumption [9].

2

Reference |mpk| |sk| |ct| assumption security

NIPE

AL[3] (2n+1)|G|+ |GT | (n+1)|G| 3|G|+ |GT | q-MEBDH co-selective

(n+11)|G|+ |GT | (n+6)|G| 9|G|+ |GT | DBDH & DLIN co-selective

Ours (n2 +n+1)|G|+ |GT | (n+1)|G| (n+1)|G|+ |GT | DBDH selective

Fig. 2. Comparison amongst existing and our (co-)selectively secure NIPE schemes, where the ciphertext is associated
with x ∈ Zn

p and the secret key is associated with y ∈ Zn
p and decryption works whenever x · y ̸= 0.

key with a matrix Y specifying a linear space ker(Y). Decryption is possible whenever

(x0 + span(X)) ∩ ker(Y) ̸= ∅

There is a generic transformation that allows us to handle affine spaces for secret keys starting from

a construction for linear spaces (see Appendix A).

The starting point of our construction is the following DBDH-based spatial encryption scheme

of Zhou and Cao [20], which corresponds to the special case where X is the all-zeroes matrix, so

that decryption is possible iff x⊤
0Y = 0.

mpk :=
(
G, e(g, g)α, g, gw, gβ

)
ctx0 :=

(
gs, g(βx0+w)s, e(g, g)αs ·m

)
.

skY :=
(
gα−w⊤Yr, gYr

)
.

Our first idea is to add gβXs to the ciphertext, which would allow the decryptor to “delegate” the

ciphertext to any vector in the affine space x0+span(X). This turns out to be completely insecure;

one way to see this is that an adversary can take linear combinations of the rows in X instead of

the columns, since the term gβXs is insensitive to the rows or the columns of X. Hamburg’s DSE

scheme [14] breaks this asymmetry by “compressing” gβXs using a random linear combination of

the rows (that is, β is replaced by a random vector b); the ensuing construction has a structure

similar to the HIBE scheme in [7] and we only know how to prove security under a stronger q-type

assumption.

Our construction. We replace the scalar β in the spatial encryption scheme with a random n×n

matrix B, thereby breaking asymmetry while avoiding “compression”:

mpk :=
(
G, e(g, g)α, g, gw, gB

)
ct(x0,X) :=

(
gs, g

(B⊤x0 +w)s
, g B⊤X s, e(g, g)αs ·m

)
skY :=

(
gα−w⊤ B−1Y r, g B−1Y r

)
To simulate the secret keys, we rely crucially on our new algebraic characterization in Lemma 1.

3

2 Preliminaries

Notation. We denote by s ←r S the fact that s is picked uniformly at random from a finite

set S and by x, y, z ←r S that all x, y, z are picked independently and uniformly at random from

S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the

security parameter. We use · to denote multiplication (or group operation) as well as component-

wise multiplication. We use lower case boldface to denote (column) vectors over scalars and upper

case boldface to denote vectors of group elements as well as matrices. Given two vectors x =

(x1, x2, . . .),y = (y1, y2, . . .) over scalars, we use ⟨x,y⟩ to denote the standard dot product x⊤y.

Given a group element g, we write gx to denote (gx1 , gx2 , . . .); we define gA where A is a matrix in

an analogous way. Note that given a matrix of group elements gA, and a matrix B of “exponents”,

one can efficiently compute gAB; we will also denote this computation by (gA)B.

Linear algebra. Given an n× d matrix A over Zp, we write span(A) to denote the linear space

{Au : u ∈ Zd
p} ⊆ Zn

p spanned by the columns of A, and we write ker(A) to denote the linear space

{x : x⊤A = 0} ⊆ Zn
p corresponding to the kernel of the column span of A.

2.1 Doubly-Spatial Encryption

A DSE scheme consists of five algorithms (Setup,Enc,KeyGen,Dec,KeyDel):

Setup(1λ, 1n) → (mpk,msk). The setup algorithm takes in a security parameter 1λ, and a

dimension parameter 1n. It outputs public parameters mpk and a master secret key msk.

Enc(mpk, (x0,X),m)→ ct(x0,X). The encryption algorithm takes in the public parameters mpk,

a vector matrix pair (x0,X), and a message m. It outputs a ciphertext ct(x0,X).

KeyGen(mpk,msk,Y)→ skY. The key generation algorithm takes in the public parameters mpk,

the master secret key msk, and a matrix Y. It outputs a secret key skY.

Dec(mpk, skY,ct(x0,X)) → m. The decryption algorithm takes in the public parameters mpk, a

secret key skY for Y, and a ciphertext ct(x0,X) encrypted under (x0,X). It outputs a message

m if (x0 + span(X)) ∩ ker(Y) ̸= ∅.

KeyDel(mpk, skY,Y′)→ skY′ . The key delegation algorithm takes in the public parameters mpk,

a secret key skY, and a matrix Y′, where span(Y′) ⊆ span(Y). It outputs a secret key skY′ .

Correctness. For all (mpk,msk)← Setup(1λ, 1n), all vector matrix pairs (x0,X), all messages m,

all decryption keys skY, all (x0,X) such that (x0 + span(X)) ∩ ker(Y) ̸= ∅, we have

Pr[Dec(mpk, skY,Enc(mpk, (x0,X),m)) = m] = 1.

Delegation. We require that delegation is independent of the path taken; that is, if span(Y′) ⊆
span(Y), then the following distributions are identical:

{skY,KeyDel(mpk, skY,Y′)} and {skY,KeyGen(mpk,msk,Y′)}

4

2.2 Selective Security Model

We now give the notion of selective security for DSE. Briefly, the adversary specifies the challenge

affine space before it sees the public parameters. The security game is defined by the following

experiment, played by a challenger and an adversary A.

Challenge Space. The adversaryA gives the challenger the dimension parameter 1n and challenge

vector matrix pair (x∗
0,X).

Setup. The challenger runs the setup algorithm to generate (mpk,msk). It gives mpk to the

adversary A.

Phase 1. The adversary A adaptively requests keys for any matrix Y of its choice with the

restriction that (x∗
0+span(X))∩ker(Y) = ∅. The challenger C responds with the corresponding

secret key skY, which it generates by running KeyGen(mpk,msk,Y). Because of our restriction

on delegation, the returned skY is independent of the path taken.

Challenge Ciphertext. The adversary submits two messages m0 and m1 of equal length. C picks
β ←r {0, 1} and encrypts mβ under (x∗

0,X) by running the encryption algorithm. It sends the

ciphertext to the adversary A.

Phase 2. A continues to issue key queries as in Phase 1.

Guess. The adversary A must output a guess β′ for β.

The advantage AdvdseA (λ) of an adversary A is defined to be Pr[β′ = β]− 1/2.

Definition 1. A DSE scheme is selectively secure if all PPT adversaries achieve at most a

negligible advantage in the above security game.

2.3 Computational Assumptions

We now briefly recall bilinear pairing groups and then state the decisional bilinear Diffie-Hellman

(DBDH) assumption that are required in our security proof.

A generator G which takes as input a security parameter 1λ and outputs a description G :=

(p,G,GT , e), where p is a prime of Θ(λ) bits, G and GT are cyclic groups of order p, and e : G×G→
GT is a non-degenerate bilinear map. We require that the group operations in G and GT as well the

bilinear map e are computable in deterministic polynomial time with respect to λ. Furthermore,

the group descriptions of G and GT include generators of the respective cyclic groups.

Assumption 1 (DBDH: Decisional Bilinear Diffie-Hellman Assumption) Given a group

generator G(1λ), we define the following distribution:

G := (p,G,GT , g, e)←r G(1λ),
a, b, s, z ←r Zp,

T0 := gabs, T1 := gabs+z,

D := (G; ga, gb, gs).

5

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvdbdhA (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

is negligible in the security parameter λ.

2.4 Algebraic Characterization for DSE

Next, we present a novel algebraic characterization of no instances for the DSE functionality, which

we use crucially in the proof of security.

Lemma 1. Fix (x0,X) ∈ Zn
p × Zn×d

p and Y ∈ Zn×ℓ
p . If

(x0 + span(X)) ∩ ker(Y) = ∅,

then we can efficiently compute z ∈ Zℓ
p such that

x⊤
0Yz = 1 and X⊤Yz = 0.

Remark 1. Observe that the converse is also true. Suppose such a z exists. Then for all x′ =

x0 +Xu ∈ (x0 + span(X)), we have (x′)⊤Yz = x⊤
0Yz + u⊤X⊤Yz = 1, which means x′ /∈ ker(Y).

This implies (x0 + span(X)) ∩ ker(Y) = ∅.

Proof. Our goal is to find a column vector z ∈ Zℓ
p such that

(x0∥X)⊤Yz = e1

If a solution exists, we can always find it efficiently using Gaussian elimination. Suppose on the

contrary that a solution does not exist. Then, there must exist a (column) vector u ∈ Zd+1
p such

that

u⊤(x0∥X)⊤Y = 0 and u⊤e1 = 1

Therefore,

(x0∥X)u ∈ ker(Y) and (x0∥X)u ∈ (x0 + span(X)).

This means

(x0 + span(X)) ∩ ker(Y) ̸= ∅,

a contradiction. ⊓⊔

3 Doubly-Spatial Encryption

3.1 Construction

First, we describe the scheme without delegation.

– Setup(1λ, 1n): On input (1λ, 1n), generate G := (p,G,GT , e)←r G(1λ), pick α←r Zp, w←r Zn
p ,

B←r Zn×n
p , and output

mpk :=
(
G; e(g, g)α, g, gw, gB

)
∈ GT ×G×Gn ×Gn×n

6

and

msk :=
(
α,w,B−1

)
∈ Zp × Zn

p × Zn×n
p .

– Enc(mpk, (x0,X),m) : On input (x0,X) ∈ Zn
p ×Zn×d

p , and message m ∈ GT , pick s←r Zp and

output

ct(x0,X) :=
(
C0 := gs, C1 := g(B

⊤x0+w)s, C2 := gB
⊤Xs, C ′ := e(g, g)αs ·m

)
∈ G×Gn ×Gn×d ×GT .

– KeyGen(mpk,msk,Y): On input Y ∈ Zn×ℓ
p , pick r←r Zℓ

p and output

skY :=
(
K0 := gα−⟨w,B−1Yr⟩, K1 := gB

−1Yr
)
∈ G×Gn.

– Dec(mpk, skY,ct(x0,X)): If (x0 + span(X)) ∩ ker(Y) ̸= ∅, first compute u ∈ Zd
p such that

x′ := x0 +X · u ∈ ker(Y)

Parse the ciphertext as (C0,C1,C2, C
′) and compute

e(g, g)αs ← e(C0,K0) · e(C1 ·Cu
2 ,K1).

Recover the message as m← C ′/e(g, g)αs ∈ GT .

Claim. For all x,y, we have ⟨B⊤x,B−1y⟩ = ⟨x,y⟩.

Correctness. Fix (x0,X) and Y such that (x0+span(X))∩ker(Y) ̸= ∅. Let (u,x′) be the vectors

computed by Dec(mpk, skY,ct(x0,X)) so that

x′ = x0 +Xu and x′⊤Y = 0

First, observe that

e(C1 ·Cu
2 ,K1) = e(g(B

⊤x0+w+B⊤Xu)s, gB
−1Yr)

= e(gs, g⟨B
⊤x0+w+B⊤Xu,B−1Yr⟩)

We then compute the exponent on the second term as follows:

⟨B⊤x0 +w +B⊤Xu,B−1Yr⟩ = ⟨B⊤x′ +w,B−1Yr⟩
= ⟨B⊤x′,B−1Yr⟩+ ⟨w,B−1Yr⟩
= ⟨x′,Yr⟩+ ⟨w,B−1Yr⟩
= ⟨w,B−1Yr⟩

=⇒ e(C1 ·Cu
2 ,K1) = e(gs, g⟨w,B−1Yr⟩)

Therefore,

e(C0,K0) · e(C1 ·Cu
2 ,K1) = e(gs, gα−⟨w,B−1Yr⟩) · e(gs, g⟨w,B−1Yr⟩)

= e(g, g)αs.

7

Correctness follows readily.

3.2 Proof of DSE Security

We prove the following theorem:

Theorem 1. Under DBDH assumption (described in Section 2.3), our DSE scheme defined in

Section 3.1 is selectively secure (in the sense of Definition 2.2). More precisely, for any adversary

A against the DSE scheme, there exists an adversary B such that

AdvdseA (λ) ≤ AdvdbdhB (λ) + 1/p.

and

Time(B) ≈ Time(A) + q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

Overview of proof. Fix the selective challenge (x∗
0,X). Recall that the challenge ciphertext is of the

form(
gs, g(B

⊤x∗
0+w)s, gB

⊤Xs, e(g, g)αs ·mβ

)
or

(
gs, g(B

⊤x∗
0+w)s, gB

⊤Xs, e(g, g)αs · random
)

Following [4], we implicitly set α := ab where (g, ga, gb, gs) are provided in the DBDH assumption.

Next, we pick X̄ ∈ Zn×(n−d)
p so that (X∥X̄) is a full rank matrix. Intuitively, we program B so that

know

B⊤X and a−1 ·B⊤X̄

We need the first term to simulate the challenge ciphertext, whereas knowing the second term will

help us answer secret key queries later by ‘canceling out’ terms we do not know how to compute.

In addition, we pick w̃←r Zn
p and implicitly set

B⊤x∗
0 +w := w̃

Simulating the public parameters and the challenge ciphertext is straight-forward.

The main challenge lies in simulating the secret key

skY =
(
gα−⟨w,B−1Yr⟩, gB

−1Yr
)
,

which we may rewrite in terms of ab and w̃ as(
gab+⟨x∗

0,Yr⟩−⟨w̃,B−1Yr⟩, gB
−1Yr

)
.

With some algebraic manipulation upon replacing B with terms we know (in particular, that we

know a−1 ·B⊤X̄), it suffices to show how to simulate(
gab+⟨x∗

0,Yr⟩, gX
⊤Yr, ga

−1X̄⊤Yr
)
.

8

To achieve this, we program r to cancel out both ab and a−1. Since (x∗
0 + span(X)) ∩ ker(Y) = ∅,

we can compute z ∈ Zℓ
p such that (x∗

0)
⊤Yz = 1 and X⊤Yz = 0 (c.f. Lemma 1). Then, we proceed

as follows:

– we pick r̃←r Zℓ
p and implicitly set r := ar̃− abz;

– we can cancel out ab by using ⟨x∗
0,Yr⟩, namely

ab+ ⟨x∗
0,Yr⟩ = ab+ ⟨x∗

0,Y(ar̃− abz)⟩
= ab+ a⟨x∗

0,Yr̃⟩ − ab⟨x∗
0,Yz⟩

= a⟨x∗
0,Yr̃⟩.

– observe that X⊤Yr = aX⊤Yr̃ and a−1X̄⊤Yr = X̄⊤Yr̃− bX̄⊤Yz.

That is, we can simulate the expression above as:(
(ga)⟨x

∗
0,Yr̃⟩, (ga)X

⊤Yr̃, gX̄
⊤Yr̃ · (gb)−X̄⊤Yz

)
.

Proof. We construct an adversary B for DBDH assumption using A. Recall that in DBDH

assumption, the adversary is given D := (G; g, ga, gb, gs), along with T , where T equals e(g, g)abs or

is drawn uniformly from GT . Here, we assume that a←r Z∗
p, which yields a 1/p negligible difference

from DBDH assumption in the advantage; B proceeds as follows:

Setup. On input selective challenge (x∗
0,X), pick X̄ ∈ Zn×(n−d)

p so that (X∥X̄) is a full rank

matrix. Intuitively, we want to pick a random full rank B so that we can compute

B⊤X and a−1 ·B⊤X̄

We will need to know the first term to simulate the challenge ciphertext, whereas knowing the

second term will help us answer secret key queries later by ‘canceling out’ terms we do not

know how to compute. To achieve this, we pick a random full rank matrix Z∥Z̄ ←r Zn×n
p and

implicitly set

B⊤X = Z and B⊤X̄ = aZ̄,

that is,

B⊤ := (Z∥aZ̄)(X∥X̄)−1 and B−1 := ((Z∥Z̄)−1)⊤(X∥a−1X̄)⊤.

Observe that we can compute gB
⊤
as

(gZ∥(ga)Z̄)(X∥X̄)−1
.

In addition, we pick w̃← Zn
p and implicitly set

w := −B⊤x∗
0 + w̃

Note that we can then compute gw as (gB
⊤
)−x∗

0 · gw̃. Finally, B implicitly sets α := ab and

outputs

mpk := (G; e(ga, gb), g, gw, gB).

9

Key Queries. On input Y ∈ Zn×ℓ
p , where (x∗

0 + span(X)) ∩ ker(Y) = ∅, recall that

skY :=
(
K0 := gα−⟨w,B−1Yr⟩, K1 := gB

−1Yr
)
.

which we may rewrite in terms of ab and w̃ as(
gab+⟨x∗

0,Yr⟩−⟨w̃,B−1Yr⟩, gB
−1Yr

)
.

First, we show how to compute the following expression(
gab+⟨x∗

0,Yr⟩, gX
⊤Yr, ga

−1X̄⊤Yr
)

(∗).

To do this, the adversary B picks r̃←r Zℓ
p and implicitly sets

r := ar̃− abz

where z is computed as in Lemma 1 so that (x∗
0)

⊤Yz = 1 and X⊤Yz = 0. Now, observe that

ab+ ⟨x∗
0,Yr⟩ = ab+ ⟨x∗

0,Y(ar̃− abz)⟩
= ab+ a⟨x∗

0,Yr̃⟩ − ab⟨x∗
0,Yz⟩

= a⟨x∗
0,Yr̃⟩

where in the last equality, we use the fact that (x∗
0)

⊤Yz = 1. In addition, we have

X⊤Yr = X⊤Y(ar̃− abz) = X⊤Yr̃

a−1X̄⊤Yr = a−1X̄⊤Y(ar̃− abz) = X̄⊤Yr̃− bX̄⊤Yz.

That is, given g, ga, gb along with x∗
0, r̃, z,X, X̄,Y, we can compute the expression (∗) as:(

(ga)⟨x
∗
0,Yr̃⟩, (ga)X

⊤Yr̃, gX̄
⊤Yr̃ · (gb)−X̄⊤Yz

)
.

Next, we show how to simulate skY using the expression (∗). Note that

K0 = gab+⟨x∗
0,Yr⟩ · g−⟨w̃,B−1Yr⟩,

where we can compute g⟨w̃,B−1Yr⟩ given K1 = gB
−1Yr and w̃ by computing a dot product in

the exponent. Thus, it suffices to show how to compute K1 using gX
⊤Yr, ga

−1X̃⊤Yr. Recall that

B−1 = ((Z∥Z̄)−1)⊤(X∥a−1X̄)⊤,

we have

B−1Yr = ((Z∥Z̄)−1)⊤
(

X⊤Yr
a−1X̄⊤Yr

)
.

Written this way, it is easy to see that given gX
⊤Yr, ga

−1X̃⊤Yr along with Z, Z̄, we can compute

K1 = gB
−1Yr.

10

Challenge Ciphertext. Upon receiving two equal length messages m0 and m1 from A, B picks

β ←r {0, 1} and outputs the challenge ciphertext as:

ct(x∗
0,X) :=

(
C0 := gs, C1 := gw̃s, C2 := gZs, C ′ := T ·mβ

)
.

Now, if T equals e(g, g)abs, this would indeed be a properly distributed encryption of mβ. On

the other hand, if T ←r GT , instead, then the challenge ciphertext is an encryption of a random

message in GT and therefore independent of β.

Guess. When A halts with output β′, B outputs 1 if β = β′ and 0 otherwise.

We may therefore conclude that AdvdseA (λ) ≤ AdvdbdhB (λ) + 1/p. ⊓⊔

3.3 Construction with Delegation

We describe how to support delegation. It suffices to modify Setup, and to add KeyDel.

– Setup(1λ, 1n): On input a dimensional parameter 1n, generate G := (p,G,GT , e)←r G(1λ). Pick
α,←r Zp, w←r Zn

p , B ∈ Zn×n
p . In addition, pick γ ←r Z∗

p. Output

mpk :=

(
G; e(g, g)α, g, gw, gB, gγB

−1
, gγ(B

−1)⊤w

)
∈ GT ×G×Gn ×Gn×n × Gn×n ×Gn

and

msk :=
(
α,w,B−1

)
∈ Zp × Zn

p × Zn×n
p .

– KeyDel(mpk, skY,Y′): On input skY := (K0 := gα−⟨w,B−1Yr⟩,K1 := gB
−1Yr) ∈ G × Gn and

Y′ ∈ Zn×ℓ′
p , where span(Y) ⊆ span(Y′), pick r̃←r Zℓ′

p and output

skY′ :=
(
K ′

0 := K0 · g−γ⟨w,B−1Y′r̃⟩, K′
1 := K1 · gγB

−1Y′r̃
)
∈ G×Gn.

Note that γ⟨w,B−1Y′r̃⟩ = ⟨γ(B−1)⊤w,Y′r̃⟩, so we can compute gγ⟨w,B−1Y′r̃⟩ by computing a

dot product of gγ(B
−1)⊤w and Y′r̃ in the exponent.

Delegation. FixY andY′ such that span(Y) ⊆ span(Y′), which means we can efficiently compute

a matrix T ∈ Zℓ′×ℓ
p such that Y = Y′T. It suffices to the output skY′ := (D′

0,K
′
1) from KeyDel is

the same as that computed by KeyGen using a fresh random vector r′ ←r Zℓ′
p , where

r := Tr+ γr̃,

11

Note that r′ is indeed uniformly random from Zℓ′
p (whenever γ ̸= 0) since r̃ ←r Zℓ′

p . Now, observe

that

K ′
0 = K0 · g−γ⟨w,B−1Y′r̃⟩ K′

1 = K1 · gB
−1Y′r̃

= gα−⟨w,B−1Yr⟩ · g−γ⟨w,B−1Y′r̃⟩ = gB
−1Yr · gγB−1Y′r̃

= gα−⟨w,B−1Y′(Tr)⟩ · g−⟨w,B−1Y′(γr̃)⟩ = gB
−1Y′(Tr) · gB−1Y′(γr̃)

= gα−⟨w,B−1Y′(Tr+γr̃)⟩ = gB
−1Y′(Tr+γr̃)

= gα−⟨w,B−1Y′r′⟩ = gB
−1Y′r′

The claim that delegation is independent of the path taken follows readily.

Proof of Security. It suffices to show how to compute mpk. On input selective challenge (x∗
0,X),

we sample (X̄,Z, Z̄, w̃) as in Section 3.2, implicitly set

B⊤X = Z and B⊤X̄ = aZ̄ and w := −B⊤x∗
0 + w̃ and α := ab,

and compute (e(g, g)α, gw, gB) as before. Next, we pick γ̃ ←r Z∗
p and implicitly set

γ := γ̃a.

We need to show how to compute the additional terms

gγB
−1

and gγ(B
−1)⊤w.

Recall that

B−1 := a−1((Z∥Z̄)−1)⊤(aX∥X̄)⊤,

thus

γ(B−1)⊤ := γ̃(aX∥X̄)(Z∥Z̄)−1.

Then given g, ga along with γ̃,Z, Z̄,X, X̄, we can compute gγ(B
−1)⊤ (also obtain gγB

−1
by matrix

transpose) as

((ga)X∥gX̄)γ̃(Z∥Z̄)
−1

Also observe that

γ(B−1)⊤w = γ(B−1)⊤(−B⊤x∗
0 + w̃) = −γ̃ax∗

0 + (γB−1)⊤w̃

Here, we can compute gγ(B
−1)⊤w as

(ga)−γ̃x∗
0 · (g(γB−1)⊤)w̃.

References

[1] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (H)IBE in the standard model. In EUROCRYPT, pages

553–572, 2010.

[2] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner product predicates from

learning with errors. In ASIACRYPT, pages 21–40, 2011.

12

[3] N. Attrapadung and B. Libert. Functional encryption for inner product: Achieving constant-size ciphertexts

with adaptive security or support for negation. In Public Key Cryptography, pages 384–402, 2010.

[4] D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In

EUROCRYPT, pages 223–238, 2004.

[5] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput., 32(3):

586–615, 2003.

[6] D. Boneh and M. Hamburg. Generalized identity based and broadcast encryption schemes. In ASIACRYPT,

pages 455–470, 2008.

[7] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In

EUROCRYPT, pages 440–456, 2005.

[8] X. Boyen and L. Martin. Identity-based cryptography standard (IBCS) #1: Supersingular curve implementations

of the BF and BB1 cryptosystems. IETF RFC 5091, Dec. 2007. URL http://www.rfc-editor.org/rfc/rfc5091.txt.

[9] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random oracles). In

CRYPTO, pages 290–307, 2006.

[10] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT, pages

255–271, 2003.

[11] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In EUROCRYPT,

pages 523–552, 2010.

[12] C. Chen, Z. Zhang, and D. Feng. Fully secure doubly-spatial encryption under simple assumptions. In ProvSec,

pages 253–263, 2012.

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of

encrypted data. In ACM Conference on Computer and Communications Security, pages 89–98, 2006.

[14] M. Hamburg. Spatial encryption. IACR Cryptology ePrint Archive, 2011:389, 2011.

[15] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner

products. In EUROCRYPT, pages 146–162, 2008.

[16] A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with short

ciphertexts. In TCC, pages 455–479, 2010.

[17] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption: Attribute-

based encryption and (hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

[18] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473, 2005.

[19] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization.

In Public Key Cryptography, pages 53–70, 2011.

[20] M. Zhou and Z. Cao. Spatial encryption under simpler assumption. In ProvSec, pages 19–31, 2009.

A Generic Transformation for DSE

In this section, we show how to handle affine spaces for secret keys from a construction for linear

spaces. It suffices to present an embedding similar to that in [6, Section 2.3] and [14, Section 2.5].

Specifically, starting with

(x0,X) ∈ Zn
p × Zn×d

p and (y0,Y) ∈ Zn
p × Zn×m

p ,

we can compute

(x̂0, X̂) ∈ Zn+1
p × Z(n+1)×d

p and Ŷ ∈ Z(n+1)×(n−m)
p ,

so that

(x0 + span(X)) ∩ (y0 + span(Y)) ̸= ∅ ⇔ (x̂0 + span(X̂)) ∩ ker(Ŷ) ̸= ∅.

Embedding. We embed an n-dimensional affine system into an (n+1)-dimensional linear system

as follows:

13

– for any secret key associated with a vector matrix pair (y0,Y) ∈ Zn
p ×Zn×m

p specifying an affine

space y0 + span(Y), we embed it into the linear space span(Ỹ), where

Ỹ :=

 1 0⊤

y0 Y

 ∈ Z(n+1)×(m+1)
p ;

Given Ỹ ∈ Z(n+1)×(m+1)
p , we can easily compute Ŷ ∈ Z(n+1)×(n−m)

p so that ker(Ŷ) = span(Ỹ).

– for any ciphertext associated with a vector matrix pair (x0,X) ∈ Zn
p ×Zn×d

p specifying an affine

space x0 + span(X), we embed it into the affine space x̃0 + span(X̃), where

x̃0 :=

 1

x0

 ∈ Z(n+1)×1
p and X̃ :=

0⊤

X

 ∈ Z(n+1)×d
p .

Correctness. Fix (x0,X) and (y0,Y) such that (x0 + span(X)) ∩ (y0 + span(Y)) ̸= ∅, observe
that we have

(x0 + span(X)) ∩ (y0 + span(Y)) ̸= ∅ ⇔ (

 1

x0

+ span(

0⊤

X

)) ∩ (

 1

y0

+ span(

0⊤

Y

)) ̸= ∅

⇔ (

 1

x0

+ span(

0⊤

X

)) ∩ span(

 1 0⊤

y0 Y

) ̸= ∅

⇔ (x̃0 + span(X̃)) ∩ span(Ỹ) ̸= ∅.

Delegation. Fix (y0,Y) and (y′
0,Y

′) such that (y′
0 + span(Y′)) ⊆ (y0 + span(Y)), observe that

we have

(y′
0 + span(Y′)) ⊆ (y0 + span(Y))⇔ y′

0 ∈ (y0 + span(Y)) ∧ span(Y′) ⊆ span(Y)

⇔

 1

y′
0

 ∈ span(

 1 0⊤

y0 Y

) ∧ span(

0⊤

Y′

) ⊆ span(

0⊤

Y

)

⇔ span(Ỹ′) ⊆ span(Ỹ).

B NIPE from DSE

In this section, we show that NIPE can be naturally obtained from DSE defined in Section 2.1; our

transformation is a special case of Hamburg’s embedding of negated SE into DSE [14, Section 4.4].

In a NIPE scheme, both the ciphertext and the secret key are associated with vectors, a ciphertext

ctx can be decrypted by a secret key sky iff ⟨x,y⟩ ̸= 0.

Embedding. We embed an n-dimensional NIPE system into an (n+ 1)-dimensional DSE system

as follows:

14

– for any secret key associated with a vector y ∈ Zn
p , we embed it into the (n + 1)-dimensional

vector ỹ, where

ỹ :=

1

y

 ∈ Zn+1
p .

– for any ciphertext associated with a vector x ∈ Zn
p , we embed it into the affine space 1̃+span(x̃),

where

1̃ :=

1

0

 ∈ Zn+1
p and x̃ :=

0

x

 ∈ Zn+1
p .

Correctness. Fix x and y such that ⟨x,y⟩ ̸= 0, observe that we have

⟨x,y⟩ ̸= 0⇔ 1− ⟨ 1

⟨x,y⟩
x,y⟩ = 0

⇔ ⟨

1

0

− 1

⟨x,y⟩

0

x

 ,

1

y

⟩ = 0

⇔ (1̃+ span(x̃)) ∩ ker(ỹ) ̸= ∅.

Note that if ⟨x,y⟩ = 0, we have (1̃+ span(x̃)) ∩ ker(ỹ) = ∅ since

⟨1̃+ ux̃, ỹ⟩ = 1 + u⟨x,y⟩ = 1 ∀u ∈ Zp.

C Self-Contained NIPE

In this section, we give a self-contained description of our NIPE scheme. Combined with our DSE

scheme in Section 3.1 and generic transformation in Appendix B, we obtain an n-dimensional NIPE

scheme based on DBDH with the following parameters:

|mpk| = (n2 + 3n+ 3)|G|+ |GT | and |sk| = (n+ 2)|G| and |ct| = (2n+ 3)|G|+ |GT |.

– Setup(1λ, 1n+1): On input (1λ, 1n+1), generate G := (p,G,GT , e) ←r G(1λ), pick α ←r Zp,

w←r Zn+1
p , [b0∥B1]←r Z(n+1)×(n+1)

p , and output

mpk :=
(
G; e(g, g)α, g, gw, gb0 , gB1

)
∈ GT ×G×Gn+1 ×Gn+1 ×Gn×(n+1)

and

msk := (α,w,b∗
0,B

∗
1) ∈ Zp × Zn+1

p × Zn+1
p × Zn×(n+1)

p ,

where [b0∥B1]
−1 = [b∗

0∥B∗
1]

⊤.

– Enc(mpk,x,m) : On input x ∈ Zn
p , and message m ∈ GT , pick s←r Zp and output

ctx :=
(
C0 := gs, C1 := g(b0+w)s, C2 := gB1xs, C ′ := e(g, g)αs ·m

)
∈ G×Gn+1 ×Gn+1 ×GT .

15

– KeyGen(mpk,msk,y): On input y ∈ Zn
p , pick r ←r Zp and output

sky :=
(
K0 := gα−r⟨w,b∗

0+B∗
1y⟩, K1 := gr(b

∗
0+B∗

1y)
)
∈ G×Gn+1.

– Dec(mpk, sky,ctx): If ⟨x,y⟩ ̸= 0, parse the ciphertext as (C0,C1,C2, C
′) and compute

e(g, g)αs ← e(C0,K0) · e(C1 ·C
− 1

⟨x,y⟩
2 ,K1).

Recover the message as m← C ′/e(g, g)αs ∈ GT .

Correctness. Fix x and y such that ⟨x,y⟩ ̸= 0, correctness follows readily from Section 3.1 since

we have

⟨

1

0

− 1

⟨x,y⟩

0

x

 ,

1

y

⟩ = 0

16

