52 research outputs found

    PIP3-Independent Activation of TorC2 and PKB at the Cell's Leading Edge Mediates Chemotaxis

    Get PDF
    SummaryBackgroundStudies show that high phosphotidylinositol 3,4,5-trisphosphate (PIP3) promotes cytoskeletal rearrangements and alters cell motility and chemotaxis, possibly through activation of protein kinase Bs (PKBs). However, chemotaxis can still occur in the absence of PIP3, and the identities of the PIP3-independent pathways remain unknown.ResultsHere, we outline a PIP3-independent pathway linking temporal and spatial activation of PKBs by Tor complex 2 (TorC2) to the chemotactic response. Within seconds of stimulating Dictyostelium cells with chemoattractant, two PKB homologs, PKBA and PKBR1, mediate transient phosphorylation of at least eight proteins, including Talin, PI4P 5-kinase, two Ras GEFs, and a RhoGap. Surprisingly, all of the substrates are phosphorylated with normal kinetics in cells lacking PI 3-kinase activity. Cells deficient in TorC2 or PKB activity show reduced phosphorylation of the endogenous substrates and are impaired in chemotaxis. The PKBs are activated through phosphorylation of their hydrophobic motifs via TorC2 and subsequent phosphorylation of their activation loops. These chemoattractant-inducible events are restricted to the cell's leading edge even in the absence of PIP3. Activation of TorC2 depends on heterotrimeric G protein function and intermediate G proteins, including Ras GTPases.ConclusionsThe data lead to a model where cytosolic TorC2, encountering locally activated small G protein(s) at the leading edge of the cell, becomes activated and phosphorylates PKBs. These in turn phosphorylate a series of signaling and cytoskeletal proteins, thereby regulating directed migration

    BBF RFC 28: A method for combinatorial multi-part assembly based on the Type IIs restriction enzyme AarI

    Get PDF
    This BioBricks Foundation Request for Comments (BBF RFC) describes an alternative assembly standard based on the Type IIS restriction enzyme AarI

    Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina

    Get PDF
    During mammalian neurogenesis, progenitor cells can divide with the mitotic spindle oriented parallel or perpendicular to the surface of the neuroepithelium. Perpendicular divisions are more likely to be asymmetric and generate one progenitor and one neuronal precursor. Whether the orientation of the mitotic spindle actually determines their asymmetric outcome is unclear. Here, we characterize a mammalian homolog of Inscuteable (mInsc), a key regulator of spindle orientation in Drosophila. mInsc is expressed temporally and spatially in a manner that suggests a role in orienting the mitotic spindle in the developing nervous system. Using retroviral RNAi in rat retinal explants, we show that downregulation of mInsc inhibits vertical divisions. This results in enhanced proliferation, consistent with a higher frequency of symmetric divisions generating two proliferating cells. Our results suggest that the orientation of neural progenitor divisions is important for cell fate specification in the retina and determines their symmetric or asymmetric outcome

    Mammalian Inscuteable Regulates Spindle Orientation and Cell Fate in the Developing Retina

    Get PDF
    During mammalian neurogenesis, progenitor cells can divide with the mitotic spindle oriented parallel or perpendicular to the surface of the neuroepithelium. Perpendicular divisions are more likely to be asymmetric and generate one progenitor and one neuronal precursor. Whether the orientation of the mitotic spindle actually determines their asymmetric outcome is unclear. Here, we characterize a mammalian homolog of Inscuteable (mInsc), a key regulator of spindle orientation in Drosophila. mInsc is expressed temporally and spatially in a manner that suggests a role in orienting the mitotic spindle in the developing nervous system. Using retroviral RNAi in rat retinal explants, we show that downregulation of mInsc inhibits vertical divisions. This results in enhanced proliferation, consistent with a higher frequency of symmetric divisions generating two proliferating cells. Our results suggest that the orientation of neural progenitor divisions is important for cell fate specification in the retina and determines their symmetric or asymmetric outcome

    Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes

    Get PDF
    INTRODUCTION: Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. METHODS: Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. RESULTS: Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. CONCLUSION: After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients

    How to understand and outwit adaptation.

    No full text

    How to understand and outwit adaptation.

    No full text
    Adaptation is the ability of a system to respond and reset itself even in the continuing presence of a stimulus. On one hand, adaptation is a physiological necessity that enables proper neuronal signaling and cell movement. On the other hand, adaptation can be a source of annoyance, as it can make biological systems resistant to experimental perturbations. Here we speculate where adaptation might live in eukaryotic chemotaxis and how it can be encoded in the signaling network. We then discuss tools and strategies that can be used to both understand and outwit adaptation in a wide range of cellular contexts

    The role of education and migration background in explaining differences in folic acid supplementation intake in pregnancy: Results from a German birth cohort study

    No full text
    Miani C, Ludwig A, Doyle I-M, et al. The role of education and migration background in explaining differences in folic acid supplementation intake in pregnancy: Results from a German birth cohort study. Public health nutrition. 2021.OBJECTIVE: Official German recommendations advise women to start taking folic acid supplementation (FAS) before conception and continue during the first pregnancy trimester to lower the risk of birth defects. Women from lower socioeconomic background and ethnic minorities tend to be less likely to take FAS in other European countries. As little is known about the determinants of FAS in Germany, we aimed to investigate the association between FAS and formal education and migration background, adjusting for demographic factors.; DESIGN: We used data (2013-2016) on nutrition and socioeconomic and migration background from the baseline questionnaire of the BaBi cohort study. We performed multivariate regressions and mediation analyses.; SETTING: Bielefeld, Germany.; PARTICIPANTS: 947 women (pregnant or who had given birth in the past two months).; RESULTS: 16.7% of the participants (158/947) didn't use FAS. Migration-related variables (e.g. language, length of stay) were not associated with FAS in the adjusted models. FAS was lower in women with lower level of formal education and in unplanned pregnancies. Reasons given by women for not taking FAS were unplanned pregnancy and lack of knowledge of FAS.; CONCLUSIONS: Health practitioners may be inclined to see migrant women as an inherently at-risk group for failed intake of FAS. However, it is primarily women who did not plan their pregnancy, and women of lower formal education level, who are at risk. Different public health strategies to counter low supplementation rates should be supported, those addressing the social determinants of health (i.e. education) and those more focussed on family planning
    • …
    corecore