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Summary

During mammalian neurogenesis, progenitor cells can

divide with the mitotic spindle oriented parallel or per-
pendicular to the surface of the neuroepithelium. Per-

pendicular divisions are more likely to be asymmetric
and generate one progenitor and one neuronal precur-

sor. Whether the orientation of the mitotic spindle
actually determines their asymmetric outcome is

unclear. Here, we characterize a mammalian homolog
of Inscuteable (mInsc), a key regulator of spindle ori-

entation in Drosophila. mInsc is expressed temporally
and spatially in a manner that suggests a role in orient-

ing the mitotic spindle in the developing nervous sys-
tem. Using retroviral RNAi in rat retinal explants, we

show that downregulation of mInsc inhibits vertical di-
visions. This results in enhanced proliferation, consis-

tent with a higher frequency of symmetric divisions
generating two proliferating cells. Our results suggest

that the orientation of neural progenitor divisions is
important for cell fate specification in the retina and

determines their symmetric or asymmetric outcome.

*Correspondence: knoblich@imba.oeaw.ac.at
8 These authors contributed equally to this work.
Introduction

During development of the mammalian nervous system
a relatively small number of progenitor cells gives rise to
a huge variety of different neurons and glial cells. How
this diversity is achieved is still unclear. Recent results
have suggested that oriented asymmetric cell divisions
generating two different daughter cells are important
for lineage diversity in the nervous system (Wodarz
and Huttner, 2003; Zhong, 2003).

In the developing cerebral cortex, proliferating pro-
genitor cells are mostly found in the ventricular zone
(VZ), a pseudostratified neuroepithelium lining the lateral
ventricles. During early neurogenesis, the progenitor
pool increases exponentially by symmetric divisions
generating two proliferating daughter cells (Rakic,
1995). Later, progenitors can also divide asymmetrically
into one daughter progenitor and one differentiating neu-
ron (Chenn and McConnell, 1995; Noctor et al., 2004). Fi-
nally, proliferation is terminated by symmetric divisions
that generate two differentiating neurons (Miyata et al.,
2001). Live imaging experiments in the vertebrate cortex
have revealed a correlation between the orientation of
progenitor divisions and their symmetric or asymmetric
outcome: while horizontal divisions (‘‘horizontal’’ refers
to the orientation of the mitotic spindle) are symmetric,
vertical divisions often generate two different daughter
cells (Chenn and McConnell, 1995; Haydar et al., 2003).
The cell fate determinant Numb localizes apically in di-
viding VZ progenitors and is therefore unequally distrib-
uted during vertical divisions only and might be respon-
sible for their asymmetric outcome (Zhong et al., 1996). A
similar correlation between the orientation of progenitor
cell divisions and their symmetric or asymmetric out-
come was found in the rat retina (Cayouette and Raff,
2003). Although these correlations are highly suggestive,
the consequences of misorientation of progenitor divi-
sions have not been analyzed. In fact, it is not clear
whether the precise orientation of the mitotic spindle is
important for mammalian development at all (Davidson,
1991).

In invertebrates, the molecular machinery for spindle
orientation has been discovered. At the heart of this ma-
chinery is a Drosophila protein called Inscuteable (Insc)
(Kraut et al., 1996). During early Drosophila embryogen-
esis, Insc is specifically expressed in epithelial cells of
the procephalic neurogenic ectoderm (PNE). While other
epithelial cells divide parallel to the embryo surface,
these cells rotate their mitotic spindle into an apical-
basal orientation. They divide asymmetrically into one
daughter cell that remains epithelial and another daugh-
ter cell that comes to lie underneath the epithelium and
gives rise to neurons. In insc mutants, spindle reorienta-
tion in the PNE does not occur. Conversely, insc can in-
duce spindle reorientation when expressed in epithelial
cells outside the PNE. Insc is a molecular linker that con-
nects two conserved protein complexes. It localizes api-
cally by binding to Par-3/Par-6/aPKC, a complex that is
required for epithelial polarity and is expressed in all ep-
ithelial cells irrespective of their division plane (Schober
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et al., 1999; Wodarz et al., 1999). Insc also interacts with
the GoLoco domain protein Pins (Schaefer et al., 2000;
Yu et al., 2000) and its binding partner Gai (Schaefer
et al., 2000). Pins and Gai are basolateral in epithelial
cells but are recruited to the apical side upon Insc ex-
pression. Pins can activate heterotrimeric G proteins in
a receptor-independent way, and it is thought that polar-
ized activation of heterotrimeric G proteins attracts one
of the two spindle poles and thereby induces reorienta-
tion of the mitotic spindle (Betschinger and Knoblich,
2004).

Two Pins homologs have been characterized in verte-
brates: while AGS-3 is expressed only in certain tissues,
LGN is ubiquitously expressed and shows higher se-
quence similarity with Drosophila Pins (Yu et al., 2003).
Vertebrate homologs also exist for Par-3, Par-6, and
aPKC (Ohno, 2001), but a functional vertebrate homolog
of Insc has not yet been described. Here, we show that
Inscuteable is functionally conserved in mammals and is
required for correct orientation of the mitotic spindle in
precursor cells of the rat retina. We use mammalian In-
scuteable to show that misorientation of the mitotic
spindle leads to proliferation and cell fate specification
defects in the rat retina.

Results

Inscuteable Is Conserved in Evolution

Insc sequence homologs can be found in other insect
species, like Drosophila pseudoobscura or Anopheles
gambiae (see Figure S1 in the Supplemental Data avail-
able online). Using iterative BLAST searches (see the
Supplemental Data), we could also define Insc-related
genes in honeybee, pufferfish, chicken, mouse (Katoh,
2003), rats, and humans. Although the homology is
highly significant within vertebrate and within insect
species, conservation between these two groups is gen-
erally low. The vertebrate and invertebrate groups are
connected by highly significant matches between the
honeybee and pufferfish proteins, suggesting that the
genes we identified represent a family of true orthologs.
This is further supported by the fact that sequence ho-
mology is highest in a region that includes the asymme-
try domain, a part of Insc required and sufficient for all
functions (Knoblich et al., 1999) (Figure S1D). Homology
searches indicate that this domain is part of a stretch of
armadillo repeats, which often serve as interaction plat-
forms for binding partners.

Since Drosophila Insc exists in a complex with Pins
and Gai, we analyzed the evolutionary conservation of
the heterotrimeric complex between mInsc and its bind-
ing partners. In vitro translated mInsc binds to a GST-
LGN fusion protein (Figure 1A). Conversely, in vitro trans-
lated LGN binds to bacterially expressed MBP-mInsc
but not to a truncated form lacking the first 101 amino
acids of the protein, which includes the part of mInsc ho-
mologous to the Pins binding region of Drosophila Insc
(aa 302–459). To test whether mInsc can bind LGN
in vivo, COS-7 cells were transfected with tagged ver-
sions of mInsc, LGN, and Gai1. The three proteins (but
not mInsc and Gai1 alone) can be coimmunoprecipi-
tated, suggesting that they form a protein complex anal-
ogous to the one described for Drosophila (Figure 1B).
Similar results were obtained for rat AGS-3, the second
vertebrate homolog of Pins (data not shown).

To analyze the subcellular localization of mInsc, NIH/
3T3 mouse fibroblasts were transfected with a functional
GFP-tagged form of mInsc that retains the ability to bind
to endogenous LGN (data not shown). During interphase,
mInsc-GFP is uniformly cytoplasmic (Figure 1C). In mito-
sis, however, the protein translocates to the plasma
membrane and often concentrates in the cortical area
overlying the two spindle poles. This distribution is con-
sistent with a function in spindle orientation and is similar
to the one described for LGN (Yu et al., 2003).

mInsc Expression Is Consistent with a Role

in Spindle Orientation
To determine whether Insc is expressed in the nervous
system at the time of asymmetric cell divisions, we per-
formed in situ hybridizations of whole mouse embryos
(Figure 2A). No mInsc expression was detected at E8,
but at E10.5, the gene becomes strongly expressed in
dorsal root ganglia and cranial ganglia. At E12.5, the ex-
pression pattern becomes more complex and includes
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Figure 1. Identification of Mammalian Inscuteable

(A) In vitro translated mInsc protein (lacking aa 1–20) binds to GST-

LGN but not to GST alone (left). In vitro translated LGN binds to

MBP-mInscD29 but not to MBP-mInscD101, MBP-mInscD116, or

MBP alone (right). (B) Immunoprecipitation of mInsc and LGN with

Gai1 in lysate of COS-7 cells transfected with Gai1-KT3, Flag-LGN,

and/or HA-mInsc. mInsc coimmunoprecipitates with Gai1 only in

the presence of LGN. (C) Subcellular localization of mInsc-GFP in

NIH/3T3 cells during cell cycle.
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Figure 2. Expression Pattern and Localiza-

tion of mInsc in the Developing Vertebrate

Nervous System

(A) Whole mount mInsc in situ hybridization

showing mInsc expression in cerebral cortex

(arrowhead), cranial ganglia, and dorsal root

ganglia in E10.5 mouse embryo. (B) mInsc in

situ hybridization on sagittal sections of lat-

eral ventricle at E11.5, E12.5, and E13.5 em-

bryos shows increased mInsc RNA expres-

sion in mouse developing cerebral cortex.

The ventricular surface is shown up. (C) Im-

munofluorescence staining of mInsc along

the VZ (left) and immunoreactivity after block-

ing with mInsc-MBP peptide (right). Bottom

panel shows higher magnification of boxed

region. mInsc is concentrated on the apical

surface (arrowhead). (D) mInsc protein ex-

pression in embryonic rat retina. Inscuteable

is localized to the apical side (arrowhead)

of the neuroepithelium. Progenitors in inter-

phase (D0) and mitosis (D00 and D0 00) are shown

at high magnification. (D00) mInsc localizes to

the apical side of vertically dividing cell.

(D0 00) Horizontally dividing cell with mInsc

concentrated at poles (arrowheads) and api-

cal cortex. (E) Anti-mInsc detects a single

strong band in immunoblot of mouse (M)

and rat (R) brain lysates.
tissues inside and outside the nervous system (data not
shown). mInsc expression is also detected in the devel-
oping retina and forebrain. In situ hybridization of corti-
cal sections reveals weak mInsc expression at E11.5
that increases over time and becomes strong at E13.5
(Figure 2B). Interestingly, this expression pattern corre-
lates with the fraction of vertical divisions in the develop-
ing telencephalon which peaks at E14 (Haydar et al.,
2003). To analyze the subcellular distribution of mInsc,
we generated a specific antibody against the MBP-
tagged C-terminal part of the protein that detects a sin-
gle strong band of the predicted molecular weight in
mouse brain extracts (Figure 2E). The immunoreactivity
can be competed by preincubation of the antibody with
bacterially expressed mInsc protein (data not shown). In
mouse embryo sections at E12.5, the antibody primarily
stains dorsal root and cranial ganglia, and the overall
staining pattern correlates well with the in situ pattern
in consecutive sections (data not shown). In the E12.5
developing cortex, however, immunostaining is primar-
ily observed on the apical side of the cells in the VZ (Fig-
ure 2C). This may indicate translational control of mInsc
protein expression. Such a translational control mecha-
nism has been described in Drosophila where Insc
translation is regulated by Abstrakt, an RNA-binding
protein conserved in vertebrates (Irion et al., 2004).

mInsc Is Required for Spindle Orientation
in the Rat Retina

To address the function of mInsc in mammalian nervous
system development, we used the rat retina explants
and monitored the division planes of neural progenitors
in real time. Retroviral infection allowed us to both un-
ambigously determine cleavage orientation of a single
progenitor cell and perform a clonal analysis of its prog-
eny (Cayouette and Raff, 2003). mInsc is almost com-
pletely conserved between mice and rats (Figure S1),
and the mInsc antibody specifically detects mInsc in ex-
tracts of E19 rat brains (Figure 2E). During retinal devel-
opment, mInsc protein is detected primarily on the api-
cal side of the retinal neuroepithelium (Figure 2D). In
interphase, the protein is found in the apical and basal
processes (Figure 2D0, open arrowhead). When cells
move apically, mInsc concentrates in the apical half of
the cell body (Figure 2D0, arrowhead). During mitosis,
mInsc localizes into a distinct apical crescent in some
progenitor cells that divide vertically (Figure 2D00). How-
ever, in the progenitors dividing with the mitotic spindle
oriented horizontally it localizes to the apical and also
lateral cell cortex (Figure 2D0 00). This localization is strik-
ingly similar to the Drosophila protein.

To investigate the requirement of mInsc for spindle
orientation in neural progenitors, we knocked down
mInsc by a retrovirus expressing a short hairpin RNA
corresponding to a part of the mInsc coding region.
The construct strongly reduces Insc expression in fibro-
blasts, thus demonstrating its feasibility for Insc loss-
of-function experiments (Figure 3C). E19–E20 retinal ex-
plants were infected with GFP-expressing control RNAi
or mInsc RNAi retroviruses. Orientation of progenitor di-
visions was determined by live imaging of dividing GFP-
labeled progenitor cells in retinal explant cultures. Ex-
amples of vertical and horizontal divisions are shown
in Figure 3A. In control explants, almost 50% of the pro-
genitor divisions were within 30º of the apical basal axis.
Upon mInsc RNAi, however, almost 40% of the divisions
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were within 15º to the retinal surface; however, a large
part of the divisions had an oblique orientation (Figure
3B). We conclude that mInsc is required for the correct
orientation of vertical progenitor divisions in the rat
retina.

mInsc RNAi Leads to Proliferation and Cell Fate

Specification Defects
We used mInsc RNAi to test the consequences of spin-
dle misorientation for proliferation and cell fate specifi-
cation in the rat retina. Retinal explants were infected
at day E20, and the progeny of GFP-expressing infected
cells were analyzed at P10, when proliferation in the ret-
ina has largely ceased and progenitor cells have differ-
entiated. Control infected cells rarely generate more
than four daughter cells. Upon mInsc RNAi, however,
a significant fraction of clones had five, six, or even
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Figure 3. Inscuteable Is Required for Correct Orientation of Rat Ret-

inal Progenitor Cell Divisions

(A) Representative horizontal (top) and vertical (bottom) divisions

during time-lapse recordings of dividing retinal progenitors. (B) Ori-

entation of divisions of retinal precursor cells (90º, mitotic spindle

horizontal; 180º, mitotic spindle vertical) infected with GFP express-

ing control RNAi (left) or mInsc RNAi (right) retroviruses. n = 18 for

each. (C) mInsc RNAi efficiency analyzed by immunoblotting with

mInsc antibody in lysates of NIH/3T3 cells upon infection with con-

trol and mInsc-RNAi retroviruses.
seven GFP-positive cells (Figure 4A). Such large clones
can either be generated when progenitor cells divide
into two daughter cells that both continue to proliferate
and undergo more than one round of subsequent divi-
sions or by a failure to exit the cell cycle. However, mInsc
RNAi has no effect on proliferation when applied at P2
(Figure 4B), a stage when a large proportion of retinal
progenitor cells exit the cell cycle. To test whether the
increase in proliferation is paralleled by a decrease in
differentiating cells, we analyzed the frequency of differ-
ent retinal cell types among the progeny of retrovirally
infected cells. Cell types were identified by their mor-
phology and location within the retinal cell layers. Iden-
tification of bipolar cells was confirmed by staining with
the trancription factor Islet-1, a neuronal differentiation
marker (Figure 4D). The major cell type generated at
E21 are rod photoreceptor cells (Figure 4C). Upon mInsc
RNAi, the number of photoreceptor cells is significantly
reduced while the number of later-differentiating bipolar
neurons is increased (Figure 4C). To additionally ex-
clude the possibility that the cell fate change upon
mInsc RNAi is not due to mislocalization of the cell fate
determinant Numb, we have analyzed Numb localization
in mInsc RNAi infected retinal progenitors. As shown in
Figures S2A and S2B, apical asymmetric Numb localiza-
tion is not affected by the mInsc RNAi, showing that the
cell fate change is due to mInsc disruption. Taken to-
gether, these data suggest that the change in spindle
orientation caused by the depletion of mInsc protein in-
creases the proliferative potential of retinal progenitor
cells and causes a transformation of photoreceptor cells
into bipolar neurons.

Discussion

While the orientation of cell division is important for
invertebrate development, it has been suggested that
vertebrates develop differently and rely entirely on cell
migration and diffusible morphogens (Davidson, 1991).
Although the significance of the mitotic spindle orienta-
tion for cell fate determination has been anticipated for
a long time (Martin, 1967), only more recent live imaging
techniques in the developing mammalian brain have al-
lowed clearer correlations between the orientation of
a division and the fate of the resulting daughter cells.
In the ventricular zone of the developing ferret (Chenn
and McConnell, 1995) or the developing mouse brain
(Haydar et al., 2003) as well as in the rat retina (Cayouette
and Raff, 2003), progenitor divisions along the vertical
axis are more likely to generate two different daughter
cells, while parallel divisions are usually symmetric.
Whether this is just a correlation or actually reflects a de-
termining role of spindle orientation for daughter cell
specification was unclear. In this study, we use the
mammalian homolog of Insc as a tool to influence spin-
dle orientation in vertebrates. We show that mInsc de-
pletion ablates vertical mitotic spindle orientations in
retinal progenitors and leads to defects in cell fate spec-
ification and proliferation. Our results demonstrate that
spindle orientation not only predicts but actually deter-
mines the fate of the two daughter cells.

We favor a model in which vertically oriented retinal
progenitor divisions are important for generating differ-
entiating daughter cells at the expense of proliferating



Mouse Inscuteable and Mitotic Spindle Orientation
543
A

In
te

rn
eu

ro
n

la
ye

r
Ph

ot
or

ec
ep

to
r

la
ye

r

DC

B

0
10
20
30
40
50
60
70
80

1 2 3 4 ≥5
0

10

20

30

40

50

60

1 2 3 4 5 6 ≥7

0

20

40

60

80

100

PR Am B Mu

*

*

* * *

Number of cells / clone Number of cells / clone

%
 o

f c
lo

ne
s

%
 o

f c
lo

ne
s

%
 to

ta
l i

nf
ec

te
d 

ce
lls

control
mInsc-RNAi

control
mInsc-RNAi

control
mInsc-RNAi

Figure 4. Clonal and Lineage Analysis of Rat

Retinal Cells upon mInsc RNAi

(A) Rat retinal progenitor cells infected at E20

with mInsc RNAi retroviruses give rise to

larger clones. (B) Infection of retinal progeni-

tors at P2 results in no change in clone size

upon mInsc RNAi. (C) Lineage analysis of

retinal explants infected with mInsc RNAi

and GFP-control retroviruses at E20 reveals

a reduction in photoreceptor number and

increase in the percentage of bipolar cells in

the absence of Inscuteable. PR, photorecep-

tor cells; Am, amacrine cells; B, bipolar

neurons; Mu, Müller glia. In all panels, data

represent the average of three independent

experiments analyzed for each retrovirus.

Error bars represent standard deviations of

three independent experiments. Asterisks (*)

mark statistically significant differences (Stu-

dent’s t test: p < 0.05). (D) Example retinal

explant infected with the mInsc RNAi retrovi-

rus stained at P10 for Islet-1 (red). GFP is in

green. Clone containing three photoreceptor

cells (empty arrowheads) and one bipolar

cell (filled arrowhead).
progenitors. Upon mInsc RNAi, cells that would nor-
mally differentiate into photoreceptor cells change their
fate and remain proliferating progenitor cells instead.
When they differentiate at later stages, they are more
likely to adopt the later bipolar neuron fate. In contrast
to bipolar cells, the number of Müller glia is not in-
creased, although they also differentiate at a late stage.
Müller glia are generated in small numbers and formally,
our data suggest that their number is regulated indepen-
dently of progenitor pool size. Although this model pro-
vides an attractive explanation of our data, we cannot
exclude that the clone size and cell fate phenotypes
are actually unlinked. For example, progenitor cells
that normally generate one bipolar cell via an asymmet-
ric division might be forced to divide symmetrically upon
mInsc knock-down and thereby give rise to two bipolar
cells instead.

How does mInsc orient mitotic spindles? In Drosoph-
ila, Insc is thought to act by polarizing G protein signal-
ing and thereby attracting astral microtubules to the
apical cell cortex. In vertebrates, overexpression of het-
erotrimeric G proteins causes oscillations of the mitotic
spindle (Du and Macara, 2004), suggesting that G pro-
tein activity—like in flies—regulates the attachment of
astral microtubules to the cell cortex. The mammalian
Pins homolog LGN is present in the mouse ventricular
zone (Yu et al., 2003) and might activate G proteins. Al-
though the existing LGN antibodies did not allow us to
determine its subcellular localization in mouse brain
(data not shown), mInsc might act by recruiting LGN to
the apical and lateral cell cortex, resulting in polarized
G protein activation. This model predicts that it is the
asymmetric distribution of mInsc in vertically dividing
progenitors rather than its presence that influences
spindle orientation. Consistently, mInsc overexpressed
in fibroblasts is without consequence (data not shown).

While this report was under revision, the identification
of mouse Inscuteable has been described indepen-
dently (Lechler and Fuchs, 2005). When expressed as
a GFP fusion protein, mInsc colocalizes with LGN and
Par-3 in mitotic basal cells of developing mouse epider-
mis. These cells divide asymmetrically and give rise to
basal and suprabasal cells with mitotic spindles perpen-
dicular to the basement membrane. The same mecha-
nism of spindle reorientation could therefore lead to
specification of different cell types in the developing ret-
ina and to stratification in the epidermis.

The identification of mInsc provides a unique tool to
analyze the importance of oriented divisions in various
other vertebrate tissues. For example, it was proposed
that adult mammalian neural stem cells divide asymmet-
rically along the apical basal axis (Johansson et al.,
1999). It will be interesting to test whether spindle orien-
tation is essential for asymmetric stem cell divisions as
well. If so, this will be an important factor in exploiting
the regenerative capacity of these cells.

Experimental Procedures

Cell Culture

NIH/3T3 and COS-7 cells were cultured under standard conditions.

Retroviral-mediated gene transfer was performed by using the

Phoenix packaging cell line as described previously (Kondo and

Raff, 2000).

Retinal Explant Culture

Timed pregnant Sprague-Dawley rats were purchased from Vienna

Medical University. E19–E20 and P2 rat retinal explants were pre-

pared and infected with retroviruses as previously described

(Cayouette et al., 2001). For clonal analysis, the explants were in-

fected at E20 or P2 and kept 12 days in culture. Clones derived by

each infected retinal progenitor cell were scored and analyzed for

the cell number and cell composition on cryosections of fixed retinal

explants. Cells were identified on the basis of their morphology and

position within the retina.

Plasmid Constructs

DNA oligos for shRNA silencing were designed by RNAi oligo re-

triever (http://katahdin.cshl.org/RNAi/html/rnai.html). CTACAACCC

CACCTTCCTTGGCTATGATGAAGCTTGATCATAGTCAGGGGAGGT

GGGGTTGTAGTCCTTTTTT as Oligo A and GATCAAAAAAGGACTA

CAACCCCACCTCCCCTGACTATGATCAAGCTTCATCATAGCCAAG

GAAGGTGGGGTTGTAGC as OligoB were used for the mInsc-RNAi

(targeting the Inscuteable region conserved in mouse and rat In-

scuteable). Oligonucleotides were cloned into pSHAG vector (Invi-

trogen), and the U6-shRNA cassette was transferred to the Gateway

http://katahdin.cshl.org/RNAi/html/rnai.html
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compatible retroviral vector pMSCV-PGK-GFP (provided by Beug

H.). Controls were empty pBird retrovirus (Tang et al., 2001) (Figures

4A and 4C) or pMSCV-PGK-GFP retrovirus containing firefly lucifer-

ase RNAi oligos (Paddison et al., 2002) (Figures 3B, 3C, and 4B). The

mInsc-EGFP retrovirus was constructed by cloning the 1.7 kb mInsc

cDNA into the pLEGFP-N1 vector (Clontech). GST-LGN was a gift

from Ian G. Macara. Human Gai1, mInsc, and human LGN were

cloned into pcDNA3.1 vectors with KT3 (PPEPET), HA, Flag, or

myc epitope tags, respectively, as described (Kimple et al., 2004).

Time-Lapse Imaging

A Zeiss 200M inverted microscope equipped with a custom-made

motorized xyz stage, CO2 controled incubator (37ºC, 5% CO2), and

253 objective was used for time-lapse imaging with a CCD video

camera (Proper Scientific). Images were aquired on multiple posi-

tions every 5 min for 24–48 hr. Time-lapse experiments were ana-

lyzed using Metamorph software. Each time-stack of images, repre-

senting one position, was reconstructed into a stack. The angle of

the mitotic spindle was determined by drawing a line along the

axis of the mitotic spindle and a line along the migrational pathway

of cells prior to division. The resulting data were analyzed using

Origin 6.1 (OriginLab).

Immunofluorescence and Antibodies

Mouse embryos were dissected in cold PBS and fixed in 4% parafor-

maldehyde, frozen in O.C.T compound (Sakura), and stored at

270ºC. Retinal explants were fixed in 4% paraformaldehyde or

10% trichloroacetic acid (TCA) and frozen as described before

(Cayouette et al., 2001). Frozen tissue sections of 10–15 mm were

used for in situ and antibody stainings. Rabbit anti-mouse Inscute-

able antibody was generated against an MBP fusion of mInsc lack-

ing amino acids 1–198 and affinity purified against the antigen. For

Figures 2D–2D0 00, a tyramide signal amplification kit (TSATM kit #12,

Molecular Probes) was used after incubation with primary antibody.

Anti-Islet-1 (T. Jessell) was obtained from the Developmental Stud-

ies Hybridoma Bank. Goat polyclonal NUMB and rabbit polyclonal

GFP antibody were purchased from Abcam. Vectashield with DAPI

(Vector Labs) was used to visualize DNA and mount the sections. Im-

ages were recorded on a Zeiss LSM510 confocal microscope and

processed with Adobe Photoshop.

In Situ Hybridization

Whole-mount RNA in situ hybridization was performed as described

in Wilkinson and Nieto (1993), and in situs on O.C.T. (Sakura) sec-

tions were performed as described previously (Neubuser et al.,

1995), with minor modifications. A DIG-labeling kit (Roche) was

used to synthesize RNA probes that were detected with alkaline

phosphatase-coupled anti-DIG antibodies by using BM purple

(Boehringer Mannheim). 1.7 kb of mInsc cDNA in pBluescript II

KS+ was used as a template.

In Vitro and Immunoprecipitation Assays

MBP- and GST-fusion proteins were expressed under standard con-

ditions and immobilized onto amylose or gluthation linked agarose

beads (Sigma), respectively. For binding and washing, binding

buffer (PBS/0.1% NP40) was used. In vitro translations were per-

formed using the TnT Coupled Reticulocyte Lysate System

(Promega). 20 ml of fusion protein coupled to the respective beads

were mixed with 100 ml binding buffer and 20 ml in vitro translated

35S-methionine containing protein, incubated for 2 hr at 4ºC, and

washed for 30 min with the binding buffer. Transfections of COS-7

cells, immunoprecipitations, and Western blots were performed as

previously described (Kimple et al., 2004).

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/48/4/539/DC1/.
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