5,147 research outputs found
Methane measurement by the Pioneer Venus large probe neutral mass spectrometer
The Pioneer Venus Large Probe Mass Spectrometer detected a large quantity of methane as it descended below 20 km in the atmosphere of Venus. Terrestrial methane and Xe-136, both originating in the same container and flowing through the same plumbing, were deliberately released inside the mass spectrometer for instrumental reasons. However, the Xe-136 did not exhibit behavior similar to methane during Venus entry, nor did CH4 in laboratory simulations. The CH4 was deuterium poor compared to Venus water and hydrogen. While the inlet to the mass spectrometer was clogged with sulfuric acid droplets, significant deuteration of CH4 and its H2 progeny was observed. Since the only source of deuterium identifiable was water from sulfuric acid, we have concluded that we should correct the HDO/H2O ratio in Venus water from 3.2 x 10(exp -2) to (5 plus or minus 0.7) x 10(exp -2). When the probe was in the lower atmosphere, transfer of deuterium from Venus HDO and HD to CH4 can account quantitatively for the deficiencies recorded in HDO and HD below 10 km, and consequently, the mysterious gradients in water vapor and hydrogen mixing ratios we have reported. The revision in the D/H ratio reduces the mixing ratio of water vapor (and H2) reported previously by a factor of 3.2/5. We are not yet able to say whether the methane detected was atmospheric or an instrumental artifact. If it was atmospheric, its release must have been episodic and highly localized. Otherwise, the large D/H ratio in Venus water and hydrogen could not be maintained
Evaluation of experimental epoxy monomers
Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials. New resins are being formulated in an effort to understand basic polymer behavior and to develop improved resins. Some polymer/curing agent combinations that could be useful are difficult to process. In the area of epoxies, a major problem is that some components have physical properties which make them difficult to utilize as matrix resins. A previous study showed that the use of ultrasonic energy can be advantageous in the mixing of curing agents into a standard epoxy resin, such as MY 720 (Ciba-Geigy designation). This work is expanded to include three novel epoxides
Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows
A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion
Recommended from our members
Storyline description of Southern Hemisphere midlatitude circulation and precipitation response to greenhouse gas forcing
As evidence of climate change strengthens, knowledge of its regional implications becomes an urgent need for decision making. Current understanding of regional precipitation changes is substantially limited by our understanding of the atmospheric circulation response to climate change, which to a high degree remains uncertain. This uncertainty is reflected in the wide spread in atmospheric circulation changes projected in multimodel ensembles, which cannot be directly interpreted in a probabilistic sense. The uncertainty can instead be represented by studying a discrete set of physically plausible storylines of atmospheric circulation changes. By mining CMIP5 model output, here we take this broader perspective and develop storylines for Southern Hemisphere (SH) midlatitude circulation changes, conditioned on the degree of global-mean warming, based on the climate responses of two remote drivers: the enhanced warming of the tropical upper troposphere and the strengthening of the stratospheric polar vortex. For the three continental domains in the SH, we analyse the precipitation changes under each storyline. To allow comparison with previous studies, we also link both circulation and precipitation changes with those of the Southern Annular Mode. Our results show that the response to tropical warming leads to a strengthening of the midlatitude westerly winds, whilst the response to a delayed breakdown (for DJF) or strengthening (for JJA) of the stratospheric vortex leads to a poleward shift of the westerly winds and the storm tracks. However, the circulation response is not zonally symmetric and the regional precipitation storylines for South America, South Africa, South Australia and New Zealand exhibit quite specific dependencies on the two remote drivers, which are not well represented by changes in the Southern Annular Mode
Manipulating target size influences perceptions of success when learning a dart-throwing skill but does not impact retention
Positive feedback or experiences of success during skill acquisition have been shown to benefit motor skill learning. In this study, our aim was to manipulate learners’ success perceptions through a minor adjustment to goal criterion (target size) in a dart-throwing task. Two groups of novice participants practiced throwing at a large (easy) or a small (difficult) target from the same distance. In reference to the origin/centre of the target, the practice targets were alike in objective difficulty and indeed participants in both groups were not different in their objective practice performance (i.e. radial error from the centre). Although the groups experienced markedly different success rates, with the large target group experiencing more hits and reporting greater confidence (or self-efficacy) than the small target group, these practice effects were not carried into longer-term retention, which was assessed after a one-week delay. For success perceptions to moderate or benefit motor learning, we argue that unambiguous indicators of positive performance are necessary, especially for tasks where intrinsic feedback about objective error is salient
Cremmer-Gervais r-matrices and the Cherednik Algebras of type GL2
We give an intepretation of the Cremmer-Gervais r-matrices for sl(n) in terms
of actions of elements in the rational and trigonometric Cherednik algebras of
type GL2 on certain subspaces of their polynomial representations. This is used
to compute the nilpotency index of the Jordanian r-matrices, thus answering a
question of Gerstenhaber and Giaquinto. We also give an interpretation of the
Cremmer-Gervais quantization in terms of the corresponding double affine Hecke
algebra.Comment: 6 page
Principles of Control for Decoherence-Free Subsystems
Decoherence-Free Subsystems (DFS) are a powerful means of protecting quantum
information against noise with known symmetry properties. Although Hamiltonians
theoretically exist that can implement a universal set of logic gates on DFS
encoded qubits without ever leaving the protected subsystem, the natural
Hamiltonians that are available in specific implementations do not necessarily
have this property. Here we describe some of the principles that can be used in
such cases to operate on encoded qubits without losing the protection offered
by the DFS. In particular, we show how dynamical decoupling can be used to
control decoherence during the unavoidable excursions outside of the DFS. By
means of cumulant expansions, we show how the fidelity of quantum gates
implemented by this method on a simple two-physical-qubit DFS depends on the
correlation time of the noise responsible for decoherence. We further show by
means of numerical simulations how our previously introduced "strongly
modulating pulses" for NMR quantum information processing can permit
high-fidelity operations on multiple DFS encoded qubits in practice, provided
that the rate at which the system can be modulated is fast compared to the
correlation time of the noise. The principles thereby illustrated are expected
to be broadly applicable to many implementations of quantum information
processors based on DFS encoded qubits.Comment: 12 pages, 7 figure
Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data
Herein the transient lunar phenomena (TLP) report database is subjected to a
discriminating statistical filter robust against sites of spurious reports, and
produces a restricted sample that may be largely reliable. This subset is
highly correlated geographically with the catalog of outgassing events seen by
the Apollo 15, 16 and Lunar Prospector alpha-particle spectrometers for
episodic Rn-222 gas release. Both this robust TLP sample and even the larger,
unfiltered sample are highly correlated with the boundary between mare and
highlands, as are both deep and shallow moonquakes, as well as Po-210, a
long-lived product of Rn-222 decay and a further tracer of outgassing. This
offers another significant correlation relating TLPs and outgassing, and may
tie some of this activity to sagging mare basalt plains (perhaps mascons).
Additionally, low-level but likely significant TLP activity is connected to
recent, major impact craters (while moonquakes are not), which may indicate the
effects of cracks caused by the impacts, or perhaps avalanches, allowing
release of gas. The majority of TLP (and Rn-222) activity, however, is confined
to one site that produced much of the basalt in the Procellarum Terrane, and it
seems plausible that this TLP activity may be tied to residual outgassing from
the formerly largest volcanic ffusion sites from the deep lunar interior. With
the coming in the next few years of robotic spacecraft followed by human
exploration, the study of TLPs and outgassing is both promising and imperiled.
We will have an unprecedented pportunity to study lunar outgassing, but will
also deal with a greater burden of anthropogenic lunar gas than ever produced.
There is a pressing need to study lunar atmosphere and its sources while still
pristine. [Abstract abridged.]Comment: 35 pages, 3 figures, submitted to Icarus. Other papers in series
found at http://www.astro.columbia.edu/~arlin/TLP
Machine Learning for Understanding and Predicting Injuries in Football
Attempts to better understand the relationship between training and competition load and injury in football are essential for helping to understand adaptation to training programmes, assessing fatigue and recovery, and minimising the risk of injury and illness. To this end, technological advancements have enabled the collection of multiple points of data for use in analysis and injury prediction. The full breadth of available data has, however, only recently begun to be explored using suitable statistical methods. Advances in automatic and interactive data analysis with the help of machine learning are now being used to better establish the intricacies of the player load and injury relationship. In this article, we examine this recent research, describing the analyses and algorithms used, reporting the key findings, and comparing model fit. To date, the vast array of variables used in analysis as proxy indicators of player load, alongside differences in approach to key aspects of data treatment—such as response to data imbalance, model fitting, and a lack of multi-season data—limit a systematic evaluation of findings and the drawing of a unified conclusion. If, however, the limitations of current studies can be addressed, machine learning has much to offer the field and could in future provide solutions to the training load and injury paradox through enhanced and systematic analysis of athlete data
- …