3,766 research outputs found
Trajectories of psychological distress among Chinese women diagnosed with breast cancer
Background: The distinct trajectories of psychological distress over the first year of the diagnosis with breast cancer (BC) and its determinants have not been explored. Methods: 285 of 405 Chinese women receiving surgery for BC were assessed at 5-day, 1-month, 4-month, and 8-month post-surgery on measures of psychological distress, optimism, treatment decision-making (TDM) difficulties, satisfaction with treatment outcome, satisfaction with medical consultation, and physical symptom distress. Latent growth mixture modelling identified trajectories of psychological response to BC. Multinominal logistic regression compared TDM difficulties, satisfaction with treatment outcome, satisfaction with medical consultation, optimism, and physical symptom distress, by distress pattern adjusted for age, education, employment status, and stage of disease. Results: Four distinct trajectories of distress were identified, namely, resilience (66%), chronic distress (15%), recovered (12%), and delayed-recovery (7%). TDM difficulties, optimism, satisfaction with consultation, and physical symptom distress predicted distress trajectories. Psychologically resilient women had less physical symptom distress at early post-surgery compared with women with other distress patterns. Compared with the resilient group, women in the recovered or chronic distress groups experienced greater TDM difficulties, whereas women in the delayed-recovery group reported greater dissatisfaction with the initial medical consultation. Women in the chronic distress group reported greater pessimistic outlook. Conclusion: Optimism and better early post-operative treatment outcomes predicted resilience to distress. Pre-operative interventions helping women to establish a realistic expectation of treatment outcome may minimize disappointment with treatment outcome and resultant distress, whereas post-operative rehabilitation should focus on symptom management. © 2009 John Wiley & Sons, Ltd.postprin
Long term time variability of cosmic rays and possible relevance to the development of life on Earth
An analysis is made of the manner in which the cosmic ray intensity at Earth
has varied over its existence and its possible relevance to both the origin and
the evolution of life. Much of the analysis relates to the 'high energy' cosmic
rays () and their variability due to the changing
proximity of the solar system to supernova remnants which are generally
believed to be responsible for most cosmic rays up to PeV energies. It is
pointed out that, on a statistical basis, there will have been considerable
variations in the likely 100 My between the Earth's biosphere reaching
reasonable stability and the onset of very elementary life. Interestingly,
there is the increasingly strong possibility that PeV cosmic rays are
responsible for the initiation of terrestrial lightning strokes and the
possibility arises of considerable increases in the frequency of lightnings and
thereby the formation of some of the complex molecules which are the 'building
blocks of life'. Attention is also given to the well known generation of the
oxides of nitrogen by lightning strokes which are poisonous to animal life but
helpful to plant growth; here, too, the violent swings of cosmic ray
intensities may have had relevance to evolutionary changes. A particular
variant of the cosmic ray acceleration model, put forward by us, predicts an
increase in lightning rate in the past and this has been sought in Korean
historical records. Finally, the time dependence of the overall cosmic ray
intensity, which manifests itself mainly at sub-10 GeV energies, has been
examined. The relevance of cosmic rays to the 'global electrical circuit'
points to the importance of this concept.Comment: 18 pages, 5 figures, accepted by 'Surveys in Geophysics
Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?
Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified
Scaling Analysis of Multipulsed Turbidity Current Evolution With Application to Turbidite Interpretation
Deposits of submarine turbidity currents, turbidites, commonly exhibit upward‐fining grain size profiles reflecting deposition under waning flow conditions. However, more complex grading patterns such as multiple cycles of inverse‐to‐normal grading are also seen and interpreted as recording deposition under cycles of waxing and waning flow. Such flows are termed multipulsed turbidity currents, and their deposits pulsed or multipulsed turbidites. Pulsing may arise at flow initiation, or following downstream flow combination. Prior work has shown that individual pulses within multipulsed flows are advected forward and merge, such that complex longitudinal velocity profiles eventually become monotonically varying, although transition length scales in natural settings could not be predicted. Here we detail the first high frequency spatial (vertical, streamwise) and temporal measurements of flow velocity and density distribution in multipulsed gravity current experiments. The data support both a process explanation of pulse merging and a phase‐space analysis of transition length scales; in prototype systems, the point of merging corresponds to the transition in any deposit from multipulsed to normally graded turbidites. The scaling analysis is limited to quasi‐horizontal natural settings in which multipulsed flows are generated by sequences of relatively short sediment failures (10 km) sequences of breaches or where pulsing arises from combination at confluences of single‐pulsed flows, such flows may be responsible for the pulsing signatures seen in some distal turbidites, >100 km from source
Randomized controlled trial of a good practice approach to treatment of childhood obesity in Malaysia: Malaysian childhood obesity treatment trial (MASCOT)
Context. Few randomized controlled trials (RCTs) of interventions for the treatment of childhood obesity have taken place outside the Western world. Aim. To test whether a good practice intervention for the treatment of childhood obesity would have a greater impact on weight status and other outcomes than a control condition in Kuala Lumpur, Malaysia. Methods. Assessor-blinded RCT of a treatment intervention in 107 obese 7- to 11-year olds. The intervention was relatively low intensity (8 hours contact over 26 weeks, group based), aiming to change child sedentary behavior, physical activity, and diet using behavior change counselling. Outcomes were measured at baseline and six months after the start of the intervention. Primary outcome was BMI z-score, other outcomes were weight change, health-related quality of life (Peds QL), objectively measured physical activity and sedentary behavior (Actigraph accelerometry over 5 days). Results. The intervention had no significant effect on BMI z score relative to control. Weight gain was reduced significantly in the intervention group compared to the control group (+1.5 kg vs. +3.5 kg, respectively, t-test p < 0.01). Changes in health-related quality of life and objectively measured physical activity and sedentary behavior favored the intervention group. Conclusions. Treatment was associated with reduced rate of weight gain, and improvements in physical activity and quality of life. More substantial benefits may require longer term and more intensive interventions which aim for more substantive lifestyle changes
Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.
Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche
Determinants of medication adherence to antihypertensive medications among a Chinese population using Morisky medication adherence scale
<b>Background and objectives</b> Poor adherence to medications is one of the major public health challenges. Only one-third of the population reported successful control of blood pressure, mostly caused by poor drug adherence. However, there are relatively few reports studying the adherence levels and their associated factors among Chinese patients. This study aimed to study the adherence profiles and the factors associated with antihypertensive drug adherence among Chinese patients.<p></p>
<b>Methods</b> A cross-sectional study was conducted in an outpatient clinic located in the New Territories Region of Hong Kong. Adult patients who were currently taking at least one antihypertensive drug were invited to complete a self-administered questionnaire, consisting of basic socio-demographic profile, self-perceived health status, and self-reported medication adherence. The outcome measure was the Morisky Medication Adherence Scale (MMAS-8). Good adherence was defined as MMAS scores greater than 6 points (out of a total score of 8 points).<p></p>
<b>Results</b> From 1114 patients, 725 (65.1%) had good adherence to antihypertensive agents. Binary logistic regression analysis was conducted. Younger age, shorter duration of antihypertensive agents used, job status being employed, and poor or very poor self-perceived health status were negatively associated with drug adherence.<p></p>
<b>Conclusion</b> This study reported a high proportion of poor medication adherence among hypertensive subjects. Patients with factors associated with poor adherence should be more closely monitored to optimize their drug taking behavior
miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity
miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity
Measuring Dissociation Rate Constants of Protein Complexes through Subunit Exchange: Experimental Design and Theoretical Modeling
Protein complexes are dynamic macromolecules that constantly dissociate into, and simultaneously are assembled from, free subunits. Dissociation rate constants, koff, provide structural and functional information on protein complexes. However, because all existing methods for measuring koff require high-quality purification and specific modifications of protein complexes, dissociation kinetics has only been studied for a small set of model complexes. Here, we propose a new method, called Metabolically-labeled Affinity-tagged Subunit Exchange (MASE), to measure koff using metabolic stable isotope labeling, affinity purification and mass spectrometry. MASE is based on a subunit exchange process between an unlabeled affinity-tagged variant and a metabolically-labeled untagged variant of a complex. The subunit exchange process was modeled theoretically for a heterodimeric complex. The results showed that koff determines, and hence can be estimated from, the observed rate of subunit exchange. This study provided the theoretical foundation for future experiments that can validate and apply the MASE method
- …