1,876 research outputs found

    Goodbye Betty Brown : March Song

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1529/thumbnail.jp

    He\u27s A College Boy : March Song

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2877/thumbnail.jp

    New directional archeomagnetic data of burned cave sediments from Switzerland and geomagnetic field variations in Central Europe

    Get PDF
    This paper presents new directional archeomagnetic data from nine Meso-/Neolithic fireplaces, sampled in a cave shelter, at Arconciel, in western Switzerland. Rock magnetic measurements indicate a homogenous magnetic mineralogy in all fireplaces, with magnetite as the main magnetic carrier. The remanent magnetization is stable and generally shows one characteristic directional component. Nine new directions, which were obtained from Arconciel, are combined with 356 other archeomagnetic data from a circular area with a radius of 700km around this site, to obtain a penalized least square spline fit for the past 9000yr. We found in general good agreement with other local compilations, such as the Balkan curve, the regional SCHA.DIF.8k model and with lake sediments from UK, Fennoscandia and Switzerland. Nevertheless, a time lag of several centuries is observed for a declination maximum between the archeomagnetic spline fit and the other European data records around 5900BC. This time lag is also observed in the Swiss lake sediment record; therefore we interpret this shift as a local feature of the Earth's magnetic fiel

    Application of the penalty coupling method for the analysis of blood vessels

    Get PDF
    Due to the significant health and economic impact of blood vessel diseases on modern society, its analysis is becoming of increasing importance for the medical sciences. The complexity of the vascular system, its dynamics and material characteristics all make it an ideal candidate for analysis through fluid structure interaction (FSI) simulations. FSI is a relatively new approach in numerical analysis and enables the multi-physical analysis of problems, yielding a higher accuracy of results than could be possible when using a single physics code to analyse the same category of problems. This paper introduces the concepts behind the Arbitrary Lagrangian Eulerian (ALE) formulation using the penalty coupling method. It moves on to present a validation case and compares it to available simulation results from the literature using a different FSI method. Results were found to correspond well to the comparison case as well as basic theory

    Crystallographic—magnetic correlations in single-crystal haemo-ilmenite: new evidence for lamellar magnetism

    Get PDF
    17 single crystals were identified by electron backscatter diffraction (EBSD) and isolated from coarse massive haemo-ilmenite ore from South Rogaland, Norway. These were studied using the EBSD results, natural remanent magnetization (NRM), and anisotropy of magnetic susceptibility (AMS), to gain a better understanding of angular relationships between crystallographic axes and magnetic properties of haemo-ilmenite in relation to lamellar magnetism. Electron microprobe analyses gave the following average end-member compositions for ilmenite host: 21.1 per cent MgTiO3, 73.7 FeTiO3, 0.5 MnTiO3, 4.3 Fe2O3, 0.2 Cr2O3 and 0.3 V2O3; and for the coarsest (∼3 μm) haematite exsolution lamellae: 3.5 MgTiO3, 22.4 FeTiO3, 71.4 Fe2O3, 1.6 Cr2O3, 1.0 V2O3 and 0.1 Al2O3, making this sample the most Mg- and Cr-rich haemo-ilmenite studied in the province, but with similar element fractionations between the coexisting phases. TEM work on similar material suggests the presence of much thinner exsolution down to 1-2 nm. The EBSD, NRM and AMS results from 12 out of 17 crystals indicate a good agreement between the orientation of crystallographic axes, NRM direction and principal axes of the magnetic susceptibility ellipsoid, with the NRM located in the (0001) basal plane [NRM ∧ (0001) < 6.5°] and the crystallographic c axis quasi-parallel to the minimum axis of the susceptibility ellipsoid [c∧ k3 < 13.5°]. In addition, in 10 of these 12 crystals, the remanent magnetization vector is parallel or nearly parallel to the positive direction of a crystallographic a axis [NRM ∧a < 20°], hence parallel to a principal magnetic moment direction in haematite as determined by Besser, and not parallel to the spin-canted direction of end-member haematite. This is consistent with a basic property of lamellar magnetism, where the magnetic moment is parallel to the principal moments (sublattice magnetization directions) in haematite. Relationships in three additional crystals with NRM ∧a= 22°-33°, only two with good agreement, can be interpreted as consistent with having a magnetic vector quasi-parallel to the spin-canted direction of haematit

    Indirect evaluation of Mars Gravity Model 2011 using a replication experiment on Earth

    Get PDF
    Curtin University’s Mars Gravity Model 2011 (MGM2011) is a high-resolution composite set of gravity field functionals that uses topography-implied gravity effects at medium- and short-scales (~125 km to ~3 km) to augment the space-collected MRO110B2 gravity model. Ground-truth gravity observations that could be used for direct validation of MGM2011 are not available on Mars’s surface. To indirectly evaluate MGM2011 and its modelling principles, an as-close-as-possible replication of the MGM2011 modelling approach was performed on Earth as the planetary body with most detailed gravity field knowledge available. Comparisons among six ground-truth data sets (gravity disturbances, quasigeoid undulations and vertical deflections) and the MGM2011-replication over Europe and North America show unanimously that topography-implied gravity information improves upon space-collected gravity models over areas with rugged terrain. The improvements are ~55% and ~67% for gravity disturbances, ~12% and ~47% for quasigeoid undulations, and ~30% to ~50% for vertical deflections. Given that the correlation between space-collected gravity and topography is higher for Mars than Earth at spatial scales of a few 100 km, topography-implied gravity effects are more dominant on Mars. It is therefore reasonable to infer that the MGM2011 modelling approach is suitable, offering an improvement over space-collected Martian gravity field models

    CONSTRUCTAL DESIGN OF FINS IN COOLED CAVITIES BY NON-NEWTONIAN FLUIDS

    Get PDF
    The present work investigates the Construtal Design of fins inserted in cavities submitted to mixed convection by non-Newtonian fluids. The objective is to obtain the optimum aspect ratio for the fin considering different flow conditions and variations in the rheological parameters of the fluid. The phenomena of flow and heat transfer are modeled by mass balance, momentum and energy equations, and by the generalized Newtonian liquid constitutive equation. The viscosity is modeled as that of a pseudoplastic fluid, using the Carreau function. The optimization problem consists in maximizing heat transfer from the fin using the average Nusselt number. The investigated project variable is the aspect ratio between the edges of the rectangular plane fin profile. The restrictions are the volume of the cavity and the fin. The results are obtained numerically using a finite volume code and a two-dimensional geometry, through exhaustive searching. The results show that the fin geometry influences the maximum Nusselt number mainly for the cases with high Reynolds and Rayleigh numbers, such as was shown in previous studies. The results show that the fin geometry influences the maximum Nusselt number mainly for the cases with high Reynolds and Rayleigh numbers, as was shown in previous studies. It was also found that the Nusselt number increases as the increase in flow intensity, represented by the parameter p, and that the result of the maximum Nusselt number does not change monotonically with the non-Newtonian dimensionless viscosity and with the flow index, showing that the pseudoplasticity of the fluid implies optimal configurations very different from those predicted for Newtonian fluids
    corecore