13 research outputs found

    Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8

    Get PDF
    The thermal dissociation of octafluorocyclobutane, c-C4F8, was studied in shock waves over the range 1150-2300 K by recording UV absorption signals of CF2. It was found that the primary reaction nearly exclusively produces 2 C2F4 which afterwards decomposes to 4 CF2. A primary reaction leading to CF2 + C3F6 is not detected (an upper limit to the yield of the latter channel was found to be about 10 percent). The temperature range of earlier single pulse shock wave experiments was extended. The reaction was shown to be close to its high pressure limit. Combining high and low temperature results leads to a rate constant for the primary dissociation of k1 = 1015.97 exp(-310.5 kJ mol-1/RT) s-1 in the range 630-1330 K, over which k1 varies over nearly 14 orders of magnitude. Calculations of the energetics of the reaction pathway and the rate constants support the conclusions from the experiments. Also they shed light on the role of the 1,4-biradical CF2CF2CF2CF2 as an intermediate of the reaction.Fil: Cobos, Carlos Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Hintzer, K.. Dyneon Gmbh; AlemaniaFil: Sölter, L.. Universität Göttingen; AlemaniaFil: Tellbach, E.. Universität Göttingen; AlemaniaFil: Thaler, A.. Dyneon Gmbh; AlemaniaFil: Troe, J.. Universität Göttingen; Alemania. Max-Planck-Institut fu¨r biophysikalische Chemie; Alemani

    Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8

    Get PDF
    The thermal dissociation of octafluorocyclobutane, c-C4F8, was studied in shock waves over the range 1150-2300 K by recording UV absorption signals of CF2. It was found that the primary reaction nearly exclusively produces 2 C2F4 which afterwards decomposes to 4 CF2. A primary reaction leading to CF2 + C3F6 is not detected (an upper limit to the yield of the latter channel was found to be about 10 percent). The temperature range of earlier single pulse shock wave experiments was extended. The reaction was shown to be close to its high pressure limit. Combining high and low temperature results leads to a rate constant for the primary dissociation of k1 = 1015.97 exp(-310.5 kJ mol-1/RT) s-1 in the range 630-1330 K, over which k1 varies over nearly 14 orders of magnitude. Calculations of the energetics of the reaction pathway and the rate constants support the conclusions from the experiments. Also they shed light on the role of the 1,4-biradical CF2CF2CF2CF2 as an intermediate of the reaction.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Shock wave study and theoretical modeling of the thermal decomposition of c-C4F8

    Get PDF
    The thermal dissociation of octafluorocyclobutane, c-C4F8, was studied in shock waves over the range 1150-2300 K by recording UV absorption signals of CF2. It was found that the primary reaction nearly exclusively produces 2 C2F4 which afterwards decomposes to 4 CF2. A primary reaction leading to CF2 + C3F6 is not detected (an upper limit to the yield of the latter channel was found to be about 10 percent). The temperature range of earlier single pulse shock wave experiments was extended. The reaction was shown to be close to its high pressure limit. Combining high and low temperature results leads to a rate constant for the primary dissociation of k1 = 1015.97 exp(-310.5 kJ mol-1/RT) s-1 in the range 630-1330 K, over which k1 varies over nearly 14 orders of magnitude. Calculations of the energetics of the reaction pathway and the rate constants support the conclusions from the experiments. Also they shed light on the role of the 1,4-biradical CF2CF2CF2CF2 as an intermediate of the reaction.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Shock wave and modelling study of the dissociation pathways of (C2F5)3N

    Get PDF
    The thermal decomposition of perfluorotriethylamine, (C2F5)3N, was investigated in shock waves by monitoring the formation of CF2. Experiments were performed over the temperature range of 1120-1450 K with reactant concentrations between 100 and 1000 ppm of (C2F5)3N in the bath gas Ar and with [Ar] in the range of (0.7-5.5) × 10-5 mol cm-3. The experiments were accompanied by quantum-chemical calculations of the energies of various dissociation paths and by rate calculations, in particular for the dissociation of C2F5via C2F5 → CF3 + CF2. The overall reaction can proceed in different ways, either by a sequence of successive C-N bond ruptures followed by fast C2F5 decompositions, or by a sequence of alternating C-C and C-N bond ruptures. A cross-over between the two pathways can also take place. At temperatures below about 1300 K, yields of less than one CF2 per (C2F5)3N decomposed were observed. On the other hand, at temperatures around 2000 K, when besides the parent molecule, CF3 also dissociates, yields of six CF2 per (C2F5)3N decomposed were measured. The rate-delaying steps of the dissociation mechanism at intermediate temperatures were suggested to be the processes (C2F5)NCF2 → (C2F5)N + CF2 and (CF2)N → N + CF2. The reduction of the CF2 yields at low temperatures was tentatively attributed to a branching of the mechanism at the level of (C2F5)2NCF2, from where the cyclic final product perfluoro-N-methylpyrrolidine, (C4F8)NCF3, is formed which was identified in earlier work from the literature.Universidad Nacional de La Plat

    Shock wave and theoretical modeling study of the dissociation of CH<sub>2</sub>F<sub>2</sub> I. Primary processes.

    No full text
    The unimolecular dissociation of CH2F2 leading to CF2 + H2, CHF + HF, or CHF2 + H, is investigated by quantum chemical calculations and unimolecular rate theory. Modeling of the rate constants is accompanied by shock wave experiments over the range 1400 – 1800 K monitoring the formation of CF2. It is shown that the energetically most favorable dissociation channel leading to CF2 + H2 has a higher threshold energy than the energetically less favorable one leading to CHF + HF. Falloff curves of the dissociations are modeled. Under the conditions of the described experiments, the primary dissociation CH2F2 → CHF + HF is followed by a reaction CHF + HF → CF2 + H2. The experimental value of the rate constant of the latter indicates that this reaction does not proceed by an addition-elimination process as assumed before, but by a more direct abstraction pathway involving elements of roaming dynamics

    Shock wave and modelling study of the dissociation pathways of (C<sub>2</sub>F<sub>5</sub>)<sub>3</sub>N.

    Get PDF
    The thermal decomposition of perfluorotriethylamine, (C2F5)3N, was investigated in shock waves by monitoring the formation of CF2. Experiments were performed over the temperature range of 1120-1450 K with reactant concentrations between 100 and 1000 ppm of (C2F5)3N in the bath gas Ar and with [Ar] in the range of (0.7-5.5) × 10-5 mol cm-3. The experiments were accompanied by quantum-chemical calculations of the energies of various dissociation paths and by rate calculations, in particular for the dissociation of C2F5 via C2F5 → CF3 + CF2. The overall reaction can proceed in different ways, either by a sequence of successive C-N bond ruptures followed by fast C2F5 decompositions, or by a sequence of alternating C-C and C-N bond ruptures. A cross-over between the two pathways can also take place. At temperatures below about 1300 K, yields of less than one CF2 per (C2F5)3N decomposed were observed. On the other hand, at temperatures around 2000 K, when besides the parent molecule, CF3 also dissociates, yields of six CF2 per (C2F5)3N decomposed were measured. The rate-delaying steps of the dissociation mechanism at intermediate temperatures were suggested to be the processes (C2F5)NCF2 → (C2F5)N + CF2 and (CF2)N → N + CF2. The reduction of the CF2 yields at low temperatures was tentatively attributed to a branching of the mechanism at the level of (C2F5)2NCF2, from where the cyclic final product perfluoro-N-methylpyrrolidine, (C4F8)NCF3, is formed which was identified in earlier work from the literature

    High-Temperature Fluorocarbon Chemistry Revisited

    No full text
    The thermal dissociation reactions of C2F4and C2F6were studied in shock waves over the temperature range 1000-4000 K using UV absorption spectroscopy. Absorption cross sections of C2F4, CF2, CF, and C2were derived and related to quantum-chemically modeled oscillator strengths. After confirming earlier results for the dissociation rates of C2F4, CF3, and CF2, the kinetics of secondary reactions were investigated. For example, the reaction CF2+ CF2→ CF + CF3was identified. Its rate constant of 1010cm3mol-1s-1near 2400 K is markedly larger than the limiting high-pressure rate constant of the dimerization CF2+ CF2→ C2F4, suggesting that the reaction follows a different path. When the measurements of the thermal dissociation CF2(+Ar) → CF + F (+Ar) are extended to temperatures above 2500 K, the formation of C2radicals was shown to involve the reaction CF + CF → C2F + F (modeled rate constant 8.0 × 1012(T/3500 K)1.0exp(−4400 K/T) cm3mol-1s-1) and the subsequent dissociation C2F (+Ar) → C2+ F + (Ar) (modeled limiting low-pressure rate constant 3.0 × 1016(T/3500 K)−4.0exp(−56880 K/T) cm3mol-1s-1). This mechanism was validated by monitoring the dissociation of C2at temperatures close to 4000 K. Temperature- and pressure-dependences of rate constants of reactions involved in the system were modeled by quantum-chemistry based rate theory.Fil: Cobos, Carlos Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Hintzer, K.. Dyneon Gmbh; AlemaniaFil: Sölter, L.. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Tellbach, E.. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Morgenthaler, Annick. Dyneon Gmbh; AlemaniaFil: Troetsch, Yeicol. Universität Göttingen; Alemania. Max Planck Institute For Biophysical Chemistry; Alemani

    Shock wave studies of the pyrolysis of fluorocarbon oxygenates. II. the thermal dissociation of C4F8O

    No full text
    The thermal decomposition of octafluorooxalane, C4F8O, to C2F4 + CF2 + COF2 has been studied in shock waves highly diluted in Ar between 1300 and 2200 K. The primary dissociation was shown to be followed by secondary dissociation of C2F4 and dimerization of CF2. The primary dissociation was found to be in its falloff range and falloff curves were constructed. The limiting low and high pressure rate constants were estimated and compared with modelling results. Quantum-chemical calculations identified possible reaction pathways, either leading directly to the final products of the reaction or passing through an open-chain CF2CF2CF2 intermediate which dissociates in a second step.Fil: Cobos, Carlos Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Hintzer, K.. Dyneon GmbH; AlemaniaFil: Sölter, L.. Universität Göttingen; AlemaniaFil: Tellbach, E.. Universität Göttingen; AlemaniaFil: Thaler, A.. Dyneon GmbH; AlemaniaFil: Troe, J.. Universität Göttingen; Alemania. Max-Planck-Institut für Biophysikalische Chemie; Alemani

    Shock wave studies of the pyrolysis of fluorocarbon oxygenates. I. The thermal dissociation of C3F6O and CF3COF

    No full text
    The thermal decomposition of hexafluoropropylene oxide, C3F6O, to perfluoroacetyl fluoride, CF3COF, and CF2 has been studied in shock waves highly diluted in Ar between 630 and 1000 K. The measured rate constant k1 = 1.1 × 1014exp(-162(±4) kJ mol-1/RT) s-1 agrees well with literature data and modelling results. Using the reaction as a precursor, equimolar mixtures of CF3COF and CF2 were further heated. Combining experimental observations with theoretical modelling (on the CBS-QB3 and G4MP2 ab initio composite levels), CF3COF is shown to dissociate on two channels, either leading to CF2 + COF2 or to CF3 + FCO. By monitoring the CF2 signals, the branching ratio was determined between 1400 and 1900 K. The high pressure rate constants for the two channels were obtained from theoretical modelling as k5,∞(CF3COF → CF2 + COF2) = 7.1 × 1014exp(-320 kJ mol-1/RT) s-1 and k6,∞(CF3COF → CF3 + FCO) = 3.9 × 1015exp(-355 kJ mol-1/RT) s-1. The experimental results obtained at [Ar] ≈ 5 × 10-6 mol cm-3 were consistent with modelling results, showing that the reaction is in the falloff range of the unimolecular dissociation. The mechanism of secondary reactions following CF3COF dissociation has been analysed as well.Fil: Cobos, Carlos Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Hintzer, K.. Dyneon GmbH; AlemaniaFil: Sölter, L.. Universität Göttingen; AlemaniaFil: Tellbach, E.. Universität Göttingen; AlemaniaFil: Thaler, A.. Dyneon GmbH; AlemaniaFil: Troe, J.. Universität Göttingen; Alemania. Max-Planck-Institut für Biophysikalische Chemie; Alemani
    corecore