316 research outputs found

    Centrosomes and cilia in human disease

    Get PDF
    The deposited article is a post-print version (NIH-PA Author Manuscript) and has been submitted to peer review.There is no public supplementary material available for this publication.This publication hasn't any creative commons license associated.Centrioles are microtubule-derived structures that are essential for the formation of centrosomes, cilia and flagella. The centrosome is the major microtubule organiser in animal cells, participating in a variety of processes, from cell polarisation to cell division, whereas cilia and flagella contribute to several mechanisms in eukaryotic cells, from motility to sensing. Although it was suggested more than a century ago that these microtubule-derived structures are involved in human disease, the molecular bases of this association have only recently been discovered. Surprisingly, there is very little overlap between the genes affected in the different diseases, suggesting that there are tissue-specific requirements for these microtubule-derived structures. Knowledge of these requirements and disease mechanisms has opened new avenues for therapeutical strategies. Here, we give an overview of recent developments in this field, focusing on cancer, diseases of brain development and ciliopathies.Fundação para a Ciência e Tecnologia; Fundação Calouste Gulbenkian; European Molecular Biology Organization; European Research Council; NIH grants: (DK068306, DK090917); Howard Hughes Medical Institute.info:eu-repo/semantics/publishedVersio

    Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency

    Get PDF
    Under a Creative Commons license.-- et al.Human COQ6 encodes a monooxygenase which is responsible for the C5-hydroxylation of the quinone ring of coenzyme Q (CoQ). Mutations in COQ6 cause primary CoQ deficiency, a condition responsive to oral CoQ10 supplementation. Treatment is however still problematic given the poor bioavailability of CoQ10. We employed S. cerevisiae lacking the orthologous gene to characterize the two different human COQ6 isoforms and the mutations found in patients. COQ6 isoform a can partially complement the defective yeast, while isoform b, which lacks part of the FAD-binding domain, is inactive but partially stable, and could have a regulatory/inhibitory function in CoQ10 biosynthesis. Most mutations identified in patients, including the frameshift Q461fs478X mutation, retain residual enzymatic activity, and all patients carry at least one hypomorphic allele, confirming that the complete block of CoQ biosynthesis is lethal. These mutants are also partially stable and allow the assembly of the CoQ biosynthetic complex. In fact treatment with two hydroxylated analogues of 4-hydroxybenzoic acid, namely, vanillic acid or 3-4-hydroxybenzoic acid, restored the respiratory growth of yeast δcoq6 cells expressing the mutant huCOQ6-isoa proteins. These compounds, and particularly vanillic acid, could therefore represent an interesting therapeutic option for COQ6 patients.This work has been supported by grants from Telethon Italy, Fondazione CARIPARO, and University of Padova (CPDA123573/12) (to L.S.), the Italian Ministry of Health (GR-2009-1578914) (to E.T.), Région Rhônes-Alpes CIBLE 2009 (to F.P.), Spanish FIS grant PI11-00078 (to P.N.) and Proyecto Excelencia P08-CTS-03988 (to P.N.).Open Access funded by Telethon (Italy).Peer Reviewe

    Jouberin localizes to collecting ducts and interacts with nephrocystin-1

    Get PDF
    Joubert syndrome and related disorders are autosomal recessive multisystem diseases characterized by cerebellar vermis aplasia/hypoplasia, retinal degeneration and cystic kidney disease. There are five known genes; mutations of which give rise to a spectrum of renal cystic diseases the most common of which is nephronophthisis, a disorder characterized by early loss of urinary concentrating ability, renal fibrosis, corticomedullary cyst formation and renal failure. Many of the proteins encoded by these genes interact with one another and are located at adherens junctions or the primary cilia and or basal bodies. Here we characterize Jouberin, a multi-domain protein encoded by the AHI1 gene. Immunohistochemistry with a novel antibody showed that endogenous Jouberin is expressed in brain, kidney and HEK293 cells. In the kidney, Jouberin co-localized with aquaporin-2 in the collecting ducts. We show that Jouberin interacts with nephrocystin-1 as determined by yeast-2-hybrid system and this was confirmed by exogenous and endogenous co-immunoprecipitation in HEK293 cells. Jouberin is expressed at cell-cell junctions, primary cilia and basal body of mIMCD3 cells while a Jouberin-GFP construct localized to centrosomes in subconfluent and dividing MDCK cells. Our results suggest that Jouberin is a protein whose expression pattern supports both the adherens junction and the ciliary hypotheses for abnormalities leading to nephronophthisis

    Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency.

    Get PDF
    International audience: Human COQ6 encodes a monooxygenase which is responsible for the C5-hydroxylation of the quinone ring of coenzyme Q (CoQ). Mutations in COQ6 cause primary CoQ deficiency, a condition responsive to oral CoQ10 supplementation. Treatment is however still problematic given the poor bioavailability of CoQ10. We employed S. cerevisiae lacking the orthologous gene to characterize the two different human COQ6 isoforms and the mutations found in patients. COQ6 isoform a can partially complement the defective yeast, while isoform b, which lacks part of the FAD-binding domain, is inactive but partially stable, and could have a regulatory/inhibitory function in CoQ10 biosynthesis. Most mutations identified in patients, including the frameshift Q461fs478X mutation, retain residual enzymatic activity, and all patients carry at least one hypomorphic allele, confirming that the complete block of CoQ biosynthesis is lethal. These mutants are also partially stable and allow the assembly of the CoQ biosynthetic complex. In fact treatment with two hydroxylated analogues of 4-hydroxybenzoic acid, namely, vanillic acid or 3-4-hydroxybenzoic acid, restored the respiratory growth of yeast Δcoq6 cells expressing the mutant huCOQ6-isoa proteins. These compounds, and particularly vanillic acid, could therefore represent an interesting therapeutic option for COQ6 patients

    Refinement of the critical region for MCKD1 by detection of transcontinental haplotype sharing

    Get PDF
    Refinement of the critical region for MCKD1 by detection of transcontinental haplotype sharing.BackgroundAutosomal-dominant medullary cystic kidney disease type 1 (MCKD1) [OMIM 174000] is a hereditary nephropathy that leads to renal salt wasting and end-stage renal failure at a median age of 62 years. In a Welsh MCKD1 kindred we have recently demonstrated linkage to the MCKD1 locus on chromosome 1q23.1 and refined the critical MCKD1 region to <3.3Mb.MethodsIn order to refine the candidate gene region for MCKD1, high-resolution haplotype analysis in three large kindreds with MCKD1 was performed.ResultsWe report here on high-resolution haplotype analysis in this Welsh kindred, as well as in the Arizona kindred, which was used for the first definition of MCKD as a disease entity, and in a kindred from the Dutch/German border. We detected extensive haplotype sharing among all affected individuals of all three kindreds. Scrutinization of the genealogy of the Arizona kindred revealed an origin from Germany in the 17th century, thereby providing historical data for haplotype sharing by descent at the MCKD1 locus.ConclusionUnder the hypothesis of haplotype sharing by descent, we refined the critical genetic interval to <650kb, thus enabling candidate gene analysis

    Mapping of a new locus for congenital anomalies of the kidney and urinary tract on chromosome 8q24

    Get PDF
    Background. Congenital anomalies of the kidney and urinary tract (CAKUT) account for the majority of end-stage renal disease in children (50%). Previous studies have mapped autosomal dominant loci for CAKUT. We here report a genome-wide search for linkage in a large pedigree of Somalian descent containing eight affected individuals with a non-syndromic form of CAKUT. Methods. Clinical data and blood samples were obtained from a Somalian family with eight individuals with CAKUT including high-grade vesicoureteral reflux and unilateral renal agenesis. Total genome search for linkage was performed using a 50K SNP Affymetric DNA microarray. As neither parent is affected, the results of the SNP array were analysed under recessive models of inheritance, with and without the assumption of consanguinity. Results. Using the non-consanguineous recessive model, a new gene locus (CAKUT1) for CAKUT was mapped to chromosome 8q24 with a significant maximum parametric Logarithm of the ODDs (LOD) score (LODmax) of 4.2. Recombinations were observed in two patients defining a critical genetic interval of 2.5 Mb physical distance flanked by markers SNP_A-1740062 and SNP_A-1653225. Conclusion. We have thus identified a new non-syndromic recessive gene locus for CAKUT (CAKUT1) on chromosome 8q24. The identification of the disease-causing gene will provide further insights into the pathogenesis of urinary tract malformations and mechanisms of renal developmen

    Establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis

    Get PDF
    Establishing an algorithm for molecular genetic diagnostics in 127 families with juvenile nephronophthisis.BackgroundJuvenile nephronophthisis (NPH1), an autosomal recessive cystic disease of the kidney, represents the most common genetic cause of end-stage renal disease in the first two decades of life. On the basis of identification of the gene (NPHP1) defective in NPH1 and the presence of homozygous deletions of NPHP1 in the majority of NPH1 patients, molecular genetic diagnosis for NPH1 is now possible. Molecular genetic testing offers the only method for definite diagnosis of NPH1 and avoids invasive diagnostic measures like renal biopsy.MethodsWe examined 127 families (204 patients) with the presumed diagnosis of NPH using molecular genetic diagnostic techniques. In 68 families, renal biopsy was performed and was consistent with NPH, and in 61 families, there was more than one affected child ("multiplex families").ResultsIn 74 families (115 patients), there was proof of the diagnosis of NPH1 by detection of a homozygous deletion of the NPHP1 gene, and in 5 families a heterozygous deletion in combination with a point mutation in NPHP1 was demonstrated. Furthermore, for 16 families, NPH1 was excluded with high likelihood by linkage analysis, and for 20 families by detection of heterozygosity for two newly identified polymorphic markers within the deletion region. In 5 of the remaining 12 families, which were noninformative for these markers, fluorescence in situ hybridization did not detect any further heterozygous deletions.ConclusionsThe diagnosis of NPH1 was proven by molecular genetic techniques in 62% of families with one or more children with the presumed diagnosis of NPH. We present evidence that there is a fourth locus for NPH, since only 6 of the 26 multiplex families in whom the diagnosis of NPH1 was excluded were compatible with linkage to other loci for NPH. On the basis of the presented data, we propose an algorithm for molecular genetic diagnostics in NPH

    NPHS2 mutation associated with recurrence of proteinuria after transplantation

    Full text link
    Mutations in the NPHS2 gene encoding podocin are associated with steroid-resistant nephrotic syndrome (SRNS) in childhood. Patients usually present with focal segmental glomerulosclerosis (FSGS). It is unclear to what extent SRNS due to NPHS2 mutations predisposes to recurrence of proteinuria/FSGS after renal transplantation (RTx). A 4-year-old girl with infantile SRNS was started on peritoneal dialysis because of end-stage renal disease due to FSGS. Mutational screening of the patient and her parents revealed a novel single nucleotide deletion in exon 8 of the NHPS2 gene (948delT), for which the patient was homozygous and her parents confirmed heterozygous asymptomatic carriers. At the age of 4.5 years the patient received a renal graft from her mother. On day 7 after RTx, the patient developed progressive proteinuria (urine protein/creatinine ratio 2.4 g/g), which responded within 1 week to prednisone pulse therapy, an increased cyclosporin A dosage, and ramipril therapy. The patient has maintained stable graft function and no further recurrence of proteinuria has been observed. In conclusion, patients with SRNS due to NPHS2 mutations are not protected from recurrence of proteinuria after RTx. The quick response to increased immunosuppression in our patient suggests an immune-mediated pathomechanism for recurrence of proteinuria.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47824/1/467_2003_Article_1408.pd
    • …
    corecore