491 research outputs found
Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium
Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating
communities persist despite competition among community members. Theory suggests that non-random spatial structures
contribute to the persistence of mixed communities; when particular structures form, they may provide associated
community members with a growth advantage over unassociated members. If true, this has implications for the rise and
persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances
of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a
synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a
biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable
growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes
in the initial environment; in other words, the structure enhances the ability of the consortium to survive
environmental disruptions. Second, when the layered structure forms in downstream environments the consortium
accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the
global productivity of the consortium. We also observed that the layered structure only assembles in downstream
environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for
self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques
of synthetic biology in elucidating fundamental biological principles
Methods and Costs to Achieve Ultra Reliable Life Support
A published Mars mission is used to explore the methods and costs to achieve ultra reliable life support. The Mars mission and its recycling life support design are described. The life support systems were made triply redundant, implying that each individual system will have fairly good reliability. Ultra reliable life support is needed for Mars and other long, distant missions. Current systems apparently have insufficient reliability. The life cycle cost of the Mars life support system is estimated. Reliability can be increased by improving the intrinsic system reliability, adding spare parts, or by providing technically diverse redundant systems. The costs of these approaches are estimated. Adding spares is least costly but may be defeated by common cause failures. Using two technically diverse systems is effective but doubles the life cycle cost. Achieving ultra reliability is worth its high cost because the penalty for failure is very high
- …