137 research outputs found

    Entrepreneuring for Social Change: A Study on How Women Social Entrepreneurs Navigate Embedded Cultural, Social, and Economic Norms

    Get PDF
    Social entrepreneurship continues to expand as a profession and discipline of study, yet much remains unknown about how social entrepreneurs contextualize their experience. The existing narrative centers on the heroic (and often male) individual entrepreneur who changes the world with innovative ideas and sheer grit. Academic literature tends to echo this dominant narrative, primarily utilizing a positivist economic approach when analyzing entrepreneurship. This qualitative study examines how women social entrepreneurs navigate their embedded cultural, social, and economic norms when launching a social venture. My findings illustrate embedded norms include gender, market-based, rational-linear, and individualistic norms. Yet participants’ embedded norms exist in juxtaposition to professional norms of entrepreneurship, which promote dominant masculinities. Women social entrepreneurs navigate embedded norms by adopting a process of creative churn, moving between considering, imagining, meshing, spinning, and learning. Ultimately, women social entrepreneurs experienced barriers between embedded norms and professional norms of entrepreneurship, then utilized a process of creative churn to navigate this chasm, and ultimately adopted power of existing hegemonies when creating a social venture

    A Role of the Bile Salt Receptor FXR in Atherosclerosis

    Get PDF
    This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly via the bile salt receptors FXR and TGR5. Activation of FXR has been shown to improve plasma lipid profiles, whereas Fxr(-/-) mice have increased plasma triglyceride and very-low-density lipoprotein levels. Nevertheless, high-density lipoprotein cholesterol levels are increased in these mice, suggesting that FXR has both anti-and proatherosclerotic properties. Interestingly, there is increasing evidence for a role of FXR in "nonclassical" bile salt target tissues, eg, vasculature and macrophages. In these tissues, FXR has been shown to influence vascular tension and regulate the unloading of cholesterol from foam cells, respectively. Recent publications have provided insight into the antiinflammatory properties of FXR in atherosclerosis. Bile salt signaling via TGR5 might regulate energy homeostasis, which could serve as an attractive target to increase energy expenditure and weight loss. Interventions aiming to increase cholesterol turnover (eg, by bile salt sequestration) significantly improve plasma lipid profiles and diminish atherosclerosis in animal models. Bile salt metabolism and bile salt signaling pathways represent attractive therapeutic targets for the treatment of atherosclerosi

    Tuning of the luminescence in poly((silanylene)thiophene)s

    Get PDF
    Synthetic routes to alternating copolymers consisting of oligosilylene blocks and oligothiophene blocks (T-x; x = 1, 2, 3, 4, or 6 rings) are presented. Solubility requirements for obtaining acceptable molecular weights and, eventually, for film formation are met by the introduction of butyl groups replacing methyls on the silicon atoms and by employing T-6 blocks carrying two octyl substituents. Additionally, substituted oligothiophenes are synthesized as an aid in the interpretation of NMR, absorption, and fluorescence spectra. Regarding the electronic configuration of the oligothiophene blocks, NMR spectra show clear differences between plain oligothiophenes, end-substituted oligothiophenes, and polymers, indicative of pi-sigma interactions with the oligosilylene blocks and possible through-conjugation to adjacent blocks in polymers. Red shifts in optical spectra show a parallel trend across the various compounds based on the same oligothiophene unit, related to the stabilization of photoexcited states on the oligothiophene by the oligosilylene substituents. These effects are strong in T-2-based compounds and reduced fdr longer T-n. The main feature of the spectra is the decrease of the transition energies with the size of the oligothiophene blocks in the polymers. Since this effect is also found in fluorescence, it enables one to adjust the luminescence wavelength by choosing the proper block length (''chemical tuning''). Fluorescence quantum efficiencies in solution are found to be remarkably high in polymers based on T-2 blocks. Spin-coated films of T-2-based (or T-3-based) polymers show evidence of T-4 (T-6) impurity blocks that act as an exciton trap

    A rapid and efficient isogeometric design space exploration framework with application to structural mechanics

    Get PDF
    In this paper, we present an isogeometric analysis framework for design space exploration. While the methodology is presented in the setting of structural mechanics, it is applicable to any system of parametric partial differential equations. The design space exploration framework elucidates design parameter sensitivities used to inform initial and early-stage design. Moreover, this framework enables the visualization of a full system response, including the displacement and stress fields throughout the domain, by providing an approximation to the system solution vector. This is accomplished through a collocation-like approach where various geometries throughout the design space under consideration are sampled. The sampling scheme follows a quadrature rule while the physical solutions to these sampled geometries are obtained through an isogeometric method. A surrogate model to the design space solution manifold is constructed through either an interpolating polynomial or pseudospectral expansion. Examples of this framework are presented with applications to the Scordelis–Lo roof, a Flat L-Bracket, and an NREL 5 MW wind turbine blade

    A framework for parametric design optimization using isogeometric analysis

    Get PDF
    Isogeometric analysis (IGA) fundamentally seeks to bridge the gap between engineering design and high-fidelity computational analysis by using spline functions as finite element bases. However, additional computational design paradigms must be taken into consideration to ensure that designers can take full advantage of IGA, especially within the context of design optimization. In this work, we propose a novel approach that employs IGA methodologies while still rigorously abiding by the paradigms of advanced design parameterization, analysis model validity, and interactivity. The entire design lifecycle utilizes a consistent geometry description and is contained within a single platform. Because of this unified workflow, iterative design optimization can be naturally integrated. The proposed methodology is demonstrated through an IGA-based parametric design optimization framework implemented using the Grasshopper algorithmic modeling interface for Rhinoceros 3D. The framework is capable of performing IGA-based design optimization of realistic engineering structures that are practically constructed through the use of complex geometric operations. We demonstrate the framework’s effectiveness on both an internally pressurized tube and a wind turbine blade, highlighting its applicability across a spectrum of design complexity. In addition to inherently featuring the advantageous characteristics of IGA, the seamless nature of the workflow instantiated in this framework diminishes the obstacles traditionally encountered when performing finite-element-analysis-based design optimization

    Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice

    Get PDF
    F.B. is supported by Swedish Research Council, Swedish Diabetes Foundation, Swedish Heart Lung Foundation, Swedish Foundation for Strategic Research, Knut and Alice Wallenberg foundation, Göran Gustafsson Foundation, Ingbritt and Arne Lundberg’s foundation, Swedish Heart Lung Foundation, Torsten Söderberg’s Foundation, Ragnar Söderberg’s Foundation, NovoNordisk Foundation, AFA insurances, and LUA-ALF grants from Västra Götalandsregionen and Stockholm County Council. F.B. is a recipient of ERC Consolidator Grant (European Research Council, Consolidator grant 615362—METABASE). W.M.d.V. is supported by the Finland Academy of Sciences (grants 137389, 141140 and 1272870 ), the Netherlands Organization for Scientific Research (Spinoza Award and SIAM Gravity Grant 024.002.002) and the European Research Council (ERC Advanced Grant 250172 MicrobesInside). M.N. is supported by a ZONMW-VIDI grant 2013 (016.146.327).Peer reviewedPublisher PD

    A systems biology approach to study non-alcoholic fatty liver (NAFL) in women with obesity

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is now the most frequent global chronic liver disease. Individuals with NAFLD exhibited an increased risk of all-cause mortality driven by extrahepatic cancers and liver and cardiovascular disease. Once the disease is established, women have a higher risk of disease progression and worse outcome. It is therefore critical to deepen the current knowledge on the pathophysiology of NAFLD in women. Here, we used a systems biology approach to investigate the contribution of different organs to this disease. We analyzed transcriptomics profiles of liver and adipose tissues, fecal metagenomes, and plasma metabolomes of 55 women with and without NAFLD. We observed differences in metabolites, expression of human genes, and gut microbial features between the groups and revealed that there is substantial crosstalk between these different omics sets. Multi-omics analysis of individuals with NAFLD may provide novel strategies to study the pathophysiology of NAFLD in humans

    Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis

    Get PDF
    The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of .Conclusion:Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.Peer reviewe
    corecore