492 research outputs found

    Entanglement between a diamond spin qubit and a photonic time-bin qubit at telecom wavelength

    Full text link
    We report on the realization and verification of quantum entanglement between an NV electron spin qubit and a telecom-band photonic qubit. First we generate entanglement between the spin qubit and a 637 nm photonic time-bin qubit, followed by photonic quantum frequency conversion that transfers the entanglement to a 1588 nm photon. We characterize the resulting state by correlation measurements in different bases and find a lower bound to the Bell state fidelity of F = 0.77 +/- 0.03. This result presents an important step towards extending quantum networks via optical fiber infrastructure

    Mesoporous aluminosilicate nanofibers with a low Si/Al ratio as acidic catalyst for hydrodeoxygenation of phenol

    Get PDF
    Mesoporous aluminosilicate nanofibers (mASNF) were prepared using hard and soft dual templates approach. The mesoporous material was fully characterized and its acidic nature was confirmed by FTIR spectroscopy of pyridine adsorption and 27Al/29Si solid state NMR. Thanks to the incorporated aluminum atoms, the acidic material showed high hydrothermal stability which is an essential property for biomass conversion applications. The catalytic performance of Pd supported on mASNF for hydrodeoxygenation (HDO) of lignin model compound was also investigated. A complete conversion and a high selectivity towards cyclohexane (up to 95%) starting from phenol were achieved with this bifunctional catalyst. In comparison, no cyclohexane has been produced with a non-acidic material which underlines the importance of acidic sites in HDO process selectivity control. Moreover, the catalyst can be recycled without losing its initial structure

    シリカ ヒフク Pd ショクバイ ノ カイハツ ニ カンスル コクサイ キョウドウ ケンキュウ : カイブンシキ シクロヘキサン ダッスイソ ハンノウ ニオケル シンタリング タイセイ ト ショクバイ カッセイ

    Get PDF
    Here we developed silica-coated Pd catalysts and applied to liquid phase catalytic reaction such as dehydrogenation of cyclohexane. Carbon black (CB)-supported Pd catalysts (Pd/CB) were covered with organosilica layers via the hydrolysis of phenyltriethoxysilane (PhTES). Coverage of Pd nanoparticles with organosilica layers suppressed particle sintering of Pd, as compared to the case of uncovered Pd/CB. The organosilica layers had hydrophobic properties because of the presence of phenyl groups. As a result, the organosilica-coated Pd catalysts prepared using PhTES showed superior catalytic performance for cyclohexane dehydrogenation, even after reduction at 623K under H2 atmosphere

    Advanced exploitation of Ground-Based measurements for Atmospheric Chemistry and Climate Applications "AGACC"

    Full text link
    We live in an era in which human activities are causing significant changes to the atmospheric environment which result in local to global consequences on the ecosystems. Changes in the atmospheric composition impact our climate via chemical and dynamical feedback mechanisms; in many instances they also affect air quality, and the health of the biosphere. Monitoring and understanding those changes and their consequences is fundamental to establish adequate actions for adaptation to and mitigation of the environmental changes. Furthermore, after implementation of regulatory measures like the Montreal Protocol, it is necessary to verify whether the measures are effective. This can only be achieved if we have adequate detection methods and a reliable long record of a series of key geophysical parameters. Thus the AGACC project contributes to the provision of basic new knowledge regarding the atmospheric composition and its changes, based on advanced groundbased monitoring, in combination with satellite and numerical modelling data. Its results are integrated in ongoing international research programmes. The general objective of AGACC has been to improve and extend the groundbased detection capabilities for a number of climate-related target species and, based hereupon, analyse past and present observations to derive new information about the atmospheric composition, its variability and long-term changes. Despite the advent of a growing and more performant fleet of Earth Observation satellites, ground-based observations are still indispensable to (1) guarantee long-term continuity, homogeneity and high quality of the data, and (2) to underpin the satellite data for calibration and (long-term) validation. A first target gas is atmospheric water vapour. It is the key trace gas controlling weather and climate. It is also the most important greenhouse gas in the Earth’s atmosphere. Its amount and vertical distribution are changing, but how and why? Especially in the upper troposphere - lower stratosphere, the radiative effects of changes in the water vapour are significant and should be quantified. The measurement of water vapour is a hot topic since several years. It is a challenge, because water vapour exhibits a large gradient in its concentration when going from the ground to the stratosphere, and because it is highly variable in time and space. For example, we have found that the time scale of the variations of the total water vapour amount at Jungfraujoch is in the order of minutes. In AGACC, we have therefore investigated various experimental techniques to measure the concentration of water vapour in the atmosphere, focusing on the total column as well as on the vertical distribution in the troposphere up to the lower stratosphere. The retrieval of water vapour vertical profiles and total columns from ground-based FTIR data has been initiated at three very different stations where correlative data for verification are available, namely Ukkel (± sea level, mid-latitude), Ile de La Réunion (± sea level, tropical) and Jungfraujoch (high altitude, mid-latitude), with promising results. In particular, at Jungfraujoch, it has been demonstrated that the precision of the FTIR integrated water vapour (IWV) measurements is of order 2%. The capability to retrieve individual isotopologues of water vapour, and to monitor their daily and diurnal variations, has also been demonstrated. This could open new ways to study in the future the role of water vapour in the radiative balance, the global circulation, precipitation etc. We also started joint exploitation of ground-based FTIR and satellite IASI data for water vapour and its isotopologues, in order to exploit fully the potential of the existing instrumentation. A correction method for the radiosoundings at Ukkel has been successfully implemented, resulting in a homogeneous and reliable time series from 1990 to 2008 from which trends in upper troposphere humidity (UTH) and tropopause characteristics have been derived. One observes a rising UTH until September 2001, followed by a decline, accompanied by a descent and heating of the tropopause up to the turning point and an ascent and cooling afterwards. The changes after September 2001 in the upper troposphere can be explained by surface heating and convective uplift. At Jungfraujoch, one does not observe any significant trend in the total water vapour abundance above the station over the 1988-2010 time period, although significant positive summer and negative winter trends have been detected. We have made a quantitative statistical comparison between ground-based FTIR, CIMEL, GPS and integrated (corrected) radio sounding measurements of the IWV at Ukkel. This work is important to better characterize the different sensors in order to exploit together different observations made by different instruments. A second target species is atmospheric aerosol. There is a very large variety of aerosol both from natural or anthropogenic origin. One of the reasons why they are so important is that they affect the optical properties of the atmosphere. In particular, it has been demonstrated in previous studies that the aerosols have a large impact on the quantity of harmful UV-B radiation received at the Earth’s surface. The latest IPCC Report also stressed that the radiative forcing caused by atmospheric aerosols is one of the largest uncertainties in determining the total radiative forcing in the atmosphere. Better monitoring capabilities of aerosol properties can therefore improve our understanding and forecasting of the atmospheric processes and evolution, and in particular of UV-B and climate changes. Several measurement techniques are now operational in the AGACC consortium for the ground-based monitoring of aerosol properties. These are the Brewer spectrometer and CIMEL observations at Ukkel, the latter contributing also to the AERONET network since July 2006, and the newly developed MAXDOAS observations. Unlike CIMEL and Brewer measurements, that provide the total Aerosol Optical Depth, it has been demonstrated that the MAXDOAS measurements also provide additional information about the vertical distribution of the aerosol extinction in the lowest kilometres of the troposphere. A better understanding of the ultimate capabilities of MAXDOAS aerosol remote sensing has been gained through participation to the international CINDI campaign (Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments ) in summer 2009. The combination of Brewer, CIMEL and MAXDOAS instruments gives us a remote-sensing dataset that will enable a more comprehensive characterization of the tropospheric aerosol optical properties. The usefulness of these aerosol observations has already been demonstrated in the improvement of the UVindex predictions for the general public. Another application is their use as input data in the retrieval of vertical profiles of tropospheric pollutants from MAXDOAS measurements, like tropospheric NO2 and formaldehyde. Third we have focused on a few climate-related trace gases. Changing greenhouse gas and aerosol concentrations directly affect the radiative budget of the atmosphere, and therefore climate. But many species known as pollutants like carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons, - often related to fossil fuel or biomass burning -, also affect climate through their role in chemical reactions that produce tropospheric ozone, which is a well-known greenhouse gas, or that modify the lifetime of gases like methane, or the oxidation capacity of the atmosphere. Therefore in AGACC, we have focused on the measurement of a number of trace gases that are subject to changing concentrations, that directly or indirectly affect climate, and that are either difficult to monitor or that have not yet been measured from the ground. We have included attempts to observe distinctly some isotopologues, because the isotopic ratios observed in an airmass provide information on its history, and because the FTIR solar absorption measurements provide a rather unique capability hereto. The investigated species are the isotopologues of CH4 and CO, and hydrogen cyanide (HCN), as examples of biomass burning tracers, some hydrocarbons like formaldehyde (HCHO), ethylene (C2H4) and acetylene (C2H2), and HCFC-142b, a replacement product for CFCs and a greenhouse gas. In many cases, retrieval strategies had to be adapted when going from one site to another with different atmospheric conditions, especially when the local humidity and abundances are very different as is the case between Jungfraujoch (dry, high altitude, mid-latitude) and Ile de La Réunion (humid, low altitude, low latitude). Still we have been able to show the feasibility of retrieving particular trace gas information even under difficult conditions. Many of our results have been compared to correlative data, to validate the approach and to gain complementary information. It is also important to note that the retrieval strategies developed in AGACC have regularly been presented to the global Network for the Detection of Atmospheric Composition Change (NDACC) UV-Vis and Infrared communities and have often been adopted by others or even proposed for adoption as a standard in the community (e.g., for hydrogen cyanide (HCN)). In particular: We have been able to study the seasonal variations of HCN at the Jungfraujoch and at Ile de La Réunion, and to show the dominant impact of biomass burning. Formaldehyde was studied in much detail at Ukkel, Jungfraujoch and Ile de la Réunion. The challenge for detection at Jungfraujoch is the small abundance (about 10 times smaller than at Ukkel and Ile de La Réunion); a particular observation strategy was developed successfully, resulting in a time series that already shows the day-to-day and seasonal variations. At Ile de La Réunion, comparisons of FTIR, MAXDOAS, satellite and model data have (1) shown the good agreement between the various data sets, but also, (2), the variability of HCHO (diurnal, seasonal, day-to-day), and (3), thanks to the complementarities of the various data sets, they have enabled us to learn more about the long-range transport of Non-methane Volatile Organic Compounds (NMVOCS, precursors of HCHO) and deficiencies in the models. It was shown that fast, direct transport of NMVOCS from Madagascar has a significant impact on the HCHO abundance and its variability at Ile de La Réunion, and that this is underestimated in the model. Significant progress was made as to the detection of 13CH4 and CH3D from ground-based FTIR observations, both at Jungfraujoch and Ile de La Réunion. To our knowledge, it is the first time that a d13C data set is derived from ground-based FTIR observations. More work is needed to improve the CH3D retrieval at Ile de La Réunion, and to interpret the results, in combination with models. Also for the first time, 12CO and 13CO have been retrieved individually at Jungfraujoch. The d13C time series shows significant seasonal and interannual changes. As to the hydrocarbon ethylene, it is shown that it can be detected at Jungfraujoch only in spectra at low solar elevation, given its small atmospheric abundance. Regarding acetylene, the observed time series at Jungfraujoch and Ile de La Réunion show clear seasonal variations and enhancements due to the impact of biomass burning events, correlated with enhancements in CO, C2H6 and HCN. It is not clear yet whether we can reliably retrieve the concentration of HCFC- 142b, a replacement product that is increasing strongly in the troposphere. New line parameters for the interfering species HFC-134a are required to confirm/infirm the preliminary results. This highlights again the importance of the laboratory work for providing such parameters. Improved line parameters have been obtained for water vapour and its isotopologues, ethylene and formic acid. These AGACC results have been integrated in the international spectroscopic databases. We also showed that line intensities available around 2096 cm–1 for the 13C16O isotopologue of carbon monoxide in the HITRAN database seem to be accurate to 2%. We failed to improve line intensities for the 13.6 μm region of acetylene. The new data sets that have been derived in AGACC from FTIR and MAXDOAS observations have been archived in the NDACC data centre, where they are available for users (generally modelers and satellite teams). In addition, they are stored locally and are available to users upon request. AGACC results have been reported to the international scientific community, via the literature, via integration in geophysical or spectroscopic databases, and via participation to international research initiatives like the Atmospheric Water Vapour in the Climate System (WAVACS) Cost Action, the International Space Science Institute (ISSI) Working Group on Atmospheric Water Vapour, the International Union of Pure and Applied Chemistry (IUPAC) project, the International CINDI campaign, etc. The results have already found important scientific applications. A few examples are worth mentioning: the re-evaluation of methane emissions in the tropics from SCIAMACHY based on the new H2O spectroscopy, and the improved retrievals of HCOOH from the satellite experiments ACE-FTS and IASI, and from the ground. In the longer-term, the AGACC results will no doubt benefit the research in atmospheric sciences –in particular in the monitoring of its composition changes–, which is the fundamental basis of environmental assessment reports for supporting policy makers.Advanced exploitation of ground-based measurements for atmospheric chemistry and climate applications "AGACC

    Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data

    Get PDF
    Ground-based high spectral resolution Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique to obtain information on the total column abundances and on the vertical distribution of various constituents in the atmosphere. This work presents results from two FTIR measurement campaigns in 2002 and 2004, held at Ile de La Réunion (21° S, 55° E). These campaigns represent the first FTIR observations carried out at a southern (sub)tropical site. They serve the initiation of regular, long-term FTIR monitoring at this site in the near future. To demonstrate the capabilities of the FTIR measurements at this location for tropospheric and stratospheric monitoring, a detailed report is given on the retrieval strategy, information content and corresponding full error budget evaluation for ozone (O3), methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), ethane (C2H6), hydrogen chloride (HCl), hydrogen fluoride (HF) and nitric acid (HNO3) total and partial column retrievals. Moreover, we have made a thorough comparison of the capabilities at sea level altitude (St.-Denis) and at 2200 m a.s.l. (Maïdo). It is proved that the performances of the technique are such that the atmospheric variability can be observed, at both locations and in distinct altitude layers. Comparisons with literature and with correlative data from ozone sonde and satellite (i.e., ACE-FTS, HALOE and MOPITT) measurements are given to confirm the results. Despite the short time series available at present, we have been able to detect the seasonal variation of CO in the biomass burning season, as well as the impact of particular biomass burning events in Africa and Madagascar on the atmospheric composition above Ile de La Réunion. We also show that differential measurements between St.-Denis and Maïdo provide useful information about the concentrations in the boundary layer.Peer reviewe

    Dynamic Modelling of Mental Resilience in Young Adults: Protocol for a Longitudinal Observational Study (DynaM-OBS)

    Get PDF
    Background Stress-related mental disorders are highly prevalent and pose a substantial burden on individuals and society. Improving strategies for the prevention and treatment of mental disorders requires a better understanding of their risk and resilience factors. This multicenter study aims to contribute to this endeavor by investigating psychological resilience in healthy but susceptible young adults over 9 months. Resilience is conceptualized in this study as the maintenance of mental health or quick recovery from mental health perturbations upon exposure to stressors, assessed longitudinally via frequent monitoring of stressors and mental health. Objective This study aims to investigate the factors predicting mental resilience and adaptive processes and mechanisms contributing to mental resilience and to provide a methodological and evidence-based framework for later intervention studies. Methods In a multicenter setting, across 5 research sites, a sample with a total target size of 250 young male and female adults was assessed longitudinally over 9 months. Participants were included if they reported at least 3 past stressful life events and an elevated level of (internalizing) mental health problems but were not presently affected by any mental disorder other than mild depression. At baseline, sociodemographic, psychological, neuropsychological, structural, and functional brain imaging; salivary cortisol and α-amylase levels; and cardiovascular data were acquired. In a 6-month longitudinal phase 1, stressor exposure, mental health problems, and perceived positive appraisal were monitored biweekly in a web-based environment, while ecological momentary assessments and ecological physiological assessments took place once per month for 1 week, using mobile phones and wristbands. In a subsequent 3-month longitudinal phase 2, web-based monitoring was reduced to once a month, and psychological resilience and risk factors were assessed again at the end of the 9-month period. In addition, samples for genetic, epigenetic, and microbiome analyses were collected at baseline and at months 3 and 6. As an approximation of resilience, an individual stressor reactivity score will be calculated. Using regularized regression methods, network modeling, ordinary differential equations, landmarking methods, and neural net–based methods for imputation and dimension reduction, we will identify the predictors and mechanisms of stressor reactivity and thus be able to identify resilience factors and mechanisms that facilitate adaptation to stressors. Results Participant inclusion began in October 2020, and data acquisition was completed in June 2022. A total of 249 participants were assessed at baseline, 209 finished longitudinal phase 1, and 153 finished longitudinal phase 2. Conclusions The Dynamic Modelling of Resilience–Observational Study provides a methodological framework and data set to identify predictors and mechanisms of mental resilience, which are intended to serve as an empirical foundation for future intervention studies. International Registered Report Identifier (IRRID) DERR1-10.2196/3981

    Integrative policy development for healthier people and ecosystems : a European case analysis

    Get PDF
    There is growing evidence of the inter‐relationships between ecosystems and public health. This creates opportunities for the development of cross‐sectoral policies and interventions that provide dual benefits to public health and to the natural environment. These benefits are increasingly articulated in strategy documents at national and regional level, yet implementation of integrative policies on the ground remains limited and fragmented. Here, we use a workshop approach to identify some features of this evidence–implementation gap based on policy and practice within a number of western European countries. The driving forces behind some recent moves towards more integrative policy development and implementation show important differences between countries, reflecting the non‐linear and complex nature of the policy‐making process. We use these case studies to illustrate some of the key barriers to greater integrative policy development identified in the policy analysis literature. Specific barriers we identify include: institutional barriers; differing time perspectives in public health and ecosystem management; contrasting historical development of public health and natural environment disciplinary policy agendas; an incomplete evidence base relating investment in the natural environment to benefits for public health; a lack of appropriate outcome measures including benefit–cost trade‐offs; and finally a lack of integrative policy frameworks across the health and natural environment sectors. We also identify opportunities for greater policy integration and examples of good practice from different countries. However, we note there is no single mechanism that will deliver integrative policy for healthier people and ecosystems in all countries and situations. National governments, national public agencies, local governments, research institutions, and professional bodies all share a responsibility to identify and seize opportunities for influencing policy change, whether incremental or abrupt, to ensure that ecosystems and the health of society are managed so that the interests of future generations, as well as present generations, can be protected

    Pandemic A/H1N1v influenza 2009 in hospitalized children: a multicenter Belgian survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the 2009 influenza A/H1N1v pandemic, children were identified as a specific "at risk" group. We conducted a multicentric study to describe pattern of influenza A/H1N1v infection among hospitalized children in Brussels, Belgium.</p> <p>Methods</p> <p>From July 1, 2009, to January 31, 2010, we collected epidemiological and clinical data of all proven (positive H1N1v PCR) and probable (positive influenza A antigen or culture) pediatric cases of influenza A/H1N1v infections, hospitalized in four tertiary centers.</p> <p>Results</p> <p>During the epidemic period, an excess of 18% of pediatric outpatients and emergency department visits was registered. 215 children were hospitalized with proven/probable influenza A/H1N1v infection. Median age was 31 months. 47% had ≥ 1 comorbid conditions. Febrile respiratory illness was the most common presentation. 36% presented with initial gastrointestinal symptoms and 10% with neurological manifestations. 34% had pneumonia. Only 24% of the patients received oseltamivir but 57% received antibiotics. 10% of children were admitted to PICU, seven of whom with ARDS. Case fatality-rate was 5/215 (2%), concerning only children suffering from chronic neurological disorders. Children over 2 years of age showed a higher propensity to be admitted to PICU (16% vs 1%, p = 0.002) and a higher mortality rate (4% vs 0%, p = 0.06). Infants less than 3 months old showed a milder course of infection, with few respiratory and neurological complications.</p> <p>Conclusion</p> <p>Although influenza A/H1N1v infections were generally self-limited, pediatric burden of disease was significant. Compared to other countries experiencing different health care systems, our Belgian cohort was younger and received less frequently antiviral therapy; disease course and mortality were however similar.</p

    Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1:a multicentre, single-blind, randomised trial

    Get PDF
    Background: Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults and leads to severe fatigue, substantial physical functional impairment, and restricted social participation. In this study, we aimed to determine whether cognitive behavioural therapy optionally combined with graded exercise compared with standard care alone improved the health status of patients with myotonic dystrophy type 1. Methods: We did a multicentre, single-blind, randomised trial, at four neuromuscular referral centres with experience in treating patients with myotonic dystrophy type 1 located in Paris (France), Munich (Germany), Nijmegen (Netherlands), and Newcastle (UK). Eligible participants were patients aged 18 years and older with a confirmed genetic diagnosis of myotonic dystrophy type 1, who were severely fatigued (ie, a score of ≥35 on the checklist-individual strength, subscale fatigue). We randomly assigned participants (1:1) to either cognitive behavioural therapy plus standard care and optional graded exercise or standard care alone. Randomisation was done via a central web-based system, stratified by study site. Cognitive behavioural therapy focused on addressing reduced patient initiative, increasing physical activity, optimising social interaction, regulating sleep–wake patterns, coping with pain, and addressing beliefs about fatigue and myotonic dystrophy type 1. Cognitive behavioural therapy was delivered over a 10-month period in 10–14 sessions. A graded exercise module could be added to cognitive behavioural therapy in Nijmegen and Newcastle. The primary outcome was the 10-month change from baseline in scores on the DM1-Activ-c scale, a measure of capacity for activity and social participation (score range 0–100). Statistical analysis of the primary outcome included all participants for whom data were available, using mixed-effects linear regression models with baseline scores as a covariate. Safety data were presented as descriptives. This trial is registered with ClinicalTrials.gov, number NCT02118779. Findings: Between April 2, 2014, and May 29, 2015, we randomly assigned 255 patients to treatment: 128 to cognitive behavioural therapy plus standard care and 127 to standard care alone. 33 (26%) of 128 assigned to cognitive behavioural therapy also received the graded exercise module. Follow-up continued until Oct 17, 2016. The DM1-Activ-c score increased from a mean (SD) of 61·22 (17·35) points at baseline to 63·92 (17·41) at month 10 in the cognitive behavioural therapy group (adjusted mean difference 1·53, 95% CI −0·14 to 3·20), and decreased from 63·00 (17·35) to 60·79 (18·49) in the standard care group (−2·02, −4·02 to −0·01), with a mean difference between groups of 3·27 points (95% CI 0·93 to 5·62, p=0·007). 244 adverse events occurred in 65 (51%) patients in the cognitive behavioural therapy group and 155 in 63 (50%) patients in the standard care alone group, the most common of which were falls (155 events in 40 [31%] patients in the cognitive behavioural therapy group and 71 in 33 [26%] patients in the standard care alone group). 24 serious adverse events were recorded in 19 (15%) patients in the cognitive behavioural therapy group and 23 in 15 (12%) patients in the standard care alone group, the most common of which were gastrointestinal and cardiac. Interpretation: Cognitive behavioural therapy increased the capacity for activity and social participation in patients with myotonic dystrophy type 1 at 10 months. With no curative treatment and few symptomatic treatments, cognitive behavioural therapy could be considered for use in severely fatigued patients with myotonic dystrophy type 1. Funding: The European Union Seventh Framework Programme
    corecore