684 research outputs found

    Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes

    Get PDF
    Fusarium head blight, caused by Fusarium graminearum, is a devastating disease of wheat. We developed near-isogenic lines (NILs) differing in the two strongest known F. graminearum resistance quantitative trait loci (QTLs), Qfhs.ndsu-3BS (also known as resistance gene Fhb1) and Qfhs.ifa-5A, which are located on the short arm of chromosome 3B and on chromosome 5A, respectively. These NILs showing different levels of resistance were used to identify transcripts that are changed significantly in a QTL-specific manner in response to the pathogen and between mock-inoculated samples. After inoculation with F. graminearum spores, 16 transcripts showed a significantly different response for Fhb1 and 352 for Qfhs.ifa-5A. Notably, we identified a lipid transfer protein which is constitutively at least 50-fold more abundant in plants carrying the resistant allele of Qfhs.ifa-5A. In addition to this candidate gene associated with Qfhs.ifa-5A, we identified a uridine diphosphate (UDP)-glycosyltransferase gene, designated TaUGT12887, exhibiting a positive difference in response to the pathogen in lines harbouring both QTLs relative to lines carrying only the Qfhs.ifa-5A resistance allele, suggesting Fhb1 dependence of this transcript. Yet, this dependence was observed only in the NIL with already higher basal resistance. The complete cDNA of TaUGT12887 was reconstituted from available wheat genomic sequences, and a synthetic recoded gene was expressed in a toxin-sensitive strain of Saccharomyces cerevisiae. This gene conferred deoxynivalenol resistance, albeit much weaker than that observed with the previously characterized barley HvUGT13248

    Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Full text link
    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues

    Lattice Dynamics in the FeSb₃ Skutterudite

    Get PDF
    Thin films of FeSb3 were characterized by electronic transport, magnetometry, x-ray diffraction, 57Fe and 121Sb nuclear inelastic scattering, and 57Fe Mössbauer spectroscopy. Resistivity and magnetometry measurements reveal semiconducting behavior with a 16.3(4) meV band gap and an effective paramagnetic moment of 0.57(6) B, respectively. A systematic comparison of the lattice dynamics with CoSb3 and EuFe 4Sb12 reveals that the Fe4Sb12 framework is softer than the Co4Sb12 framework, and that the observed softening and the associated lowering of the lattice thermal conductivity in the RFe4Sb12 filled skutterudites are not only related to the filler but also to the Fe4Sb12 framework

    Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments

    Get PDF
    BTEX compounds such as benzene are frequent soil and groundwater contaminants that are easily biodegraded under oxic conditions by bacteria. In contrast, benzene is rather recalcitrant under anaerobic conditions. The analysis of anoxic degradation is often hampered by difficult sampling conditions, limited amounts of biomass and interference of matrix compounds with proteomic approaches. In order to improve the procedure for protein extraction we established a scheme consisting of the following steps: dissociation of cells from lava granules, cell lysis by ultrasonication and purification of proteins by phenol extraction. The 2D-gels revealed a resolution of about 240 proteins spots and the spot patterns showed strong matrix dependence, but still differences were detectable between the metaproteomes obtained after growth on benzene and benzoate. Using direct data base search as well as de novo sequencing approaches we were able to identify several proteins. An enoyl-CoA hydratase with cross species homology to Azoarcus evansii, is known to be involved in the anoxic degradation of xenobiotics. Thereby the identification confirmed that this procedure has the capacity to analyse the metaproteome of an anoxic living microbial community

    Magnetic and electronic properties of Eu\u3csub\u3e4\u3c/sub\u3eSr\u3csub\u3e4\u3c/sub\u3eGa\u3csub\u3e16\u3c/sub\u3eGe\u3csub\u3e30\u3c/sub\u3e

    Get PDF
    Magnetization, static and ac magnetic susceptibility, nuclear forward scattering, and electrical resistivity measurements have been performed on polycrystalline Eu4Sr4Ga16Ge30, a type I clathrate that has divalent strontium and europium ions encapsulated within a Ga-Ge framework. These data are compared with those of type I clathrates Eu8Ga16Ge30 and Eu6Sr2Ga16Ge30. The ferromagnetic ordering of these Eu-containing clathrates is substantially altered by the incorporation of strontium, as compared to Eu8Ga16Ge30. Ferromagnetism, accompanied by a relatively large negative magnetoresistance, is observed below 15 and 20 K in Eu4Sr4Ga16Ge30 and Eu6Sr2Ga16Ge30, respectively. An effective magnetic moment of 7.83 μB per Eu ion is observed above 30 K for Eu4Sr4Ga16Ge30, a moment which is close to the free-ion moment of 7.94 μB per europium(II) ion

    Influence of the Rare-Earth Element on the Effects of the Structural and Magnetic Phase Transitions in CeFeAsO, PrFeAsO and NdFeAsO

    Get PDF
    We present results of transport and magnetic properties and heat capacity measurements on polycrystalline CeFeAsO, PrFeAsO and NdFeAsO. These materials undergo structural phase transitions, spin density wave-like magnetic ordering of small moments on iron and antiferromagnetic ordering of rare-earth moments. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, Hall coefficient and magnetoresistance are reported. The magnetic behavior of the materials have been investigated using Mössbauer spectroscopy and magnetization measurements. Transport and magnetic properties are affected strongly by the structural and magnetic transitions, suggesting significant changes in the band structure and/or carrier mobilities occur, and phonon-phonon scattering is reduced upon transformation to the low-temperature structure. Results are compared with recent reports for LaFeAsO, and systematic variations in properties as the identity of Ln is changed are observed and discussed. As Ln progresses across the rare-earth series from La to Nd, an increase in the hole contributions to the Seebeck coefficient and increases in magnetoresistance and the Hall coefficient are observed in the low-temperature phase. Analysis of hyperfine fields at the iron nuclei determined from Mössbauer spectra indicates that the moment on Fe in the orthorhombic phase is nearly independent of the identity of Ln, in apparent contrast to reports of powder neutron diffraction refinements

    Neonatal SSRI Exposure Programs a Hypermetabolic State in Adult Mice

    Get PDF
    Background. Selective serotonin reuptake inhibitor (SSRI) therapy complicates up to 10% of pregnancies. During therapy, SSRIs exert pleiotropic antidepressant, anorexigenic, and neurotrophic effects. Intrauterine SSRI exposure has been modeled by neonatal administration to developmentally immature rodents, and it has paradoxically elicited features of adult depression. We hypothesized neonatal SSRI exposure likewise programs a rebound hypermetabolic state in adult mice. Methods. C57BL/6 pups were randomized to saline or sertraline (5 mg/kg/d) from P1–P14. Because estrogen increases tryptophan hydroxylase 2 (TPH2) expression, a subset of female mice underwent sham surgery or bilateral ovariectomy (OVX). Metabolic rate was determined by indirect calorimetry. Results. In both male and female mice, neonatal SSRI exposure increased adult caloric intake and metabolic rate. SSRI-exposed female mice had significantly decreased adult weight with a relative increase in brain weight and melatonin excretion, independent of ovarian status. Cerebral cortex TPH2 expression was increased in SSRI-exposed male mice but decreased in OVX SSRI-exposed female mice. Conclusions. SSRI exposure during a critical neurodevelopmental window increases adult caloric intake and metabolic rate. Ovarian status modulated central TPH2 expression, but not adult energy balance, suggesting programmed neural connectivity or enhanced melatonin production may play a more important role in the post-SSRI hypermetabolic syndrome
    corecore