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Magnetization, static and ac magnetic susceptibility, nuclear forward scattering, and electrical resistivity
measurements have been performed on polycrystalline Eu4Sr4Ga16Ge30, a type I clathrate that has divalent
strontium and europium ions encapsulated within a Ga-Ge framework. These data are compared with those of
type I clathrates Eu8Ga16Ge30 and Eu6Sr2Ga16Ge30. The ferromagnetic ordering of these Eu-containing clath-
rates is substantially altered by the incorporation of strontium, as compared to Eu8Ga16Ge30. Ferromagnetism,
accompanied by a relatively large negative magnetoresistance, is observed below 15 and 20 K in
Eu4Sr4Ga16Ge30 and Eu6Sr2Ga16Ge30, respectively. An effective magnetic moment of 7.83 �B per Eu ion is
observed above 30 K for Eu4Sr4Ga16Ge30, a moment which is close to the free-ion moment of 7.94 �B per
europium�II� ion.

DOI: 10.1103/PhysRevB.73.174403 PACS number�s�: 75.30.Cr, 75.50.Cc, 72.15.Eb

Clathrates are a class of “open-structured” materials in
which molecules, atoms, or ions are completely enclosed
within a framework comprised of other atoms or molecules.
Many inorganic clathrates have frameworks consisting of
group III and IV atoms.1 A variety of different clathrate
compositions are possible, compositions which are of funda-
mental interest from the perspective of both their bonding
and physical properties. They are also of interest as potential
thermoelectric materials due to their low thermal conductiv-
ity.

There have been many reports on the structural and trans-
port properties of the type I M8Ga16Ge30 clathrates where M
represents alkali or alkali-earth ions.1,2 The group III and IV
atoms in these clathrates are tetrahedrally bonded into a
framework that contains two different types of face sharing
polyhedra. The resulting cubic unit cell is made up of two
dodecahedral polyhedra, E20, and six tetrakaidecahedral
polyhedra, E24.

To date, with the exception of europium, type I clathrates
with lanthanides inside the polyhedra have not been
synthesized.3 The europium type I clathrates are of special
interest because they contain magnetic divalent europium
ions.4–8 They exhibit a relatively high thermopower, a high
electrical conductivity, and a very low thermal conductivity,
a combination of properties that is atypical of crystalline
materials.4,5 Further, it has been shown that Eu8Ga16Ge30
possesses a high Curie temperature of �35 K and a rela-
tively large negative magnetoresistance with a magnitude of
10% near its Curie temperature.5–7 In Eu8Ga16Ge30 the mag-
netic moment is localized on the europium�II� ions and mag-
netic susceptibility measurements5 on a single crystal of
Eu8Ga16Ge30 have yielded an effective magnetic moment,
�ef f, of 8.13 �B per europium�II� ion, a moment which is
close to the free-ion moment of 7.94 �B per europium�II�
ion. The corresponding magnetization5 saturates in fields

above �1.5 T at 5 K with a moment of 7.3 �B per eu-
ropium�II� ion. Because of the large 5.23 Å Eu-Eu separa-
tion in Eu8Ga16Ge30, the occurrence of ferromagnetism be-
low 35 K is believed to result from Ruderman-Kittel-
Kasuya-Yosida �RKKY� interactions involving the
conduction electrons. However, attempts to alter the Curie
temperature of Eu8Ga16Ge30 by altering the carrier concen-
tration have been unsuccessful to date.5 The reason for these
failures has been recently unraveled.9 The RKKY coupling
constant has been calculated as a function of the charge car-
rier concentration, n, in Eu8Ga16−xGe30+x specimens and has
been found to show only a shallow minimum in the range of
n values observed in various preparations of both type I and
type VIII Eu8Ga16−xGe30+x clathrates.

More complex europium containing type I clathrate
compounds, i.e., Eu2Ba6Al8Si36, Eu2Ba6Cu4Si42, and
Eu2Ba6Cu4Si38Ga4, have been synthesized; the europium in
these compounds was found to fully occupy the E20 dodeca-
hedral polyhedra.10 These clathrates also show negative ther-
mopower and magnetic ordering below 32, 5, and 4 K, re-
spectively. Above 50 K the temperature dependence of the
inverse magnetic susceptibility yields �ef f values of 7.82,
8.02, and 7.53 �B, respectively, in good agreement with the
free-ion value for the europium�II� ion; the corresponding
Curie temperatures are 19.6, 5.5, and 9.7 K, respectively.

Herein we report on the alteration of the magnetic prop-
erties of Eu8Ga16Ge30 by partially substituting strontium�II�
for europium�II� to form polycrystalline Eu4Sr4Ga16Ge30 in
which the Eu�II�-Eu�II� separation has increased both
as a result of an increase in the cubic lattice parameter
and the partial occupation of the cages by strontium. The
results for Eu4Sr4Ga16Ge30 are compared with those for
Eu6Sr2Ga16Ge30 and Eu8Ga16Ge30.

Polycrystalline Eu8Ga16Ge30, Eu6Sr2Ga16Ge30, and
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Eu4Sr4Ga16Ge30 have been synthesized as previously
reported.4,8 X-ray diffraction and electron-beam microprobe
analyses revealed only the type I clathrate phase, with homo-
geneous compositions within the polycrystalline grains. Hot
pressing resulted in dense pellets with an average grain size
of �10 �m, as determined by optical metallographic analy-
sis on polished surfaces. Refinement of synchrotron powder
diffraction patterns revealed for Eu4Sr4Ga16Ge30 a stoichiom-
etry of Eu3.47�3�Sr4.53�3�Ga14.48�13�Ge31.52�13� with a 76% pref-
erential europium occupation of the 2a crystallographic
sites.8

All the magnetic susceptibility and magnetization mea-
surements have been performed with a Quantum Design
Physical Properties Measurement System �PPMS�. The tem-
perature dependence of the magnetic susceptibility was mea-
sured in a 1 T magnetic field and the magnetization was
measured at several temperatures between 2 and 100 K in
fields up to 7 T. Furthermore, for the Eu8−xSrxGa16Ge30
samples, with x=0, 2, and 4, the magnetic susceptibility has
been measured in a low field of 0.01 T with the vibrating
sample magnetometer option of a Quantum Design PPMS
�see Fig. 1�. The measured susceptibilities have been cor-
rected for the sample geometry, which differed from the ge-
ometry of the nickel standard. The magnetic susceptibility of
Eu8Ga16Ge30, Eu6Sr2Ga16Ge30, and Eu4Sr4Ga16Ge30 was cor-
rected for its −64.3, −83.3, −121.5�10−6 emu/mol Eu dia-
magnetic susceptibility, respectively, a correction that has
been obtained from Pascal constants.7 The ac susceptibility
has been measured with nearly zero dc field and at frequen-
cies between 72 and 2275 Hz.

Parallelepiped shaped samples with 1�2�4 mm3 di-
mensions were cut from the dense polycrystalline pellets and
have been used for four-probe resistivity measurements. The
electrical resistivity has been measured between 4 and 300 K
by using a Quantum Design PPMS. A precise mask was fab-
ricated in order to nickel plate the sample at precise points in
order to solder the four 0.0025 cm diameter copper leads
used for the resistivity measurements. The magnetoresistance

has been measured in fields of up to 7 T in the same con-
figuration used for the zero-field resistivity measurements.

The europium-151 nuclear forward scattering measure-
ments have been carried out on beam line11 ID22n at the
European Synchrotron Radiation Facility in Grenoble,
France. In this experiment the intensity of elastic coherent
nuclear forward scattering12 is detected13 by an avalanche
photodiode. This scattering process should not be confused
with the incoherent nuclear inelastic scattering14,15 that may
also be measured at the same beam line.

The magnetic susceptibility of Eu4Sr4Ga16Ge30 and
Eu8Ga16Ge30 has been measured between 2 and 300 K in an
applied field of 1 T. The inverse molar susceptibility is linear
down to �30 K and the slope obtained between 50 and
300 K yields a Weiss temperature of 19.2 K, a Curie con-
stant, C, of 7.65 K/ �mol Eu/emu�, and an effective mag-
netic moment, �ef f, of 7.83 �B. This moment, which agrees
very well with the expected europium�II� spin-only magnetic
moment of 7.94 �B, is essentially constant above �60 K.

The magnetization of Eu4Sr4Ga16Ge30 has been measured
at several temperatures between 5 and 100 K in applied
fields of up to 7 T. The moment per europium�II� ion is
shown as a function of the applied field divided by the tem-
perature in Fig. 2. As expected for a paramagnetic com-
pound, at 65 and 100 K the magnetization increases linearly
with applied field. At lower temperatures and higher applied
fields the magnetization approaches saturation and at 5 K
saturates at 6.7 �B, a moment which is somewhat below the
expected saturation moment of 7 �B. Figure 2 also indicates
that the curves above the Curie temperature do not coincide
as would be expected from a simple paramagnetic compound
whose magnetic moment follows a Brillouin curve.16 In the
inset in Fig. 2, the extrapolated saturation magnetic moment
of Eu8Ga16Ge30 and Eu4Sr4Ga16Ge30 at temperatures below
their respective Curie temperatures is plotted as a function of
reduced temperature. Both compounds show similar satura-
tion behavior. Finally, there was no observable hysteresis be-
tween 0 and ±10 Oe in the magnetization, an observation
that is consistent with the expected soft ferromagnetic behav-

FIG. 1. The temperature dependence of the molar magnetic sus-
ceptibility of Eu4Sr4Ga16Ge30 �� symbols� Eu6Sr2Ga16Ge30 �+
symbols�, and Eu8Ga16Ge30 �filled circles�. Inset: The temperature
dependence of the inverse molar susceptibility of Eu4Sr4Ga16Ge30,
Eu6Sr2Ga16Ge30, and Eu8Ga16Ge30.

FIG. 2. The magnetic moment per europium�II� ion in
Eu4Sr4Ga16Ge30 obtained at several temperatures between 5 �top�
and 100 �bottom� K in applied fields of up to 7 T as a function of
applied field divided by temperature. Inset: The saturation moment
per europium�II� ion in Eu8Ga16Ge30, squares, and Eu4Sr4Ga16Ge30,
circles, as a function of reduced temperature.
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ior of Eu4Sr4Ga16Ge30. In addition to the above compounds,
we also measured the magnetization of Eu6Sr2Ga16Ge30 be-
tween 0 and 2.5 T at 2 K �not shown�, which yielded a satu-
ration moment of 7 �B per Eu.

In order to compare the magnetic behavior of
Eu4Sr4Ga16Ge30 with those of Eu8Ga16Ge30 and
Eu6Sr2Ga16Ge30, the magnetic susceptibility of the three
compounds was measured between 2 and 300 K in a small
applied field of 0.01 T �see Fig. 1�. The inverse magnetic
susceptibility is linear for the three compounds above
�50 K. Because these measurements needed to be corrected
for the sample geometry, they cannot be used for a determi-
nation of the paramagnetic moment. However, they allow
one to estimate the ferromagnetic ordering temperature and
to compare the three susceptibility measurements. The ferro-
magnetic ordering temperature, TC, estimated from the inter-
section of the extrapolated constant susceptibility, at low
temperature, and the power law just above the ordering tem-
perature, yields TC=33.4, 21, and 13 K for Eu8−xSrxGa16Ge30
with x=0, 2, and 4, respectively. Further, the low field mag-
netic susceptibility measurements indicate that the ferromag-
netic transition is extremely sharp in Eu8Ga16Ge30, and much
smoother in Eu6Sr2Ga16Ge30 and Eu4Sr4Ga16Ge30. A fit of
the susceptibility just above the critical temperature with the
���T−Tc�� power law yields a critical exponent, �=−1.2
for Eu8Ga16Ge30, close to the typical value of −1.3 to −1.4.17

For Eu6Sr2Ga16Ge30 and Eu4Sr4Ga16Ge30, this critical expo-
nent is not unambiguously determined, but it is larger than
for Eu8Ga16Ge30.

The temperature dependence of the magnetic
susceptibility and the magnetization curves obtained for
Eu4Sr4Ga16Ge30 are indicative of its complex magnetic inter-
actions. Further, the similarity of saturation behavior of
Eu8Ga16Ge30 and Eu4Sr4Ga16Ge30 indicates that the origin of
the magnetic interactions is similar in both compounds. It
has been suggested that because of the large distance of
5.2 Å between the europium�II� ions in Eu8Ga16Ge30 the
magnetic order occurs through an RKKY interaction.5,9 In
Eu4Sr4Ga16Ge30 the distance between the europium�II� ions
is even larger and the RKKY indirect exchange interaction is
certainly the most likely coupling between the europium�II�
ions. Because this interaction is oscillating in sign from fer-
romagnetic to antiferromagnetic as a function of distance
from a europium ion with a magnitude and period that de-
pends on the conduction electron density, it is not surprising
that both the lattice expansion and the Sr/Eu distribution
affects the magnetic properties of Eu4Sr4Ga16Ge30.

The real, ��, and imaginary, ��, components of the ac
susceptibility, �ac=��− i��, of Eu4Sr4Ga16Ge30 have been
measured at about zero dc field and a frequency of 120 Hz,
as shown in Fig. 3. In this figure �� has been multiplied by
100 in order to compare with the �� results. The ordering
temperature, TC, corresponds to the maximum in �� at 15 K
in the case of Eu4Sr4Ga16Ge30. The �� susceptibility exhibits
a relatively sharp increase starting at �20 K and then a sud-
den decrease below 15 K. These sharp changes are charac-
teristic of uniform ferromagnetic exchange interactions and
indicate the excellent homogeneity of the polycrystalline
Eu4Sr4Ga16Ge30 sample. It should be noted that the increase
in �� coincides, as expected, with an increase in ��.

Several ac susceptibility measurements on
Eu4Sr4Ga16Ge30 have been made at different frequencies, as
is shown in the inset of Fig. 3, and no change in �� and TC is
observed with frequency, at least between 72 and 2275 Hz.
However, increasing the frequency did result in larger energy
losses at and below 15 K. Dynamical measurements such as
ac susceptibility can be affected by losses due to Eddy cur-
rents. Higher energy losses due to an increase in frequency,
as shown in the inset of Fig. 3, may be due to contributions
from Eddy currents because our specimen exhibits metallic
conduction �see below�. Further, the randomness between Sr
and Eu in the lattice sites can result in more pinning of the
domain walls and yield a larger energy loss. Finally, it should
be noted that the �� values obtained at different frequencies
showed no significant changes with respect to the dashed
curve taken at 120 Hz in Fig. 3.

To further investigate the magnetic properties of
Eu4Sr4Ga16Ge30 below 50 K nuclear forward scattering mea-
surements have been carried out with the europium-151 nu-
clide. The europium-151 nuclear forward scattering intensity
has been measured as a function of temperature between 10
and 50 K for both Eu8Ga16Ge30 and Eu4Sr4Ga16Ge30 with
�100 mg of both samples. The measured intensities �see
Fig. 4� exhibit a sharp increase upon heating at the ordering
temperatures of �35 and �15 K for Eu8Ga16Ge30 and
Eu4Sr4Ga16Ge30, respectively. The origin of this increase in
the scattering intensity can be understood as follows. In the
low temperature ferromagnetic phase, the magnetic hyperfine
interaction completely removes the degeneracy of the
europium-151 nuclear ground and excited states. As the tem-
perature increases, the europium�II� hyperfine field decreases
and, hence, the splitting in the nuclear levels is reduced.
Finally, in the paramagnetic phase, above TC, the europium-
151 nuclear states are fully degenerate. This gradual decrease
in the splitting of the nuclear energy levels yields a strong
increase in the nuclear forward scattering cross section, an
increase that reveals the magnetic ordering temperature. The
resulting value of TC obtained for Eu4Sr4Ga16Ge30 is in good

FIG. 3. The real, ��, and imaginary, ��, portions of the ac sus-
ceptibility of Eu4Sr4Ga16Ge30 obtained at a frequency of 120 Hz.
Inset: The dependence of �� on frequency between 72 and 2275 Hz.
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agreement with the value obtained from the maximum in ��
discussed above.

In order to determine whether or not Eu4Sr4Ga16Ge30 is
metallic, temperature dependent electrical resistivity mea-
surements have been carried out. The temperature depen-
dence of the electrical resistivity, �, of Eu4Sr4Ga16Ge30 and
Eu8Ga16Ge30, obtained in a zero applied magnetic field �Ha

=0 T�, is shown in Fig. 5. The room temperature resistivities
for polycrystalline samples of Eu4Sr4Ga16Ge30 and
Eu8Ga16Ge30 are 0.83 and 0.6 m� cm, respectively. In spite
of possible scattering between the grains in the polycrystal-
line sample, similar values of 0.48 and 0.6 m� cm have been
observed in single crystalline5 and polycrystalline7

Eu8Ga16Ge30. Further, a recent study18 of the transport prop-
erties of type I and type VIII Eu8Ga16−xGe30+x clathrates re-
ported 2 K resistivities of between 0.299 and 0.894 m� cm.
Nonetheless, the temperature dependent resistivities of the
polycrystalline samples of Eu8Ga16Ge30 and Eu4Sr4Ga16Ge30
indicate that both display metallic behavior above 70 K, and

hence are heavily doped compounds. Below 40 and 30 K for
Eu8Ga16Ge30 and Eu4Sr4Ga16Ge30, respectively, an anomaly
is observed. Similar anomalies have been observed5,7,18 in
the temperature dependence of the electrical resistivity of
type I and type VIII Eu8Ga16Ge30 clathrates. Such anomalies
are usually observed at the onset of magnetic ordering and
are no doubt associated with the ferromagnetic ordering of
Eu8Ga16Ge30 and Eu4Sr4Ga16Ge30 below 35 and 15 K, re-
spectively. In the latter case, the results shown in Fig. 3
indicate that the anomaly is related to the ferromagnetic or-
dering. Below 8 K the resistivity increases slightly perhaps
because of grain boundary scattering.

The percentage change in the magnetoresistance of
Eu4Sr4Ga16Ge30 obtained between 5 and 70 K in an applied
field of 7 T is shown in Fig. 6. The magnetoresistance has
been calculated with the expression, ��= ��H−�0� /�0, where
�0 is the resistivity in zero applied magnetic field. Just below
30 K the magnetoresistance begins to increase significantly
and reaches about 10% at 12 K. As has been reported earlier5

for Eu8Ga16Ge30 and is observed herein for Eu4Sr4Ga16Ge30,
the magnetoresistance changes significantly as the tempera-
ture approaches the Curie temperature as a result of magnetic
spin disorder scattering. It should be noted that the magne-
toresistance near the Curie temperature of Eu4Sr4Ga16Ge30
has the same magnitude and sign as that observed both for
our polycrystalline Eu8Ga16Ge30, and for single crystalline5

Eu8Ga16Ge30. Below 12 K the magnetoresistance decreases
by 1% and then increases up to 12% below 9 K. Because the
magnetic moment is localized on the europium�II� ions, the
magnetoresistance of Eu4Sr4Ga16Ge30 can be understood as
the scattering of s electrons by the localized 4f electrons.
Models which describe the scattering of s electrons by local-
ized electrons in systems where both localized moments and
high carrier concentrations exist, as is the case for
Eu4Sr4Ga16Ge30, have been presented elsewhere.19

Thus, the substitution of europium by strontium in
Eu8Ga16Ge30 to form Eu4Sr4Ga16Ge30 decreases the Curie
temperature from 35 to 15 K. An effective magnetic moment
of 7.83 �B per europium�II� ion is obtained from the tem-
perature dependence of the magnetic susceptibility of
Eu4Sr4Ga16Ge30, an effective moment that is close to the
free-ion moment of 7.94 �B. The magnetization curves ob-

FIG. 4. The europium-151 nuclear forward scattering intensity
for both Eu4Sr4Ga16Ge30, open squares, and Eu8Ga16Ge30, closed
squares. The intensities are normalized to their respective maxi-
mum. The error bars are approximately the size of the data points.

FIG. 5. The temperature dependence of the resistivity of
Eu4Sr4Ga16Ge30. All data indicates the Curie temperature. The inset
shows the resistivity of Eu8Ga16Ge30 to compare. All data have
been collected with a zero applied magnetic field.

FIG. 6. The temperature dependence of the negative magnetore-
sistance of Eu4Sr4Ga16Ge30 obtained in an applied field of 7 T.
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tained at different temperatures up to a field of 7 T do not
follow a simple Brillouin behavior for a spin of 7/2. At 5 K
and 7 T, the magnetic moment per europium�II� ion saturates
at 6.7 �B, a moment that is smaller than the expected 7 �B.

Because of the large separation between the 4f moments,
it is well known5,7,9,18 that the magnetic interactions in
Eu8Ga16Ge30 arise from the RKKY mechanism. The average
Eu�II�-Eu�II� separation in Eu8Ga16Ge30 is approximately
5.2 Å. Because this distance is so large, direct exchange be-
tween the localized europium�II� 4f moments can be ruled
out as the mechanism for the ferromagnetism. However, in-
direct exchange via the RKKY mechanism is certainly pos-
sible due to the long range of the charge carriers. Interest-
ingly, from calculations using the exchange Hamiltonian in
the RKKY formalism, and the carrier concentrations from
the Hall constants at the Curie temperature,
Paschen et al.7 determined that ferromagnetism existed
within either a Eu-Eu distance of 6.5 Å in the type I clath-
rate, Eu8Ga16Ge30, with a Curie temperature of �35 K or a
Eu-Eu distance of 10 Å in the type VIII clathrate with a
Curie temperature of �10 K. This difference in Curie tem-
peratures of the type I and type VIII Eu8Ga16Ge30 clathrates
has recently been reexamined9,18 and explained in terms of
the different effective masses of the charge carriers. In
Eu4Sr4Ga16Ge30, the average Eu-Eu separation is �10 Å, a
separation which is similar to that in the type VIII clathrate7

and the RKKY exchange interaction leads to a similar Curie
temperature of 15 K.

As far as we can determine, the magnetic properties of
only a few europium containing clathrates have been studied

to date.5,7,9,10,18,20 For the compounds studied, magnetic sus-
ceptibility measurements revealed divalent europium ions
with �ef f values close to the free ion value of 7.94 �B. In
contrast, the ordering temperatures were reported to vary
from 4 K in Eu2Ba6Cu4Si38Ga4 to 35 K in type I
Eu8Ga16Ge30. This wide variation7,9,18 results from the com-
bined influence of the Eu-Eu separation and the effective
mass of the charge carrier. Among Eu2Ba6Al8Si36,
Eu2Ba6Cu4Si42, and Eu2Ba6Cu4Si38Ga4, clathrates in which
all the divalent europium ions occupy the dodecahedral
cages and are �10.4 Å apart, Eu2Ba6Al8Si36 is unique be-
cause of its high Curie temperature10 of 32 K and, as a con-
sequence, this compound deserves more extensive study.
Eu4Ga8Ge16 exhibits21 a complex antiferromagnetic structure
with a Néel temperature of 8 K, a magnetic structure in
which a ferromagnetic coupling occurs along chains of eu-
ropium�II� ions that are separated by 4.12 Å, whereas anti-
ferromagnetic coupling occurs between the chains that are
separated by 5.99 Å.
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