26 research outputs found
Efficient inference of overlapping communities in complex networks
We discuss two views on extending existing methods for complex network
modeling which we dub the communities first and the networks first view,
respectively. Inspired by the networks first view that we attribute to White,
Boorman, and Breiger (1976)[1], we formulate the multiple-networks stochastic
blockmodel (MNSBM), which seeks to separate the observed network into
subnetworks of different types and where the problem of inferring structure in
each subnetwork becomes easier. We show how this model is specified in a
generative Bayesian framework where parameters can be inferred efficiently
using Gibbs sampling. The result is an effective multiple-membership model
without the drawbacks of introducing complex definitions of "groups" and how
they interact. We demonstrate results on the recovery of planted structure in
synthetic networks and show very encouraging results on link prediction
performances using multiple-networks models on a number of real-world network
data sets
Bayesian Dropout
Dropout has recently emerged as a powerful and simple method for training
neural networks preventing co-adaptation by stochastically omitting neurons.
Dropout is currently not grounded in explicit modelling assumptions which so
far has precluded its adoption in Bayesian modelling. Using Bayesian entropic
reasoning we show that dropout can be interpreted as optimal inference under
constraints. We demonstrate this on an analytically tractable regression model
providing a Bayesian interpretation of its mechanism for regularizing and
preventing co-adaptation as well as its connection to other Bayesian
techniques. We also discuss two general approximate techniques for applying
Bayesian dropout for general models, one based on an analytical approximation
and the other on stochastic variational techniques. These techniques are then
applied to a Baysian logistic regression problem and are shown to improve
performance as the model become more misspecified. Our framework roots dropout
as a theoretically justified and practical tool for statistical modelling
allowing Bayesians to tap into the benefits of dropout training.Comment: 21 pages, 3 figures. Manuscript prepared 2014 and awaiting submissio
The Infinite Degree Corrected Stochastic Block Model
In Stochastic blockmodels, which are among the most prominent statistical
models for cluster analysis of complex networks, clusters are defined as groups
of nodes with statistically similar link probabilities within and between
groups. A recent extension by Karrer and Newman incorporates a node degree
correction to model degree heterogeneity within each group. Although this
demonstrably leads to better performance on several networks it is not obvious
whether modelling node degree is always appropriate or necessary. We formulate
the degree corrected stochastic blockmodel as a non-parametric Bayesian model,
incorporating a parameter to control the amount of degree correction which can
then be inferred from data. Additionally, our formulation yields principled
ways of inferring the number of groups as well as predicting missing links in
the network which can be used to quantify the model's predictive performance.
On synthetic data we demonstrate that including the degree correction yields
better performance both on recovering the true group structure and predicting
missing links when degree heterogeneity is present, whereas performance is on
par for data with no degree heterogeneity within clusters. On seven real
networks (with no ground truth group structure available) we show that
predictive performance is about equal whether or not degree correction is
included; however, for some networks significantly fewer clusters are
discovered when correcting for degree indicating that the data can be more
compactly explained by clusters of heterogenous degree nodes.Comment: Originally presented at the Complex Networks workshop NIPS 201
Modeling Temporal Evolution and Multiscale Structure in Networks
Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights into the changing roles and position of entities and possibilities for better understanding these dynamic complex systems. 1
A design for testability study on a high performance automatic gain control circuit.
A comprehensive testability study on a commercial automatic gain control circuit is presented which aims to identify design for testability (DfT) modifications to both reduce production test cost and improve test quality. A fault simulation strategy based on layout extracted faults has been used to support the study. The paper proposes a number of DfT modifications at the layout, schematic and system levels together with testability. Guidelines that may well have generic applicability. Proposals for using the modifications to achieve partial self test are made and estimates of achieved fault coverage and quality levels presente