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Summary (English)

A complex network is a set of distinct entities which interacts in a quantifiable
manner. Representing systems as complex networks have become increasingly
popular in a variety of scientific fields including biology, social sciences and eco-
nomics. Complex networks have simultaneously been studied as mathematical
objects of their own right and as a result, there has been both an increased
demand for statistical methods for modelling complex networks as well as a
quickly growing mathematical literature on the subject.

In this dissertation we explore aspects of modelling complex networks from
a probabilistic perspective. The first two chapters will focus on the use of
probabilistic methods for inference problems. We will consider a justification
of probabilistic methods from the perspective of consistency and as a general
method of updating beliefs. The next chapters will treat some of the various
symmetries, representer theorems and probabilistic structures often used when
modelling complex networks, the construction of sampling methods and various
network models.

The introductory chapters will provide context for the included written work
on the topics of (i) updating beliefs (ii) construction of samplers for partition-
based problems (iii) applying non-parametric methods for modelling stationary
and temporal network data.
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Summary (Danish)

Et komplekst netværk er en samling af enheder som interagerer på en kvan-
tificerbar måde. Det er stadigt mere populært at repræsentere systemer som
komplekse netværk på tværs af en række videnskabelige discipliner herunder
biologi, sociale videnskaber og økonomi. Parallelt med denne udvikling bliver
komplekse netværk uafhængigt studeret som matematiske objekter. Derved er
der både en stigende efterspørgsel efter statistiske metoder for modellering af
komplekse netværk og en hastigt voksende matematisk litteratur om emnet.

I denne afhandling undersøger vi forskellige aspekter af modellering af komplek-
se netværk fra et statistisk perspektiv. De første to kapitler vil fokusere på at
retfærdiggøre brugen af sandsynlighedsbaserede metoder til at drage konklusio-
ner. Vi vil se på berettigelsen af sandsynlighedsbaserede metoder udfra et krav
om konsistens og som en general metode til at opdatere tildelinger af sandsyn-
ligheder. De næste kapitler vil omhandle de forskellige symmetrier, repræsenta-
tionssætninger og sandsynlighedsteoretiske strukturer ofte brugt i modelleringen
af komplekse netværk, konstruktion af sampling-baserede metoder og forskellige
netværksmodeller.

De introducerende kapitler vil udgøre kontekst for det inkluderede skrevne ar-
bejde som omhandler emnerne (i) at opdatere sandsynlighedstildelinger (ii) kon-
struktion af sampling-baserede metoder for partitions-baserede problemer (iii)
at anvende ikke-parametriske metoder til modellering af stationær og temporal
netværksdata.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring the Ph.D. degree in engineering.

The thesis consists of a brief treatment of selected topic relating to Bayesian
methods and the modelling of complex networks and six research papers and
manuscripts written during the period 2011-2014.

Lyngby, 31-March-2014

Tue Herlau
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Chapter 1

Introduction

Complex networks denote systems composed of a set of entities (the vertices)
that are interacting or related in a quantifiable manner (the edges). In the past
decades there has been an increasing interest in describing real-world systems as
networks and this has naturally generated a great interest in complex networks
within many scientific disciplines. The use of complex networks to describe dif-
ferent systems has in turn led to the same network-related problems arising in
different contexts. Examples of such problems includes (i) determine what con-
stitutes important and general structural information in complex networks (ii)
the study of complex networks as dynamic phenomena (iii) statistical concerns
such as predicting missing information such as unobserved edges.

I do not know which of these questions are the more important. One of the
great eye-opening experiences during my PhD studies was participating at the
NETSCI 2013 conference in Copenhagen and realizing how many important
questions, concerns, methods and results of the wider community I was unaware
of.

In this work I will consider probabilistic modelling of networks from a machine-
learning perspective. The two problems which has received the most attention
from the machine learning perspective is to predict unobserved data as well as
infer latent (often descriptive) structure from network data, for instance com-
munity structure. My work is focused on models which makes strong descriptive



2 Introduction

structural assumptions often at the expense of better edge prediction.

A more fundamental problem one should invariantly consider is why one should
use probabilistic models and not some other means to obtain the same goals.
It was the arguments by Cox [1946] (as expressed by Jaynes [2003]) on the
relationship between beliefs and probabilities that originally prompted me to
change my area of study from physics to machine learning and this approach
to machine learning, as something more fundamental than the engineering or
mathematical challenges, has since been a recurrent interest and the first two
chapters are dedicated to this subject.

1.1 Outline

My aims with this thesis are threefold. Firstly, to introduce relevant literature
and relevant technical background for the included written work. Secondly, at-
tempt to give a condensed account of some of the results and ways of thinking
within the field which I believe to be relevant for a person who is either be-
ginning a similar project as mine or has a general interest in the problems and
results of a probabilistic approach to network science. Thirdly, that the the-
sis should be interesting to write. All chapters include results of great beauty
from a wide range of fields and trying to give an account of these, however
partial, have been a surprisingly rewarding experience. The downside of this
way of selecting material is the thesis contains far too much for even an experi-
enced writer to cover within its span. I have only attempted given the broadest
overview and the thesis contains only two proofs which I absolutely could not
make myself omit; the derivation of the rules of probability theory by Cox [1946]
in chapter 2 and the derivation of Kullback-Leibner divergence as the unique
belief-ranking functional by Shore and Johnson [1980] in chapter 3. Where this
lack of self-restraint is particularly problematic is in the discussion of invariance
in probability theory in chapter 4 and the reader should be aware the section
cannot be used as a reference for an accurate statement of these results.

I have chosen to include some informal discussion and opinion throughout the
thesis, especially in the introduction of chapter 2 and chapter 7. This have
been done because I feel reflections on the nature of probabilistic methods in
particular or machine learning in general is underpraised compared to the purely
theoretical or engineering related concerns. At the very least, including some
thoughts on the subject may induce someone to point out how I am wrong or
unoriginal which would be worthwhile in itself. I hope the inclusion of this
discussion is not too distracting from the main text.
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The outline of the thesis is as follows. In chapter 2 and chapter 3 I will introduce
probabilistic methods as tools for manipulating beliefs. The second part of
the thesis, chapter 4, chapter 5 and chapter 6 is concerned with introducing
tools from probability theory and applying them to network modelling. Finally
chapter 7 contains a discussion and conclusion. To summarize the chapters are
as follows:

Chapter 2, Beliefs, after some remarks on the nature of machine learning,
this chapter is concerned with introducing probability theory as a consis-
tency requirement for the (degree of) belief in propositions. The derivation
is the axiomatic approach of Jaynes [2003]. The chapter conclude with ex-
amples of the use of symmetries to assign probabilities, the use of Bayesian
methods for real-world problems and a connection of probability theory
to machine learning exemplified by a basic network model.

Chapter 3, Assigning Beliefs, is concerned with arguing probability the-
ory, as a consistency requirement on the assignment of beliefs, should be
thought separate from the process of which beliefs are arrived at. Af-
ter a brief discussion of this point I provide an account of the axiomatic
approach to updating beliefs by Shore and Johnson [1980]. I include an
argument for the central result which in the main follow that of Caticha
and Giffin [2006] with some modifications. The second half of the chapter
is concerned with applying the derived method to dropout [Hinton, Sri-
vastava, Krizhevsky, Sutskever, and Salakhutdinov, 2012] and gives this
method a probabilistic interpretation (see the included work in [Herlau
et al., 2015]).

Chapter 4, Symmetries and invariance, discuss the concept of invari-
ances and how they give rise to important representer theorems and their
practical application for selected discrete probabilistic structures. I will
briefly discuss important results including the De Finetti theorem and the
Aldous-Hoover theorem, as well as introduce some basic results from the
theory of exchangeable partitions and fragmentation which will be used
later. The discussion will be informal and omits proofs.

Chapter 5, Inference, treats inference in probabilistic models exclusively
from the perspective of Monte-Carlo sampling. After presenting important
standard convergence results, I will very briefly introduce the concept of
adaptive Markov-chain Monte Carlo sampling. The second part of the
chapter is solely concerned with the problem of sampling partitions, in
particular I will discuss a few of my own unsuccessful attempts that led
to the proposed method, Adaptive Reconfiguration Moves [Herlau et al.,
2014a].
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Chapter 6, Networks, is concerned with a brief review of various network
models proposed in recent years. The literature review is not intended to
be complete, but rather to cover those models that are based on modelling
assumptions which admits a representation compatible with the Aldous-
Hoover theorem. The second part of the section will briefly discuss the
far less well-explored topic of temporal network modelling. The section
will briefly mention my own work on stationary relational network mod-
els [Herlau et al., 2012b,a, 2014b] as well as work on temporal hierarchical
network modelling [Herlau et al., 2013].

Chapter 7, Discussion and Conclusion, as suggested by the name, this
chapter contains closing remarks and an informal discussion of the previous
chapters.

I will change to third-person pronouns for chapter 3–6 as these are concerned
with either more general background information or work of which my co-
authors share a significant part. I will however change back to first-person
for the discussion and conclusion.

1.2 Included work

Included work refers to the main written work produced during my PhD which
was included as appendices in the version of the thesis presented at my defence.
I have deliberately chosen to let my own work play a very minor role in the
following chapters since giving it a longer treatment at the expense of the other
beautiful results would make this thesis far less enjoyable to read or write.
The one exception to this rule is the paper Adaptive Reconfiguration Moves for
Efficient Markov Chain Sampling [Herlau et al., 2014a] where I have included
an informal discussion of my other less successful attempts which may benefit
others who are working on the same problem. I will however include a brief
synopsis of the included work below for easy reference:

[Herlau et al., 2015], Bayesian Dropout argues that probability theory
should be seen as a consistency requirement and not as a learning method
in and by itself. We argue, similar to Shore and Johnson [1980], that the
process of learning is to update beliefs and this can and should be treated
as an isolated problem. The derived method is used to derive a proba-
bilistic variant of dropout, dubbed Bayesian Dropout, which is applied to
linear and Logistic regression. In addition we discuss approaches for in-
ference for the Bayesian Dropout including exact computation, analytical
approximations and stochastic variational Bayes.
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[Herlau et al., 2014a], Adaptive Reconfiguration Moves for Efficient
Markov Chain Sampling discuss an application of adaptive Markov
chain Monte Carlo for partition-based problems with special focus on the
infinite relational model. The method discussed is based on evaluating
multiple chains in parallel and use the similarity and dissimilarity between
chains to construct transition kernels. The method is related to the split-
merge sampler of Jain and Neal [2004] and the performance of the proposed
method is evaluated on the infinite relational model and the Bernouilli
mixture model.

[Herlau et al., 2012a], Detecting Hierarchical Structure in Networks
in which we introduce model for networks where the vertices are par-
titioned into blocks, and the blocks of the partition are organized in a
hierarchy which induces hierarchical structure in the network. By consid-
ering multifurcating hierarchies, the model is able to interpolate between
the infinite relational model and past work on hierarchical modelling such
as the approach by Clauset, Moore, and Newman [2008], the later model
being limited to less expressive binary hierarchies. In addition, the use of
hierarchies of communities allows more efficient sampling compared to the
use of a hierarchy of vertices. On network data the use of multifurcating
hierarchies is shown to give performance gains.

[Herlau et al., 2012b], Modelling dense relational data in this paper, we
introduce a simple extension of the infinite relational model to continuous
network data through the use of a Normal distribution for the observed
data and a Normal-Wishart prior for the parameters of the normal dis-
tributions. We discuss the models relationship to a kernelized version of
K-means and the resulting model is applied to continuous-valued rela-
tional data. This model was also used in other work [Glückstad, Herlau,
Schmidt, and Morup, 2013a, Glückstad, Herlau, Schmidt, Mørup, Rzepka,
and Araki, 2013c, Glückstad, Herlau, Schmidt, and Mørup, 2014].

[Herlau et al., 2013], Modeling temporal evolution and multiscale
structure in networks in this work, we explore the application of hi-
erarchies to temporal network data. In particular we propose a prior
for temporally correlated hierarchies and discuss its statistical properties.
This is to our knowledge the first work on temporal hierarchies from a
Bayesian perspective. We build an efficient sampling method and apply
the model to three larger temporal network datasets.

[Herlau et al., 2014b], Infinite-degree-corrected stochastic block model
propose an extension to the infinite relational model in which, in addition
to latent community structure, the degree of each vertex is modelled us-
ing vertex-specific parameters. By choosing a particular parametrization
it is possible to analytically integrate out all infinite-dimensional latent
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parameters such that only the community structure need to be sampled,
allowing for a simple implementation.



Chapter 2

Beliefs

Few things has been as ingrained in popular thought as the distinction between
mind and matter. While most thinkers have been willing to admit they do not
know the fundamental reality of mind or matter, most have remained convinced
there are important distinctions between the two and that both actually exists,
and the problem of giving these two terms a definite meaning and determining
their relationship has been at the forefront of philosophical and, when it was later
invented, scientific inquiry for more than two and a half millennia [Livingston,
2004].

Scientific advances, in particular during the 20th century, has only made this
problem more intriguing and is today known as the hard problem of conscious-
ness [Chalmers, 1995]. Today our scientific knowledge of matter has increased
to the point there is no experiment on earth whose outcome is not described
by known theories1, and the confirmation of the existence of the Higgs field at
CERN in 2013 is only the latest of a series of remarkable predictions to come
true. It goes without saying none of these experiments has encountered any
“mind” (thoughts, intentions, consciousness, etc.) as distinct from, but influ-
encing, matter and simply considering the precision of current experiments it
is nearly impossible to imagine how any such thing could have remained undis-
covered.

1Space, however, is another matter.
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However, at the same time it is very difficult to see how known physics could give
rise to a conscious observing mind. Indeed, if this was not our own immediate
experience we would very likely conclude physics and biology distinctly rules
out that possibility and while we can observe that our brains consists of neurons
whose firing pattern correlates with behaviour there is of yet no theory of how
the brain give rise to our thinking and experience of being.

In the absence of any general theoretical framework for how the mind works
machine learning takes a pragmatic approach: We observe that humans are
able to do certain things such as tell the number from licensing plates, we think
of situations where this ability is useful and so we try to create a computer
program that does the same. We observe humans drive cars and so we try to
make computer programs which drives cars too. We see humans play Chess
and so we try to make computer programs which play chess, or rather, we
make computer programs that are good at archiving certain types of board
positions. In all these circumstances the problem is posed as trying to map
certain input to certain types of output. Sometimes the output is hard to define
and sometimes the mapping is difficult to perform, however the point is the task
can be described without any reference to a “mind”.

However, even if we consider physics as having ruled out any satisfactory theory
of the mind which rests on mental language such as desires, sensations, inten-
tions, knowledge and so on having a causal influence over what we do, it does
not follow there is no reason to suppose this same language (assuming it can be
given definite meaning) cannot or should not have a legitimate place for describ-
ing cognition. As an analogy we can consider evolution. Today we have a fairly
accurate account of the evolutionary process as it operates on life today from
cellular chemistry to the species level. This was not always the case. Gregory
Mendel, for instance, developed a primitive effective theory of genetics in 1865
by concluding there must be something like alleles of genes carrying inheritable
traits in a certain manner Bowler [1989]. Certainly the concept of a gene was
eventually tethered to a chemical foundation, however in terms of understand-
ing evolution the understanding is exactly arrived at by being able to discuss
evolution in terms of higher-level ideas such as alleles and genes which need no
reference to the chemical foundation.

As an example of a mental term we can consider truth, in particular the re-
lationship between the truth of various propositions. Deducing the truth of
propositions from premises is undoubtedly a useful mental task, and logic is the
formal analysis thereof. Obviously logic is not the actual cause of anything the
brain does, however it remains a highly successful way to describe what rational
thinking is in certain situations, in fact so successful that it attains a norma-
tive effect: If we encounter a situation which is amendable to logical analysis,
logic tells us what we ought to believe, and if we nevertheless believe something
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else, we will conclude we have made a mistake (been illogical). A problem one
invariantly encounters when applying logic to every-day thinking is that we do
not have perfect knowledge. For instance propositions like: “It will rain tomor-
row” or “my next hand will be a royal flush” cannot in principle be known to
be true or false with certainty. Commonly we would say we have a belief that,
for instance, it will rain tomorrow. Analyzing the term belief (or degrees of
belief) will be the subject of the remainder of this chapter. Our treatment will
follow closely that of Cox [1946] (in particular as expressed in Jaynes [2003])
where the aim is to a set of desiderata formulated in natural language a notion
of degree of belief should satisfy and then use these to provide a quantifiable
characterization of the degree of belief of a proposition.

It is important to mention the approach of Cox is not the only way to define
probabilities and it is not above philosophical or mathematical controversies.
We will return to these issues in section 2.3.

2.1 Beliefs and probabilities

Propositions that we cannot know to be true or false with certainty plays a
crucial role in every day reasoning. Consider the following example

A husband and wife agree the husband should not have more than
two beers at the yearly Christmas party. The next day the wife finds
the husband sleeping on the couch. There is a smell of day-old alcohol
and cigarette smoke around him, the car is missing from the driveway
and there is a red smear of what appears to be lipstick on his collar.

We imagine his wife now believes he had more than two beers to drink. Later
the same day we might consider the husband objecting to her beliefs. He might
point out they are not the result of a logical deduction: For instance it could be
the case a secretary had too much to drink at the Christmas lunch and slipped.
As he heroically caught her she accidently spilled her drink over him and he got
lipstick on his collar. It was then decided he, as the only sober person at the
party, should drive the secretary and her husband home however after driving
them home he got awfully sick and accidently locked his car keys and cell phone
in his car and had to walk many miles to get a taxi. When he returned home
much later he had simply thought it more considerate to sleep on the couch.

This explanation is possible however it is unlikely to be very convincing. To
reason about what happened requires a system for reasoning under uncertainty
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which extends classical propositional logic to the case where propositions cannot
be known to be true or false. A key design crossroad revolve around the meaning
of uncertainty. In this chapter we will be concerned with graded states of belief
(i.e. plausibility, confidence, creditability) as opposed to graded states of truth.
Multi-valued logic (also known as fuzzy logic) deals with the later [Zadeh, 1973,
1965, Hájek, 1998], see also possibility theory [Dubois and Prade, 1988] for a
third notion of uncertainty. Multi-valued logic treats non-boolean propositions
whose satisfaction is a matter of degree, whereas a theory of grades belief treats
propositions where the uncertainty is induced by incomplete states of informa-
tion. As a crude illustration of this distinction consider the example with the
husband and suppose the wife considers the two propositions:

A : "My husband had more than five beers"
A : "My husband drank a lot".

In both cases she may not be certain if the proposition is true or false, however in
the first case A this is due to imperfect information (if she had been able to follow
her husband during the night she would be certain one way or the other) whereas
for the second proposition A, even if she knew exactly how many beers he had
to drink (for instance five beers) she might still not be certain if this was really
“a lot”. Put differently, if he had seven beers she would undoubtedly be more
confident that would qualify as a lot. The accepted view today is both notions
of uncertainty has an important role to play and deserve analysis, however
the literature reflects a multitude of views on their relationship, foundations
and interpretations [Zadeh, 1995, Hájek, 1998]. Loosely speaking, the study
of graded truth has led to a greater variety of systems which have been less
successfully applied in machine learning, however we will not attempt to survey
the literature here.

Rather we will restrict ourselves to statements of the former kind A which are
either true or false, and our uncertainty reflect a lack of knowledge [Jaynes,
2003, chapter 2]. Additional examples of such statements are:

B : "It will rain tomorrow"

C :
"If the procedure is administered to the patient she
will test negative in two weeks"

D : "The 918th decimal of π is 8"

As indicated we will denote propositions with upper-case Latin letters, and we
will assume they can be combined to form other propositions using the rules of
classical propositional logic. Accordingly if A and B are propositions so is the
conjunction AB (A and B), disjunction A + B (A or B) and negation A (not
A).
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A notion of belief must encompass the notion propositions can be believed more
or less strongly. For instance, if we have a particular belief there are 200 billion
stars in our galaxy, we should have a lower degree of belief there are 400 billion.
In other words, this example suggests beliefs come in degrees (they will be said
to be graded) and that the degree can be compared.

It might be reasonable to wonder if we should be able to compare e.g. our
degree of belief in whether it will rain tomorrow to our degree of belief there is
life on Mars, however for simplicity we will assume all of our beliefs admits such
a comparison. The simplest way to represent the degree of something is by a
real number and thus we arrive at desiderate (I):

(I) The belief of a proposition is represented as a single real
number.

(2.1)

All desiderata in this chapter is taken nearly verbatim from Jaynes [2003]. It
should be stressed this assumption is not without controversy and likely the
most important design choice. Firstly, as mentioned above it implies univer-
sal comparability, that is the degree of belief of any two propositions can be
compared. See Fine [1973] for approaches which do not assume universal com-
parability. Secondly, it assumes the degree of belief is one-dimensional which
for instance is not the case for Dempster-Shafer theory [Dempster, 1967, Shafer
et al., 1976].

2.1.1 Relationship of beliefs

A second important property of beliefs is that they must relate to each other.
For instance, if the wife in the example of the drunken husband holds a belief on
whether her husband got drunk she must hold a belief whether her husband did
not get drunk, and if she holds a belief in whether he smells like alcohol this must
be related to her beliefs whether he had more than two beers the night before.
In logic this relationship is that of proof 2; given that certain propositions are
taken as true, the truth (possibly the degree of truth in a multivalued logic) of
other propositions is arrived at by proof [Hájek, 1998], however as beliefs express
states of subjective knowledge we should not assume these are related through
proof as the example with the husband and wife illustrates. Rather, following
Cox [1946], Jaynes [2003] we will simply introduce a semantic for a proposition
A given a proposition B is assumed to be true:

A|B (2.2)

Read as A given B is assumed true. We will assume the type of propositions on
which we hold beliefs all have the form of eq. (2.2). Since beliefs are represented

2i.e. a complete logic such as classical propositional logic [Hájek, 1998]



12 Beliefs

as real numbers according to desiderata (I) we will introduce the notation (·)
for the numerical value of the belief, i.e.

(A|B) (2.3)

denoted the conditional belief of A given B or the degree of belief in A provided
that B is true. This type of entailment should also agree with common sense.
If for instance A can be deduced from B, then if we have a high degree of belief
in B clearly we should have a high degree of belief in A. We will capture this
type of intuition in the somewhat informally stated desiderata

(II) Beliefs are related to each other and the relationships be-
tween beliefs must qualitatively agree with commonsense. (2.4)

Evidently a great many things may be assumed under such a vague formulation
and it is more important how the desiderata is invoked than how it is formulated
above.

Notice we are not assuming a causal or logical relationship between the objects
of A and B. To refer back to the example of the drunken husband an example
of a non-causal relationship of A|B may be:

A : Husband was drunk last night (2.5)

B :
Lipstick on collar AND husband sleeping on couch AND
husband smell of alcohol. (2.6)

Finally, if we consider beliefs to be related to each other, we will assume their
relationship must be consistent. If there is more than one way to analyse a
particular problem the result of the analysis must be consistent. Following
Jaynes [2003] we assume the following three meanings of consistency:

(IIIa) If conclusions can be arrived at in more than one way then
all possible ways must lead to the same result.

(2.7)

(IIIb)
One must admit all relevant information. If some types
of information is relevant in simpler cases, the method of
reasoning must consistently admit the same type of infor-
mation in other situations.

(2.8)

(IIIc)
Equivalent states of knowledge must be assigned equivalent
states of belief. That is, if two problems is the same save
labelling we must assign equivalent states of belief to both.

(2.9)
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2.1.2 The product rule

For beliefs to be useful3 it should be possible to relate some beliefs to other
beliefs. Consider the case where we wish to relate our belief in AB|C, or put in
words, A and B given C, to other beliefs. In classical logic the deduction rule
is that of the syllogism:

B is true
B implies A.

A is true. ∴

(2.10)

This suggests one way to evaluate AB|C is to first evaluate our degree of belief
B is true given C, (B|C). Then if B is true the only fact relevant to determine
if AB is true is our belief in the truth of A; since we have assumed B is true
this is (A|BC).

This suggests the relevant degrees of belief are (B|C) and (A|BC). That is, we
consider a relationship between the states of beliefs through a function F as

(AB|C) = F
[
(B|C), (A|BC)

]
(2.11)

This expression may not have sufficient information on the right-hand side,
however this will hopefully be apparent through later inconsistencies. On the
other hand we might consider if we have included to much information and we
could (for instance) have made do with a function only of the beliefs (A|C)
and (B|C), however such an options may be ruled out by considering particular
situations. Consider for instance the case of a flip of a coin where we consider
the following propositions

A : The side up is heads,
B1 : The side down is heads,
B2 : The side down is tails.

and C simply consist of our general knowledge about coins, flips etc. In this
situation it is natural to consider the beliefs (A|C), (B1|C), (B2|C) to be equiv-
alent, however certainly (AB1|C) and (AB2|C) are not and so we need more
information. A fuller treatment of various possibilities for the arguments of F
is given by Tribus [1969].

Returning to eq. (2.11), by symmetry of A and B if eq. (2.11) holds so must

(AB|C) = F
[
(A|C), (B|AC)

]
. (2.12)

3This section, and the remaining the derivation, is derived from Jaynes [2003]. See also
Cox [1946].
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Next consider three propositions A,B,C,D and our belief (ABC|D). If we first
consider BC as a single proposition and apply eq. (2.11) twice and next consider
AB a single proposition and apply eq. (2.11) twice we get

(ABC|D)=F
[
(BC|D), (A|BCD)

]
=F
{
F
[
(C|D), (B|CD)

]
, (A|BCD)

}
(2.13a)

(ABC|D)=F
[
(C|D), (AB|CD)

]
=F
{

(C|D), F
[
(B|CD), (A|BCD)

]}
(2.13b)

since these two expressions must be equal we are left with the functional equation
(note however the comments in section 2.3.4)

F
[
x, F (y, z)

]
= F

[
F (x, y), z

]
. (2.14)

Letting u = F (x, y), v = F (y, z), F1(x, y) = ∂F (x,y)
∂x , F2(x, y) = ∂F (x,y)

∂y and
differentiating the two terms with respect to x and y we obtain

F1(x, v) = F1(u, z)F1(x, y) (2.15)
F2(x, v)F1(y, z) = F1(u, z)F2(x, y). (2.16)

Eliminating F1(u, z) and introducing G(x, y) = F1(x,y)
F2(x,y) we obtain

G(x, v)F1(y, z) = G(x, y) (2.17a)
G(x, v)F2(y, z) = G(x, y)G(y, z). (2.17b)

Here the last equation is obtained from the first by multiplying with G(y, z).
Differentiating eq. (2.17a) and eq. (2.17b) with z and y respectively we obtain

∂

∂z
G(x, y) =

∂

∂z
[G(x, v)F1(y, z)]

= G2(x, v)F2(y, z)F1(y, z) +G(x, v)F12(y, z)

∂

∂y
G(x, y)G(y, z) =

∂

∂y
[G(x, v)F2(y, z)]

= G2(x, v)F1(y, z)F2(y, z) +G(x, v)F21(y, z).

Assuming F12 = F21 (ie. the order of differentiation can be interchanged), the
right-hand side of the two equations are equal and the first equation equal zero
thus G(x, y)G(y, z) is independent of y. The most general differentiable function
which satisfy this condition is

G(x, y) = r
H(x)

H(y)
(2.18)

for a constant r. Inserting this expression into eq. (2.17) we obtain

F1(y, z) =
H(v)

H(y)
F2(y, z) = r

H(v)

H(z)
(2.19)
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Consider small variations in y, z and v = F (y, z), ie. assume y, z, v vary as
τ 7→ y(τ), τ 7→ z(τ), τ 7→ v(τ). Using eq. (2.19) we obtain the differential
equation

dv

dτ
=

1

dv
F (y, z) (2.20)

= H(v)

(
1

H(y)

dy

dτ
+ r

1

H(z)

dz

dτ

)
(2.21)

introducing the function φ(x) =
∫ x
x0
dx 1

H(x) for an arbitrary (fixed) x0 the above
equation has the solutions

φ(v) = φ
(
F [y, z]

)
= φ(y) + rφ(z) + k0 (2.22)

for all constant k0. Returning to our original expression eq. (2.14), F [x, F (y, z)] =
F [F (x, y), z] and applying eq. (2.22) twice on both sides we obtain

φ(x) + rφ(y) + r2φ(z) + 2k0 = φ(x) + rφ(y) + rφ(z) + 2k0 (2.23)

Assuming φ(z) 6= 0 the only solution is r = 1. Accordingly the function F
satisfies

φ
(
F [x, y]

)
= φ(x) + φ(y) (2.24)

Next consider three propositions A,B,C. The above equation implies the rela-
tionship between the state of beliefs (AB|C), (B|C) and (A|BC):

φ[(AB|C)] = φ[(B|C)] + φ[(A|BC)]. (2.25)

Since this relationship must hold in general it must also hold when A and C
are logically equivalent. For instance we might consider the case where A corre-
sponds where the side facing up on an ordinary dice is even and C correspond
to the case where the side facing down is odd. Since these two statements are
equivalent (recall the sum of opposite sides on a die is seven) it must hold that
(AB|C) = (B|C) and (A|BC) = (A|C) and eq. (2.25) reduces to (omitting the
double parenthesis, φ(A|B) ≡ φ

(
(A|B)

)
)

φ(B|C) = φ(B|C) + φ(A|C) (2.26)

Since B could be any other proposition, for instance “There was once life on
Mars”, and assuming φ takes other values than ±∞, this implies our state
of belief for propositions A logically implied by other propositions C we have
assumed to be true is characterized by φ(A|C) = 0.

Now consider the opposite case where some proposition A′ is known to be false
given information C. For instance C corresponds to the case where the side
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facing down on an ordinary dice is odd and A′ is the case where the side facing
up is odd too. In this case assuming C we know A′ is false – accordingly A′B
must be false too and so (A′B|C) = (A′|C). Similarly B does not change the
falseness of A′ given C and so (A′|BC) = (A′|C). In this case eq. (2.25) reduces
to

φ(A′|C) = φ(B|C) + φ(A′|C) (2.27)

for arbitrary B. The only way to make sense of this equation is assuming
φ(A′|C) is either plus or minus infinite. While both choices are possible, we will
assume φ(A′|C) = −∞. The special states of belief 0 and −∞ will be denoted as
certainty. Finally we will introduce a change of coordinates w(x) ≡ exp(φ(x)).
Notice for tautologically true or false proposition w is then 1 and 0 respectively
and eq. (2.25) becomes

w(AB|C) = w(A|BC)w(B|C). (2.28)

2.1.3 Relationship between a proposition and its negation

Next we try to relate the belief in a statement A to our belief in it’s negation
A (in both situations conditional on background knowledge C, that is we are
relating A|C to A|C). Since A determines A, it seem the least restrictive as-
sumption is to assume there is a function S such that S(w(A|C)) = w(A|C).
Notice this requirement relates to the crucial desiderata (I), that is the belief in
a proposition is a single number. If w(A|C) did not determine w(A|C) we would
invariantly obtain a two-dimensional theory where beliefs was characterized by
the degree of belief in A|C and A|C [Shafer et al., 1976], and it is also the
exclusion of such a relationship between our certainty in a proposition and it’s
negation which set the present theory apart from e.g. multivariate logics [Hájek,
1998].

However assume there exists such a function S. Since A = A it must hold

w(A|C) = w(A|C) = S(w(A|C)) = S(S(w(A|C))) (2.29)

and thus

S(S(u)) = u, u = w(A|C). (2.30)

Next consider three propositions A,B,C. Recall the distributive law for log-
ical disjunction: A+B = A B and in particular using the distributive law:
C(CD) = C(C +D) = CD. Now consider the two equivalent ways to compute
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the belief of (AB|C):

w(AB|C) = w(A|C)w(B|AC) = w(A|C)S
[
w(B|AC)

]
= w(A|C)S

[
w(B|AC)w(A|C)

w(A|C)

]
= w(A|C)S

[
w(AB|C)

w(A|C)

]
. (2.31)

Next, notice AB = A(A + B) = AAB = AU with U ≡ AB and that A U =

AAB = A(A+B) = A regardless of B. We can then re-write:

φ(AB|C) = w(AU |C)

= w(A|UC)w(U |C) = S(w(A|UC))w(U |C)

= S

[
w(A|UC)w(U |C)

w(U |C)

]
w(U |C) = S

[
w(A U |C)

w(U |C)

]
φ(U |C)

= S

[
S(w(A|C))

S(w(AB|C)

]
S
[
w(AB|C)

]
. (2.32)

Introducing x = w(A|C) and y = w(AB|C) and combining eq. (2.31) and
eq. (2.32) gives the functional relationship

xS

[
S(y)

x

]
= yS

[
S(x)

y

]
. (2.33)

2.1.4 Solving the functional equation for negation

The function relationship in eq. (2.33) is easiest solved by assuming it is twice
differentiable and non-increasing. Let u ≡ S(y)

x and v ≡ S(x)
y . Differentiating

vrt. x and y gives the following expressions

xS(u) = yS(v) (2.34a)
∂

∂x
: uS′(u)− S(u) = −S′(v)S′(x) (2.34b)

∂

∂y
: −S′(u)S′(y) = vS′(v)− S(v) (2.34c)

∂2

∂x∂y
,
∂2

∂y∂x
:

u

x
S′′(u)S′(y) =

v

y
S′′(v)S′(x). (2.34d)

Multiplying the right and left-hand side of eq. (2.34a) with eq. (2.34d) we obtain

uS′′(u)S(u)S′(y) = vS′′(v)S(v)S′(x). (2.35)
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Solving eq. (2.34b) and eq. (2.34c) for S′(x), S′(y) respectively and substituting
into eq. (2.35) we obtain

uS′′(u)S′(u)

(uS′(u)− S(u))S′(u)
=

vS′′(v)S′(v)

(vS′(v)− S(v))S′(v)
. (2.36)

Recall this hold for arbitrary values of A,B and C. It is easy to verify u and
v can take different values in general, and so for the relationship to hold for all
values of A,B and C the left-hand side and right-hand side of eq. (2.36) must
be constant. Denoting this contant by k we get

S′′(u)

S′(u)
= k

(
S′(u)

S(u)
− 1

u

)
(2.37)

which can be re-written as

∂

∂u
logS′(u) = k

∂

∂u
(logS(u)− log(u)) . (2.38)

Integration gives S′(u) = a0
S(u)k

uk
and so ∂

∂u

(
S(u)−k+1

)
= a0u

−k. It is easily
verified by substitution the solution of this differential equation is

S(x) = (a0x
m + b0)

1
m (2.39)

for m ≡ 1−k and constants a0, b0. Since S(S(x)) = x we must have a2
0 = 1 and

b0 + a0b0 = 0. Consider for a moment the solution a0 = 1. In this case b0 = 0
and so S(x) = x. Inserting into eq. (2.33) results in x yx = y xy , excluding this
possibility. This shows only the solution a0 = −1 is feasible and so we obtain
the relationship

S(x) = (1− xm)
1
m . (2.40)

Using the identity S(S(x)) = x for an arbitrary beliefs w(A|B) we arrive at
w(A|B) = (1− w(A|B)m)

1
m . This implies

w(A|B)m + w(A|B)m = 1 (2.41)

2.1.4.1 Numerical Values

In eqs. (2.26) and (2.27) it was argued somewhat informally known true and
false propositions should have a belief of 0 and 1. As a consistency check this
result can also be derived more easily from eq. (2.31) by letting A = B and
assume a general A to obtain the identity

w(AA|C) = w(A|C)S

[
w(AA|C)

w(A|C)

]
(2.42)
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Let “False” be the false truth-value. Using eq. (2.40) for general A we arrive at

0 = w(False|C) (2.43)

Thus tautologically false propositions have a degree of belief of zero and, by
virtue of eq. (2.40), tautologically true statements have a degree of belief of 1.
To finish the development, notice if w is a function satisfying eq. (2.28) so will
wn for any positive n. Accordingly we can define a new function p(x) = wm(x).
Written using this function the product rule eq. (2.28) and the sum rule eq. (2.41)
becomes

p(AB|C) = p(B|C)p(A|BC)

= p(A|C)p(B|AC) (2.44a)

p(A|C) + p(A|C) = 1. (2.44b)

Thus, if one accepts the desiderata and the derivation, one can conclude that

If a system of beliefs of binary propositions fullfill desiderata
(I),(II),(IIIa),(IIIb),(IIIc) the beliefs must, up to a rescal-
ing, follow the basic rules of probability theory (2.44).

This result was first derived axiomatically and under comparable assumption
by Cox [1946]. An extended discussion is given in Cox [1961] and as mentioned
our presentation follows very closely that of Jaynes [2003]. In section 2.3 we
will discuss the connection between probabilities as discussed so far and other
treatments of probability theory, in particular the use of probability theory in
modern Bayesian theory. However as to not get lost in a formal (and not fully
resolved) discussion we will discuss three examples which highlight how the
theory up to this point can be applied in different situations.

2.2 Examples

The derivation in the previous section left us with the rules of probability theory
eq. (2.44) as well as numeric value of p for two beliefs, namely our belief of what
is tautologically true and false: p(True|C) = 1 − p(False|C) = 1. This is of
course a far cry from any practical applications and the following three short
examples will highlight various aspects of probability theory.

2.2.1 Equivalent states of beliefs

The first example intend to answer what appears to be trivial questions: what is
our belief a flip of a coin will come up heads?, what is our belief a roll of a dice
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come up three? These problems might seem too trivial to even consider, however
nothing derived so far can answer the questions and the answer is not entirely
straight-forward. Furthermore, the assignment of states of beliefs will be the
consideration of chapter 3 and so the coin and dice will serve as an important
introductory exercise. Finally, the ability of the present theory to allow such
a derivation is arguably one of the most important factors that set the theory
apart from other notions of vagueness such as fuzzy theories. The derivation
closely follows that of Jaynes [2003].

2.2.1.1 Mutually exclusive propositions

Consider first three propositions A,B and C and notice the following holds in
ordinary propositional logic

A+B = (A B). (2.45)

This implies by repeated applications of eqs. (2.44a) and (2.44b):

p(A+B|C) = 1− p(A B|C) =1− p(A|BC)p(B|C)

= 1−
[
1− p(A|BC)

]
p(B|C) =p(B|C) + p(AB|C)

= p(B|C) + p(B|AC)p(A|C) =p(B|C) + [1− p(B|AC)] p(A|C)

= p(A|C) + p(B|C)− p(AB|C) (2.46)

For the general case, consider n propositions A1, . . . , An. As suggested by
eq. (2.46) we now prove by induction over n that

p(A1 + · · ·+An|C) =

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

p(Ai1 . . . Aik |C)

 (2.47)

in particular letting A = An and B = A1 + · · · + An−1 and using eq. (2.46)
we have p(A + B|C) = p(A|C) + p(B|C) − p(B|AC)p(A|C). By the induction
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assumption eq. (2.47)

p(A1 + · · ·+An|C) = p(An|C) +

n−1∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n−1

p(Ai1 . . . Aik |C)


− p(An|C)

n−1∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n−1

p(Ai1 . . . Aik |AnC)


=

n∑
i=1

p(An|C) +

n−1∑
k=2

(−1)k+1

 ∑
1≤i1<···<ik≤n−1

p(Ai1 . . . Aik |C)


+

n∑
k=2

(−1)k+1

 ∑
1≤i1<···<ik−1<ik=n

p(Ai1 . . . Aik |C)


=

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

p(Ai1 . . . Aik |C)

 (2.48)

which proves the result.

Suppose the information contained in C implies no two of the hypothesis Ai
and Aj can be true at the same time, for instance the hypothesis may be which
side of a n-sided dice faces upwards. In this case

p(AiAj |C) = δijp(Ai|C). (2.49)

Plugging this into eq. (2.47) all terms with more than two elements vanish and
we arrive at the general result that for all subsets 1 ≤ i1 < · · · < ik ≤ n:

p(Ai1 + · · ·+Aik |C) = p(Ai1 |C) + · · ·+ p(Aik |C). (2.50)

Next, assume in addition to eq. (2.49) that the background information C en-
sures one of A1, . . . , An is true. In this case A1 + · · ·An is a tautology and must
have probability 1 from the discussion in the previous chapter. As a result we
obtain

n∑
i=1

p(Ai|C) = 1. (2.51)

2.2.1.2 Numerical values

So far we have still not arrived at any definite numerical values for beliefs, only
shown if the propositions A1, . . . , An are rendered exhaustive and exclusive on
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the background information C eq. (2.51) must hold. To arrive at numerical
values we will use the two desiderata (IIIb) and (IIIc). The analysis is math-
ematical trivial, but the argument requires some care. To avoid confusion we
will therefore use an example of a dice. Suppose we are considering a roll of a
dice with n = 6 faces and the 6 propositions A1, . . . , An:

A1 : The side face up
A2 : The side face up
A3 : The side face up
A4 : The side face up
A5 : The side face up
A6 : The side face up.

(2.52)

In this case we assume the propositions are exhaustive and independent such
that eq. (2.51) holds. Suppose we now consider two problems. In problem (I) the
propositions are labelled as in eq. (2.52) and give rise to an assignment of belief
pI(Ai|C) to each proposition. The second problem (II) considers a similar set of
propositions A′1, . . . , A′n defined as a permuted version of the first, for instance
by interchanging and :

A′1 : The side face up
A′2 : The side face up
A′3 : The side face up
A′4 : The side face up
A′5 : The side face up
A′6 : The side face up

(2.53)

and this again give rise to an assignment of beliefs pII(Ai|C). Since the first
example only differs from the second in the labelling of the propositions, the as-
signment of belief must be consistent for the two first propositions. In particular

pI(A1|C) = pII(A
′
2|C)

pI(A2|C) = pII(A
′
1|C)

pI(Ai|C) = pII(A
′
i|C) for i ≥ 3.

(2.54)

Clearly this relationship holds whatever C might be and whatever the numer-
ical values may be. We now arrive at a subtle but crucial point: We suppose
the information C is indifferent with regards to the propositions A1 and A2 in
eq. (2.52). Notice this is not to say the dice is unweighted, fair, of equal dimen-
sion and uniform density or that it was throw randomly or from an arbitrary
initial position or from a sufficient height and velocity or by a fair player or
some other incantation often used in these situations: It is difficult to say what
these terms mean and it is natural to suppose no dices are of equal dimension
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or density. Rather, the statement mean the totality of information in C does
not contain any statements which force us to believe more strongly proposition
A1 over A2 or visa-versa. Where this may be somewhat counter-intuitive is if
we (for instance) know the number in a dice are often made by indentation and
this means the density near the side is often lower than near ; we need to
suppose such information is not contained in C.

Suppose C is indifferent with respect to A1 and A2. In this case we should
suppose the assignment of beliefs in problem I is equivalent to that in problem
II regardless of the labelling and so by desiderata (IIIc)

pI(Ai|C) = pII(A
′
i|C) for all i. (2.55)

Comparing eq. (2.54) and eq. (2.55) we arrive at

pI(A1|C) = pI(A2|C) (2.56)

ie. the assignment of belief to and is the same. Applying this argument for
other propositions we arrive at our result:

pI(Ai|C) = pII(A
′
i|C) =

1

n
(2.57)

no doubt more useful than surprising.

2.2.2 The Tuesday paradox

The second example relates to the so-called Tuesday paradox [Gardner, 1959].
Simply stated:

A man has two children. One is a girl born on a Tuesday.
How many daughters do the man have? (2.58)

To solve this riddle, we need to translate it into appropriate propositions. The
first relevant proposition is what we are interested in, namely if the man have
to daughters. In addition to this we also need to encode the information given
in the text. Let the two children be denoted by 1 and 2 (for instance the order
in which they were born). The following set of six propositions are sufficient:

C : The man have two children
B : It is not the case that ‘the man have a child which is a girl born on a tuesday’
G1 : Child 1 is a girl
G2 : Child 2 is a girl
T1 : Child 1 was born on a Tuesday
T2 : Child 2 was born on a Tuesday
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In this language, the information we are given is C and B, and we are interested
in computing

p(G1G2|BC) (2.59)

Using the product and sum rules eq. (2.59) becomes

p(G1G2|BC) =
p(B|G1G2C)p(G1G2|C)

p(B|C)

=

∑
t1,t2

p(B|G1G2t1t2C)p(t1t2|G1G2C)p(G1G2|C)∑
t1t2g1g2

p(B|t1t2g1g2C)p(t1t2g1g2|C)
. (2.60)

The notation
∑
t1
p(At1|C) is shorthand for p(AT1|C) + p(AT1|C). When we

know the sex and day of birth of both children B will be known true or false.
The remaining terms become

p(G1G2|BC) =
p(T1T2G1G2|C) + p(T1T2G1G2|C) + p(T1T2G1G2|C)

2(p(T1T2G1G2|C) + p(T1T2G1G2|C))
+(p(T1T2G1G2|C) + p(T1T2G1G2|C) + p(T1T2G1G2|C))

(2.61)

To proceed requires numerical values. We obtain these by assuming (1) knowing
the sex of a child tell us nothing about the day of week the child was born (2)
knowing the sex or day of the week one child is born tell us nothing nothing
about the sex or day of the week of the other, ie.

p(t1t2g1g2|C) = p(t1|C)p(t2|C)p(g1|C)p(g2|C). (2.62)

Furthermore we assume there is no preferred sex or day of the week, ie. our
reasoning would be the same if the problem was stated with Monday instead of
Tuesday, boy instead of girl. In this case the analysis of equal states of belief
of section 2.2.1 holds and we obtain p(G1|C) = 1

2 and p(T1|C) = 1
7 . Then

eq. (2.61) becomes

p(G1G2|BC) =
6
72 + 6

72 + 1
72

2
(

6
72 + 1

72

)
+
(

6
72 + 6

72 + 1
72

)
=

13

27
. (2.63)

It should however be noticed this is only under the assumption the informa-
tion in (2.58) was correctly captured by the above translation into Boolean
statements and their relationship, see Falk [2011] for a longer discussion of this
point. The name Tuesday paradox stems from possibly counter-intuitive nature
of eq. (2.63). Intuitively one might assume by the independence assumption
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eq. (2.62) that the correct probability is 1/3 (there are four combinations of
boy/girl for the two children and we can rule out the option of two boys), how-
ever that it is the child which is known to be a girl that is born on a Tuesday
means these options are not symmetric. Finding out what this effect is in a
quantitative manner is difficult using a counting argument, however by using
Bayes theorem it is fairly easily translated into simpler questions.

2.2.3 Lotteries and Jesus

The final example illustrates how Bayes theorem can be used in a qualitative
manner to assess the goodness of an argument. It is inspired by a passage
in Strobel [2004] where the philosopher Dr. William Lane Craig discusses the
reasonableness of being sceptical of what some might otherwise consider an
unlikely proposition. In the book, Lee Strobel asks Dr. Craig the following
question regarding the resurrection of Jesus:

“Some critics say that the Resurrection is an extraordinary event
and therefore it requires extraordinary evidence,”, I [Lee Strobel] said.
“Doesn’t that assertion have a certain amount of appeal?”
–“Yes, that sounds like common sense,” he replied. “But it’s demon-
strably false.”
“How so?”
–“This standard would prevent you from believing in all sorts of
events that we do rationally embrace. For example, you would not
believe the report on the evening news that the numbers chosen in
last night’s lottery were 4, 2, 9, 7, 8 and 3, because that would be
an event of extraordinary improbability. The odds against that are
millions and millions to one, and therefore you should not believe it
when the news reports it.” [Strobel, 2004, p. 65].

Many people would likely be sceptical of this argument. After all, if the argu-
ment is true, the husband of the married couple introduced earlier could have
asked his wife to consider the above argument too4: Just because the sequence
of events he described the other night (the secretary who slipped, the accidental
lipstick-smear, the locked-out cell phone, his sudden illness) seems extraordinary
on the surface she should not jump to any conclusions and ask for extraordinary
evidence it did happend that way.

Let us try to investigate the argument using probability theory. First we need
to translate the argument into language we can recognize. The primary events

4Unless ones spouse is very philosophically inclined this is not advisable.
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Dr. Craig asks us to consider are the events Ds0 , s0 = (4, 2, 9, 7, 8, 3) and J
where

Ds : The sequence of lottery numbers actually drawn was s
J : Jesus actually rose bodily from the dead in the first century.

We emphasize these events correspond to what did in fact happen, not what
people claim happened. Now our interest in these claims relates to our belief in
their truth today given what we know. In the case of J what we have available
to assess the claims truth are various historical sources such as manuscripts
of the Bible. Similarly, for Ds0 the information we have access to is what the
newsman said. Accordingly we introduce two additional propositions

Ns0 : The newsman reported the lottery sequence s0

B : The Bible report Jesus rose from the dead.

It will be assumed what Dr. Craig refer to as extraordinary is extraordinary
with respect to the evidence we have available. Accordingly, what we should
evaluate (or compare) the extraordinariness of is then:

p(Ds0 |Ns0Ω) =
p(Ns0 |Ds0Ω)p(Ds0 |Ω)

p(Ns0 |Ω)
, (2.64)

p(J |BΩ) =
p(B|JΩ)p(J |Ω)

p(B|Ω)
(2.65)

where the proposition Ω is shorthand for all other relevant information. To
proceed we need to make additional assumptions. Firstly, we will assume the
chance of a person rising from the dead is approximately the same as winning
the lottery, and we will assume there are n = 106 lottery sequences; I do not
know what a doctor would make of this assumption, but it highlights the more
important aspects of the argument.

Under these assumptions eq. (2.65) becomes

p(Ds0 |Ns0Ω) =
p(Ns0 |Ds0Ω)p(Ds0 |Ω)∑
s p(Ns0 |DsΩ)p(Ds|Ω)

(2.66)

=
p(Ns0 |Ds0Ω)

p(Ns0 |Ds0Ω) +
∑
s6=s0 p(Ns0 |DsΩ)

(2.67)

where the sum is over all possible lottery sequences. We then need to consider
what could possibly be the reason we might hear the wrong lottery sequence; if
we assume a sequence is always drawn, we should consider the possibilities that
the newsman made an error in reading the sequence, that someone transcribed
it falsely, that someone swindled with the machine such that it report the wrong
sequence and so on. We thus introduce the variable:

H : The newsreport of the sequence was honest
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Ie. p(Ns1 |Ds2HΩ) = 1 only if s1 = s2. However suppose there is an error in the
lottery, H. In this case the sequence is made up, and as a simplifying assumption
we assume s2 offers no information regarding which particular sequence the
newsman should read out. Assuming sequences are drawn randomly in the
lottery this amounts to p(Ns1 |Ds2HΩ) = p(Ds1 |Ω) and p(Ds|Ω) = 1

n . Under
these assumptions eq. (2.67) become

p(Ds0 |Ns0Ω) =
p(H|Ω) + p(Ds0 |Ω)p(H|Ω)

p(H|Ω) + p(Ds0 |Ω)p(H|Ω) +
∑
s 6=s0 p(Ds|Ω)p(H|Ω)

= p(H|Ω) +
1− p(H|Ω)

n
. (2.68)

It is interesting to consider some limit cases in this expression. If the announcer
is maximally untrustworthy the above reduce to 1

n . On the other hand if he is
maximally trustworthy it become 1. Compare this to the case of Jesus, making
the assumption a resurrection is as extraordinary as a lottery sequence, p(J |Ω) =
p(Ds0 |Ω) = 1

n and, assuming Jesus rose from the dead, Jesus also had the
foresight to employ reliable Bible writers p(B|JΩ) = 1 then eq. (2.65) reduces
to

p(J |BΩ) =
p(B|JΩ)p(J |Ω)

p(B|JΩ)p(J |Ω) + p(B|JΩ)p(J |Ω)

=
1

1 + p(B|JΩ)(n− 1)
. (2.69)

The qualitative difference between eq. (2.68) and eq. (2.69) should be appar-
ent. If we assume n is large, all that matters when determining if the reported
sequence really did get drawn is how honest we believe the newsreporter is,
not the number of possible sequences. On the other hand for the resurrection
story to be believable it need to be argued the chance of there arising a myth
someone rose from the dead should be about equally extraordinary as someone
actually rising from the dead, given the same background information. We can
then conclude the two examples are not equivalent since, on the assumption the
lottery sequence is reported dishonestly, there is the same chance of the par-
ticular sequence being reported as there would be if the sequence was reported
honestly.

Most people, regardless of their beliefs in the resurrection of Jesus, intuitively
guess the situation of the lottery and the risen Christ are not entirely equivalent.
The advantage of probability theory is that the dissimilarities can be made more
apparent and the type of assumption one needs to make to argue they remain
equivalent becomes more apparent.
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2.3 From basic probability theory to probability
theory

The foundations of probability theory has historically been a controversial sub-
ject centered around the interpretation of probabilities. Why should we care
about that today? A practical answer is the derivation so far which left us with
the basic rules of probability theory eq. (2.44) defined on binary propositions
suffers from the flaw of being an inadequate foundation for most of Bayesian
non-parametrics. This difficulty will be the subject of the following sections.

2.3.1 A brief history of probability

From the dawn of ages hunter-gatherers, farmers and gambling city-dwellers
have been concerned with judgements regarding the behaviour of prey, the
weather and the outcome of bets and games. Randomness and uncertainty
has therefore always been a part of every-day experience. It is on this view
surprising that probability was first scrutinized relatively late and for the most
of human history probabilities and randomness was treated informally. For in-
stance in the writings of the ancient Greeks such as the Atomists Epicurus and
Lucretius (ca. 300 and 50BC) believed the world to be composed of swerving
“atoms” whose behaviour was random but governed by laws [Russell, 1946] and
Aristotle provided the following account in Rhetoric, ca. 350BC:

the probable is that which for the most part happens.
–English translation by Roberts et al. [1954]

However none of this work work involved an explicit study of probability ex-
tending much beyond common-sense intuitions.

The earliest modern accounts of probability can be traced back to around 1654
in a letter exchange between Pierre de Fermat and Étienne Pascal [De Fermat
and Pascal, 1654]. In the exchange they considered the outcome of games such
as when it is a loosing strategy to bet on certain outcomes in repeated throws
of a dice. The next significant development is associated with Bayes and Price
[1763] and de Laplace [1820]. Bayes is credited for introducing the concept of
conditional probabilities and realizing these can be expressed in terms of other
probabilities p(X|Y ) = p(Y |X)p(X)/p(Y ), however his work was significantly
expanded by the mathematician Laplace who is responsible for the mathematical
development of these and other ideas. Laplace offered the following definition
of probabilities:
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The theory of chance consists in reducing all the events of the
same kind to a certain number of cases equally possible, that is to
say, to such as we may be equally undecided about in regard to their
existence, and in determining the number of cases favorable to the
event whose probability is sought. The ratio of this number to that of
all the cases possible is the measure of this probability, which is thus
simply a fraction whose numerator is the number of favorable cases
and whose denominator is the number of all the cases possible.
–Laplace 1814, english translation due to [Laplace and Dale, 1995]

This definition no doubt captures the common-sense intuition behind probabil-
ities and fares well when one for instance considers draws from a game of cards
or rolls of a dice. However if we for instance considering arguably one-off events
(such as if it will rain tomorrow) the definition seems to lead to counter-factual
statements. In addition it has been argued it is difficult to formalize the notion
of “equally possible” without introducing probabilities in some way; as an addi-
tional technical annoyance the definition would seemingly be unable to account
for non-rational probabilities such as 1/

√
2. See Jaynes [2003] for further dis-

cussion. If we focusing on the difficulties which arise from the phrase “equally
possible” in the above definition there are two main avenues one can explore
which persists until today: [Jaynes, 2003, Corfield and Williamson, 2001]

The frequentist view: Which hinge the definition of probabilities on the
outcome of repeated events which we will denote the frequentist view. Crudely
stated, is is that to say e.g. a coin has probability 0.52 of coming up heads is to
say the limit frequency of times the coin come up heads to the total number of
flips converges towards 0.52. This number then reflects a physical property of
the irregularities of the coin and is said to be objective in that another person
could arrive at the same number though another sequence of coin flips.

The subjectivist view: In which probabilities are associated with a state-of-
knowledge of a rational agent about events which are not thought to necessarily
re-occur. Probabilities are either assigned through symmetry considerations
or derived from other probabilities according to the rules of probability theory.
The preceding sections has been an example of a definition of probabilities which
follows the subjective view and this will also be designated the Bayesian view
of probabilities.

The frequentist and subjectivist view crystalized in the 19th century and towards
the beginning of the 20th century. In the first half of the 19th century a number
of mathematicians amongst these Poisson [1837], Cournot [1843] and Ellis [1843]
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introduced many important probabilistic concepts and methods and discussed
the distinction between the frequentist and subjectivist view with an increasing
preference towards the former. Near the end of the 19th century the frequentist
view became predominant and for instance Venn [1866] identifies probabilities
with a frequentist interpretation. For our purpose however the most important
contribution to the frequentist view was the mathematically rigorous foundation
of the frequentist view of probabilities provided by Kolmogorov [1933] which will
be discussed further below.

Turning to the subjectivist view of probabilities, while subjectivist ideas can be
traced back to the beginning of the modern study of probabilities, the modern
crystallization of the subjective/Bayesian view took place in the first half of the
20th century. An important treatment was given by de Finetti [De Finetti, 1937,
de Finetti, 1974]. His approach, which will be discussed further below, was based
on expectations of a rational agent engaged in a betting game. As mentioned
many times, the approach view discussed in this thesis follows Cox [1946] [Cox,
1961] and Jaynes [2003] and is based on analysing natural-language desiderate
a and then derive consistency requirements a rational assignment of degrees-of-
beliefs must obey. It is in this respect worth mentioning the important historical
treatment of probabilities as a general tool for inductive reasoning on (amongst
other things) mathematical theorems by Polya [1954].

This leaves us with three foundations for probability theory: The frequentis-
tic view associated with Kolmogorov [1933], and the two subjectivist/Bayesian
views motivated with the assignment of rational betting odds approach of De
Finetti [1937] and the treatment of rational degrees-of-belief of Cox [1946] and
Jaynes [2003]. In the following these views will be elaborated so as to explore
what practical, mathematical tools they provide and not from the perspective of
their philosophical underpinnings. A reader interested in a more comprehensive
treatment of the interpretations of probability theory and their relationship is
referred to Jaynes [2003] (and references therein) as well the historical treat-
ments of [Corfield and Williamson, 2001, Van Horn, 2003] and Fienberg et al.
[2006].

2.3.2 The Kolmogorov account of probabilities

Andrey Kolmogorov was a mathematician and his approach to probability the-
ory is in the main concerned with establishing a rigorous foundation on which
frequentist probability theory can be build rather than providing a philosophical
interpretation of probabilities. However to motive his idea, suppose we consider
a general set X (keep for instance the example where X ⊆ Rd in mind). Suppose
some procedure selects elements x1, x2, . . . from X at random, independently
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but not necessarily uniformly (the phrases are understood loosely). For instance
suppose X = R and the events are the length of fish captured in a lake, common
sense dictates the length of the fish will tend to fall within a certain interval and
never be negative.

If we then consider a fixed subset of E ⊆ X we can then consider the sequence
of binary events that x1, x2, . . . fall within E:

x1 ∈ E, x2 ∈ E, x3 ∈ E, . . . (2.70)

then, if we wish to use some function pK to define the probability of this event,
i.e. loosely stated

pK(E) = {Probability the next element fall within E} (2.71)

then this function should fulfill certain natural conditions. For instance pK(X ) =
1, pK should be non-negative and suppose E1, E2 ⊂ X and E1 ∩ E2 = ∅ then

pK(E1 ∪ E2) = pK(E1) + pK(E2). (2.72)

For countable finite sets X this construction can be made rigorous without any
problems, however Kolmogorov observed that when X ⊆ Rd one quickly runs
into problems. Consider for instance the Banach-Tarski pardox [Banach and
Tarski, 1924, Tao, 2011] which states that, assuming the axiom of choice is true,
then given the unit ball X = {(x, y, z) ∈ R3|x2 + y2 + z2 ≤ 1} there exists a
partition of X :

X = A1 ∪A2 ∪A3 ∪A4 ∪A5, and Ai ∩Aj = ∅ for i 6= j (2.73)

such that if suitable translations and rotations are applied to the sets A1, A2

and A3, A4, A5 they can be put together again to form two unit balls identical
to X , in clear violation of how any notion of uniform probability on X should
behave. Kolmogorovs solution was to limit pK to only be defined on certain
subsets of X denoted a σ-algebra.

Definition 2.3.1 (σ-algebra). A σ-algebra F of a set X is a subset of the
powerset of X such that: (i) X ∈ F (ii) If A ∈ F then X \ A ∈ F (iii) If
A1, A2, . . . is a countable collection of elements of F then A1 ∪A2 ∪ · · · ∈ F.

The smallest σ-algebra containing the open sets of X is also known as the
Borel-algebra. With this in place we can introduce the Kolmogorov concept of
probabilities

Definition 2.3.2 (Kolmogorov probability). Given a set X and a σ-algebra F
of X a (Kolmogorov) probability is then a function pK : F → [0, 1] fulfilling for
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all E ∈ F and all disjoint countable collections E1, E2, · · · ∈ F

Normalization: pK(X ) = 1 (2.74a)
Non-negativity: pK(E) ≥ 0 (2.74b)

Countable additivity: pK

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

pK(Ei). (2.74c)

Since Kolmogorovs definition of probability requires the σ-algebra to be specified
it is common to specify (X ,F, pK) also denoted the probabilistic triplet.

It is worth noting that Kolmogorovs definition of probabilities departs in three
ways from the probability p of eq. (2.44). Firstly, by virtue of being defined on
sets and not a Boolean algebra of propositions. Secondly, by being defined as a
function of a single event and not a conditional distribution p(A|B) and thirdly,
by countable additive eq. (2.74c).

2.3.3 The de Finetti account of probabilities

De Finetti rejected the idea probabilities should or could reflect an objective
property of the world but subscribed to a subjectivist view where probabilities,
as for C.T. Cox, reflected degree of belief. The result obtained by de Finetti will
be very similar to that of Cox discussed in the introduction and we will therefore
avoid the formal treatment to the next section. De Finetti defined probability
as relating to our propensity for placing bets on propositions in light of certain
information. In particular de Finetti consider the sets of available propositions
to be of the same form as those discussed in the introduction and considered

then considered the probability to be a function pF (A|B) 7→ q ∈ [0, 1] specifying
our propensity of placing a bet on proposition A given information B (compare
to the derivation in the preceding section). This propensity of placing bets was
then analysed under the requirement of being suitable for monetary betting
in an idealized situation known as a Dutch book argument [De Finetti, 1937,
de Finetti, 1974].

A Dutch book argument itself begins with the Dutch Book theorem, which de-
scribe the conditions under which a set of bets of a particular form guarantees a
net loss to one side, i.e. a Dutch Book 5. Following de Finetti, for a proposition
A it is a bet which takes the form indicated in table 2.1. The table indicates the
payoff to a player who buys a bet with a stake S for the price qS such that the

5A Dutch book is a set of odds which guarantee profit for one side regardless of outcome
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H Payoff
True S − qS
False −qS

Table 2.1: Payout matrix for a bet with a stake S over a proposition A. A
player buy a stake in the bet for an amount qS and receives a payout
of S if A is true and otherwise nothing.

player receives an amount S if A is true and otherwise nothing. q is known as
the betting quotients and should be computed by pF . The Dutch book theorem
then says, loosely stated, that if a set of betting quotients, i.e. pF , fails to satisfy
the probability axioms eq. (2.44) there is a set of bets with those quotients that
guarantees a loss to one side.

2.3.4 The Cox account of probabilities

Finally there is the derivation of Cox [1946] discussed earlier which provided us
the same end-point as the Dutch book argument of de Finetti. The probability
function eq. (2.44) will in the following be denoted pC . As mentioned, the
propositions pC is defined on form a Boolean algebra [Jaynes, 2003]. Recall the
definition of a Boolean algebra is a set A of propositions and structure: [Birkhoff
and Lane, 1977]

Definition 2.3.3 (Boolean algebra). A Boolean algebra for a set A is a struc-
ture (A,+, ·, f, t) with two binary operations + and · (“or” and “and”), a unary
operation − (negation), and two distinguished elements f and t (“true” and
“false”) such that for all A,B,C ∈ A the following holds

A+ (B + C) = (A+B) + C, A · (B · C) = (A ·B) · C, (2.75a)
A+B = B +A, A ·B = B ·A, (2.75b)

A+ (A ·B) = B, A · (A+B) = A, (2.75c)
A · (B + C) = (A ·B) + (A · C), A+ (B · C) = (A+B) · (A+ C), (2.75d)
A+ (−A) = t A · (−A) = f. (2.75e)

In anticipation of eq. (2.74c) we will assume the Boolean algebra in question
is always closed under under countable disjunction and conjunction, i.e. if
A1, A2, · · · ∈ A then

A1 +A2 +A3 + . . . ∈ A (2.76a)
A1 ·A2 ·A3 · . . . ∈ A. (2.76b)
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and adopt the familiar notation of abbreviating −A = A and A · B = AB to
be consistent with the notation in the introduction. Recall the semantics of
the conditional belief pC(A|B) is A given B is true. Thus, pC(A|f) would be
undefined. A Cox-Jaynes degree-of-belief based probability is then a function

pC : A× (A \ {f})→ [0, 1] (2.77)

such that pC satisfies that for all A,B,C,Ai, . . . , An such that AiAj = δij and
C 6= f:

Normalization: pC(t|C) = 1 (2.78a)
Non-negativity: pC(A|C) ≥ 0 (2.78b)

Finite additivity: pC

(
n⋃
i=1

Ai|C

)
=

n∑
i=1

pC(Ai|C) (2.78c)

Product rule: pC(AB|C) = pC(A|BC)pC(B|C). (2.78d)

which is just a re-write of the rules eq. (2.44) and the derivation of section 2.2.1
was used to obtain eq. (2.78c).

Comments on the derivation of pC : A technical issue is the function pC is
not necessarily uniquely identified by the Cox desiderata. This was first noticed
by Paris [1994] and extensively discussed by Halpern [1999]. The issue affects
both the derivations of Cox [1946], Jaynes [2003] as well as other treatments
not discussed here [Horvitz et al., 1986, Heckerman, 1986, Aleliunas, 1990] and
arises when transiting from a general functional equation of the form eq. (2.13a):

(ABC|D)=F
[
(BC|D), (A|BCD)

]
=F
{
F
[
(C|D), (B|CD)

]
, (A|BCD)

}
(ABC|D)=F

[
(C|D), (AB|CD)

]
=F
{

(C|D), F
[
(B|CD), (A|BCD)

]}
to the statement it then holds in general for all x, y, z in the codomain of the
assignment of degree of belief eq. (2.14):

F
[
x, F (y, z)

]
= F

[
F (x, y), z

]
.

since in the former equation (which do hold in general) the three propositions
corresponding to x, y, z was assumed to take a particular structural form:

x = (C|D), y = (B|CD), z = (A|BCD) (2.79)

and so the second equation has only been shown to hold for those values of
x, y, z which can be formed by quintets of propositions A,B,C,D of that same
structural form. Halpern [1999] also discusses how this difficulty affects similar
arguments such as Aczél [1966, section 7, theorem 1] and Reichenbach [1950].
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Evidently this is only a potential issue when the allowed triplets (x, y, z) are
restricted in a non-trivial manner by the requirement of being obtainable as the
beliefs of (structured) propositions eq. (2.79). In particular the problem can be
expected to crop up when the image of the degree-of-belief function (·) is finite
and in particular when A is finite. Halpern [1999] constructs an explicit example
for finite A where an assignment of degrees-of-belief satisfy the Cox axioms but
does not correspond to a probability assignment in the usual sense of eq. (2.78).
Paris [1994] avoids the potential problem by postulating an additional axiom
for the assignment of degrees-of-belief (·) namely (in our notation):

Definition 2.3.4 (Paris’ requirement). For all 0 ≤ a, b, c ≤ 1 and ε > 0, there
are propositions A1, A2, A3, A4 ∈ A such that A4 ⇒ A3, A3 ⇒ A2, A2 ⇒ A1,
A3 6= f and

max {|(A4|A3)− a|, |(A3|A2)− b|, |(A2|A1)− c|} < ε (2.80)

and in addition that the degree-of-belief should be contained in the interval
[0, 1]. Notice this formulation differs from Paris [1994] in that he assumes the
propositions takes the structure of a σ-algebra instead of a Boolean algebra
which we will return to in a moment. Neither Paris [1994] or Halpern [1999]
considers this extra requirement to be very aesthetically pleasing and at any rate
the extra requirement of definition 2.3.4 requires A to be infinite. Naturally,
for most practical implications the requirement that A should be infinite is
not of much concern, and arguably if the propositions in A are sufficiently
flexible to allow all (x, y, z) (or a dense subset) to be expressed the requirement
definition 2.3.4 would not be required.

Asides the de Finetti derivation, the rules of probability theory eq. (2.44),
eq. (2.78) has been derived from other starting points which can be roughly
classified as taking the same subjective, degree-of-belief approach to probabili-
ties as Cox [1946]. These include the more throughout treatment of Paris [1994]
which is very similar to the approach of Cox and Jaynes but more throughout
and relates the result to other notions of uncertainty and vagueness as well as
Van Horn [2003] which also provides a variant of the derivation of Cox. Other
approaches worth mentioning is the approach of Dupre and Tipler [2006] based
on retraction mappings which need not assume differentiability when deriving
the sum/product rule however must assume stronger conditions on the set of
propositions A. Hardy [2002] derives the sum and product rule as a special case
of the more general framework of scaled Boolean algebras. Knuth and Skilling
[2012] provides a simple proof in the case A is finite. Zimmermann and Cre-
mers [2011] discusses a general, foundational approach to Cox-type derivations
which includes representing beliefs as matrices or complex numbers. The subtle
distinctions of these approaches cannot be surveyed here in details, however im-
portantly none of these approaches derive the rules of probability theory with



36 Beliefs

countable additivity eq. (2.74c).

2.3.5 Comparing the Kolmogorov and Cox accounts of
probability

Comparing the Kolmogorov probability axioms eq. (2.74) and the derived prop-
erties of the Cox probability assignment eq. (2.78) three observations immedi-
ately comes to mind regarding pK and pC : (i) pK is defined on sets in a σ-algebra
while pC is defined on a (product of) Boolean algebras (ii) pK is a function of one
argument while pC is a function of two arguments (unconditional/conditional
probabilities are taken as the basic building block) and (iii) pK obeys countable
additivity eq. (2.74c) while pC obeys finite additivity eq. (2.78c). Notice pF is
similar to pC in these respects and need not be treated explicitly.

Item (i): The spaces pK and pC is defined on While this may seem to be
a major difference between pK and pC in practice it will not matter too much.
Firstly, the propositions of practical interests in machine learning will be about
numbers and in particular take a form encountered in eq. (2.71). For instance if
we consider the value of a real variable x we can consider a set of propositions
A1, A2, . . . where

Ai = x is contained in ]ai, ai+1]. (2.81)

Secondly, one will in practice have to be careful when specifying the available
collection of sets which can be used to form propositions such as eq. (2.81)
since if we allowed propositions of the form x ∈ E for all E ⊂ X then this
would involve the same difficulties which lead Kolmogorov to define pK on a σ-
algebra. More generally, there are the well-known paradoxes of formal logic such
as Russell’s paradox [Russell, 1903] which prohibits the use of universal sets such
as the set of all true/false propositions. Thirdly, there is Stones theorem [Stone,
1936] which shows a Boolean algebra is isomorphic to a σ-algebra defined in an
appropriate space, however we will omit the details here. Taken together, the
use of a Boolean algebra of propositions A or a σ-algebra F is not an important
distinction from a formal perspective and from a practical perspective, when
working with numbers, one would invariably end up with effectively using σ-
algebras.

Item (ii): Conditional probability vs. absolute probabilities Kol-
mogorov probability is a function of a single argument whereas the Cox prob-
abilities are always conditional. This too does not appear to impose a severe
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restriction on Kolomogorov probabilities since conditional probabilities can be
represented by an appropriately choosen Kolmogorov probability. To take the
most basic example, assume X is discrete, A,B ∈ F and pK(B) > 0 we can
define:

pK(A|B) ≡ pK(A ∩B)

pK(B)
. (2.82)

However the general treatment of conditioning, especially in the Bayesian non-
parametrics litterature, is a difficult subject which will not be discussed here.
A throughout introduction can be found in Orbanz [2012, appendix C]. The
upshot is that while having conditional probabilities as the fundamental building
block in pC , this does not to our knowledge limit Kolmogorov probabilities
since the most involved examples of conditioning is done within the Kolmogorov
framework (see below).

Item (iii): Finite and infinite additivity The most important distinc-
tion between the de Finetti/Cox/Jaynes approaches to probabilities and that
offered by Kolmogorov is the distinction between finite/infinite additivity (com-
pare eq. (2.74c) to eq. (2.78c)). Jaynes [2003] takes the pragmatic approach of
only working with infinite sets when they can be seen as a well-defined limit
of finite sets, for instance the Poisson distribution can be seen as a limit of
the biomial distribution, however in modern non-parametrics when considering
prior processes on infinite-dimensional objects such as probabilities, functions
and measures infinite additivity play an indispensable role and an approach to
probability which only allows finite additivity is simply insufficient.

2.3.6 Discussion

The Cox/Jaynes approach to probabilities provides a compelling motivation for
the use of probabilities to quantify degrees of belief and the result is an ele-
gant and quantitative framework for reasoning about uncertain propositions.
The original proof however suffers from certain limitations. Firstly, for general
spaces X the proof requires extra, unnatural conditions such as that of Paris
[1994] definition 2.3.4 to be formally correct and in this case X is prevented from
being finite. When applying probability theory to truly large spaces, such as all
those of interest in modern non-parametrics, infinite additivity is indispensable
and must be assumed at some point. For this reason the Kolmogorov account
of probabilities should at this point be considered the more fundamental and
the more serious treatments of probability theory and non-parametrics such as
Kallenberg [2002, 2005] has measure theory at its center and are thus firmly
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within the Kolmogorov approach. Textbook treatments of probability which at-
tempts a de Finetti or Cox-type motivation must also assume infinite additivity
at some point. For instance the textbook “Bayesian Theory” of Bernardo and
Smith [2000] starts out with a very throughout discussion of a de Finetti inspired
decision-oriented approach to probabilities, then assumes infinite additivity and
proceeds within standard measure theory and the Kolmogorov framework for
the main technical content of the book. “Bayesian Data Analysis” of Gelman,
Carlin, Stern, and Rubin [2014] discusses several foundations of probabilities
but takes a pragmatic approach:

Rather than engage in philosophical debates about the foundations
of statistics, however, we prefer to concentrate on the pragmatic ad-
vantages of the Bayesian framework, whose flexibility and generality
allow it to cope with very complex problems.
[Gelman et al., 2014, p. 4]

In the remainder of this thesis we too will assume a standard measure-theoretical
foundation of probability theory.

One should not be to dissuaded by these issues. The degree-of-belief interpre-
tation of probabilities is most natural when formulated on a large, fine-grained
set of natural-language type propositions (such as the three examples in sec-
tion 2.2), and it is arguably in this setting the philosophical questions of what
probabilities reflects and are to be interpreted is the more relevant. In this case
the Paris requirement definition 2.3.4 is not unreasonable and it will be pos-
sible to derive pC and thus provide answers to these questions. A pragmatic
person could then feel justified in accepting a degree-of-belief interpretation of
probabilities for propositions such as those discussed in section 2.2 and accept
the full measure-theoretical account as a mathematical extension with the pro-
viso of being guarded in interpreting the non-parametric results as representing
degrees-of-belief and hoping further mathematical developments may discover
a Cox-type argument which contains the full measure-theoretical account of
probabilities.

Our view is then the rules eq. (2.44) has something important to say about
reasoning under uncertainty for propositions which are well-defined (i.e. can
potentially be known to be true or false with certainty), and we will in short
refer to the interpretation of probabilities as belief, degrees of belief or plausible
reasoning as a Bayesian view on probabilities and no longer distinguish between
pK and pC . An approach to machine learning where these concepts play a central
role (or perhaps more simply, where the models are based on manipulating
probabilities using eq. (2.44) will be called a Bayesian or probabilistic approach
to machine learning.
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Given the many alternate ways of handling uncertainty[Zadeh, 1965, 1973,
Dempster, 1967, Shafer et al., 1976] it is surprising why a Bayesian approach to
uncertainty has played such a central role in machine learning. Potential rea-
sons for this may be pragmatic, that is probability theory is invariantly easier to
apply possibly because it is algebraically simple (compared to two-dimensional
theories) or that probability theory admits powerful symmetry arguments for
assigning probabilities (more on this subject in the following chapter).

Alternatively, the reason may be that the data itself suggests uncertainty in
the form of probabilities. For instance it may be proposed that input data, on
the most natural interpretation, consists of definite logical propositions (e.g. a
sensor measures a definite value or a particular test is true or false) and the
propositions we typically wish to reason about either are binary propositions
(for instance unobserved data, in which case they are of the same form as the
input data) or alternatively we want to treat them as a binary proposition out
of scientific habit or to make quantitative statements. For instance, suppose
the system should decide if an image contains a dog; we could treat this as a
fuzzy proposition (the dog-ness of the dog), however the actual images will be
labelled either as dog or not a dog, and so any fuzzyness will have to be both
introduced and removed at intermediate stages of the analysis.

This is however partly a pragmatic concern and reasoning under uncertainty in
history, trials or every-day life is reasoning about the truth of propositions for-
mulated in every-day language. Linguistic is often thought to be best analysed
in terms of non-classical logic [Zadeh, 1975]. One should therefore be careful
not assume the success of Bayesian methods as a tool for handling uncertainty
in machine learning naturally translates into an argument in favor of treating
all uncertainty using Bayesian methods, let alone human reasoning in general.

2.4 Probabilistic methods in machine learning

We have so far relied on somewhat stringent arguments when deriving and ap-
plying the rules of probability theory. However we will now simply assume the
reader is familiar with elementary probability and measure theory and feel con-
fident the previous arguments apply in this setting too. A general references to
the use of probabilities is Pitman [1993] and references focusing on an proba-
bilistic methods for machine learning are Gelman et al. [2014] and Bernardo and
Smith [2000]. A reader interested in advanced references from the perspective
of measure theory include Rosenthal [2006] and Kallenberg [2002]. To introduce
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standard notation which will be used later for a real variable x we use

x ∼ N (µ, σ2) (2.83)

to denote the variable is drawn from a normal distribution with density and
probability distribution

p(x|µ, σ2) ≡ N (x;µ, σ2) =
1√

2πσ2
e−

1
2σ2

(x−µ)2 (2.84)

p(dx|µ, σ2) ≡ p(x|µ, σ2)µ(dx) (2.85)

where dx is a small region around x and µ is the Borel measure. When the
distinction is important we will typically use large P for the probability distri-
bution.

2.4.1 Models

The previous examples all contained a loose division between what was assumed
known (such as it was untrue the man had no girl born on a Tuesday, the
sequence of lottery numbers reported in TV and so on) and the quantities of
interest (if the man had two girls or the actual lottery sequence drawn). Loosely
speaking the variables assumed to have fixed values will be denoted data and
the variables we wish to compute probabilities of are denoted the parameters,
however we stress this is only a convention. In this language the computation
one is often interested in performing takes the form

p(θ|y,Ω) =
p(y|θ,Ω)p(θ|Ω)

p(y|Ω)
=

p(y|θ,Ω)p(θ|Ω)∫
dθ′ p(y|θ′,Ω)p(θ′|Ω)

. (2.86)

Where data has been denoted by y and parameters by θ. For convenience Ω
will often be suppressed. How θ relates to y, that is the specifics of the joint
distribution p(y, θ|Ω) in eq. (2.86) will be denoted the model. p(θ|Ω) is often
denoted the prior and p(y|θ,Ω) the likelihood. The following example illustrates
these definitions.

2.4.2 A simple network model

Consider a n × n matrix A. If element ij is denoted Aij , the matrix may be
taken as representing a network of n vertices such that there is a edge between
vertex i and j iff. Aij = 1. We will assume the network is symmetric and
contains no self-edges, that is, Aij = Aji and Aii = 0.
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Next we should consider a model for the network, i.e. how A is related to a
some parameters θ: p(A, θ|Ω). There is no unique answer to how this distribu-
tion should be defined and so one is left with an enormous literature on network
modelling, some of which we will discuss in chapter 6. Recall in the past ex-
amples we had a clearly defined hypothesis we wished to examine (Ds0 , J and
so on), however in most applications we are only given the data and need to
specify a hypothesis. A common strategy for finding a good hypothesis is to
consider either how the data may have arisen from a physical process or how
one might plausibly describe the data. For networks, the first option is often
not feasible and so most literature takes the descriptive approach. One benefit
of this approach is if the model is motivated as a description of the data it can
lead to results which are easily interpretable.

Consider as an example a simple social network of friendships in a school. In
this case the n vertices i = 1, . . . , n corresponds to pupils and there is an edge
between two pupils i and j if they are reported as friends, Aij = 1. An intuitive
way to describe a friendship network might be as a collection of groups (or
communities) of children such that two children in the same community are more
likely to be friends than two children in different communities. For instance it
might be the boys and girls often report same-sex friendships or, for a larger
network, children within the same school or institution are more likely to be
friends than children from different schools or institutions.

Suppose there are K groups labelled labelled 1, . . . ,K and denote by zi ∈
{1, . . . ,K} the group child i belongs to. A simple assumption is the proba-
bility of friendships is determined by the groups the children belong to and
nothing else. For instance if child i belong to group k and child j to group ` the
probability of a friendship between i and j can be assumed to be constant θk`.
In this case

p(Aij |zi = k, zj = `) = θk` (2.87)

Using θ as shorthand for (θk`)k≤` and z = (zi)
n
i=1 the assignment of all children

to groups we obtain by the product rule:

p(A, θ, z) = p(A|θ, z)p(θ|z)p(z) (2.88)

Next we turn our attention to p(θ|z). The most convenient choice is to assume
the collection θk` is iid. and each follow a Beta distributed. For z we can assume
there are K groups and each child is assigned to a group independently of the
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rest. The various terms become

p(A|θ, z) =
∏

1≤i<j≤n

θAijzizj (1− θzizj )
1−Aij (2.89a)

p(θ|z) =
∏

1≤k≤`≤K

Γ(b1)Γ(b2)

Γ(b1 + b2)
θb1−1
k` (1− θk`)b2−1 (2.89b)

p(z) =
1

Kn
(2.89c)

where b1, b2 > 0 and K are assumed to take fixed values. Such parameters are
typically called hyperparameters. A condensed way to describe the model is how
it might be used to construct a network randomly (models which easily admit
such a description are called generative models). The following equations are
equivalent to eq. (2.89)

for i = 1, . . . , n zi ∼ Categorical

(
1

K
, . . . ,

1

K

)
(2.90a)

for 1 ≤ k ≤ ` ≤ K θk`|z ∼ Beta (b1, b2) (2.90b)

for 1 ≤ i < j ≤ n Aij |θ, z ∼ Bernoulli
(
θzizj

)
. (2.90c)

This type of model is commonly known as a Stochastic Block Model (SBM) (see
[White et al., 1976, Holland et al., 1983, Wasserman and Anderson, 1987]) and
most of the work in this thesis will revolve around issues easily motivated from
the SBM. For instance the above model suffer from some limitations such as the
fixed choice of K. This limitation can potentially be overcome in a number of
different ways, for instance by flipping a coin until it come up heads (say b flips)
then choose K as the b’th prime, however much work in the past decade on
Bayesian methods in machine learning has focused on applying non-parametric
methods from probability theory which attempt to address this question in a
more general manner, and we will describe some of these in chapter 4. Next
there is the issue on the particular form of the network model, we will discuss
some alternatives in chapter 6. Having chosen a model one can easily assign a
probability to each partition z using the sum and product rules

p(z|A) =

∫
dθ p(z, θ, A)

p(A)
. (2.91)

While this provides an analytical expression for what we are interested in com-
puting it entails difficulties both in how to represent this distribution (the num-
ber of possible partitions is very large) and, in general, how to carry out the in-
tegral over the parameters θ. These issues are addressed using sampling schemes
(in particular Markov chain Monte Carlo) which will be discussed in chapter 5.
It might seem at the present point Bayesian methods is about figuring out a
particular model (by which we simply mean joint probability density) and ap-
plying eq. (2.86), however as we have already seen in section 2.2.1 the problem
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of arriving at beliefs and the logical consistency requirements eq. (2.44a) and
eq. (2.44b) are not equivalent, in particular it required the additional desider-
ata (IIIb) and (IIIc). Since the major goal of a Bayesian approach to machine
learning can be said to be about arriving at beliefs this point deserves some
attention and this will be the subject of the next chapter.
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Chapter 3

Assigning Beliefs

Any complex situation in science or practical life involve forming, assessing or
updating beliefs of future or past events, causal mechanisms, intentions and
other complex hypothesis. If we restrict ourselves to situations where we can
accept the analysis of the past chapter the problems all involve, in one form or
another, the assignment of beliefs to appropriately formulated propositions.

The mathematical formalism of probability theory (the consistency requirements
eq. (2.44a) and eq. (2.44b)) allow us to analyze the relationship between states
of beliefs, however it cannot in itself be used to assign beliefs (see section 2.2.1).
This is necessarily so, for the theory aim to describe all possible states of belief
allowed by the desiderata and so this class of possible beliefs should be as broad
as possible. Put in a different way, the theory allow us to express the degree
of belief of some propositions in light of our degree of beliefs in other propo-
sitions, however this relationship should hold regardless of what the degree of
belief of those other propositions happen to be and the theory must be able to
accommodate this flexibility.

Certainly the consistency requirements eq. (2.44a) and eq. (2.44b) may be used
to rule out some states of belief as incompatible with each other, say, to believe
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about three propositions A,B,C

p(AB|C) = 0.9 (3.1)
p(A|C) = p(B|C) = 0.1 (3.2)

however this will not tell us how likely we should believe the propositions are.

3.1 The maximum entropy principle

The problem of assigning numerical values to beliefs may be treated in one of
two ways. The first way is to treat the problem of arriving at beliefs as an
issue which must be resolved pragmatically and on a case-by-case basis; the
analysis of Jesus and the lottery in section 2.2.3 is an example of an application
of probability theory without definite initial states of belief, as is an application
of Bayes theorem in machine learning where priors are assigned based on purely
pragmatic consideration. One can then either hope large amounts of data will
drown out any larger effects on the result or alternatively interpret the results
qualitatively.

The second approach to the problem is to search for a general theory of assign-
ing beliefs. The treatment of mutually exclusive propositions exemplified by the
dice in section 2.2.1 was one such example and as we noted it required the addi-
tional desiderata (IIIb) and (IIIc), not necessary for arriving at the consistency
requirements eq. (2.44). In this chapter we will persue this later program and
attempt to derive a more general framework for assigning numerical values to
probability than we have seen so far.

Historically, an important leap far beyond the analysis of the dice was taken
in 1957 in two seminal publications by E.T. Jaynes [Jaynes, 1957a,b] (see also
Jaynes [2003]). Jaynes provided a rule, the maximum entropy principle (MEP),
for assigning numerical value to probabilities when only partial information is
available. This rule is fundamentally tied into Jaynes account of probabilities
as beliefs (the same which we have followed in chapter 2) and his original work
sought to re-interpret statistical physics as a form of inference where what is
being inferred are states of belief about a physical system.

Before discussing the proposal it should be said this program has been a source
of controversy in parts of the physics community. Jaynes himself give a personal
account of the controversy and objections in Jaynes [1978]; other objections on
the use of maximum entropy in statistical physics is given by Penrose [1979],
Dougherty [1993], Buck and Macaulay [1991], D’Agostini [1999].
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3.1.1 Arriving at beliefs in machine learning

The MEP is not only controversial in the context of statistical physics but has
also been the subject to critical discussion and controversy when applied as
a principle of inference, see for instance Shimony [1985b], Cardoso Dias and
Shimony [1981], Van Fraassen [1981], Van Fraassen et al. [1986]. It can be
taken for granted some method of assigning numerical values to beliefs must be
admitted, at the very least one that admit the ”obvious” result of the dice in
section 2.2.1. Furthermore the many successful applications of the MEP within
statistical mechanics indicate its potency for analyzing assignment numerical
values to degrees of belief under partial information [Jaynes, 2003, 1978, Caticha,
2008].

In this section, rather than focusing on the objections, we will give a positive
treatment of the problem of arriving at beliefs in a format loosely following that
of the previous chapter.

For a reader familiar with the MEP and statistical physics it should be noted the
scope of this section is greater than how the MEP is usually applied in machine
learning. We are interested in the MEP as the unique method of statistical infer-
ence fulfilling certain consistency requirements. To put this concretely, consider
a standard machine-learning task where data is denoted by x ∈ X , parameters
by θ ∈ Θ and background-information Ω. In slightly unfamiliar terms, our “job”
as practitioners of machine learning is to arrive at beliefs over θ ∈ Θ, that is, a
distribution (deliberately not written as conditional on x) ppost(θ) which may
or may not depend on x and Ω.

In a typical Bayesian setting the solution to this problem consist of two steps:

(i) First, come up with a model p(x, θ|Ω) = p(x|θ,Ω)p(θ|Ω). This task includes
defining the space Θ.

(ii) Secondly, apply Bayes theorem to get

p(θ|x,Ω) =
p(x|θ,Ω)p(θ|Ω)

p(x|Ω)
(3.3)

and consider the left-hand side of Bayes theorem as the beliefs over various
parameters θ ∈ Θ (i.e. ppost(θ) in the previous formulation).

The MEP will typically enter as part of step (i) when assigning the prior p(θ|Ω).
This interpretation of Bayes theorem as the only tool for arriving at beliefs is
however not implied by eq. (2.44) and the chapter will rather propose the MEP



48 Assigning Beliefs

as a general tool for inference that (in some cases) will imply the two-step
procedure above and sometimes something else.

This view of the MEP as a tool of inference can already be found in Jaynes
[1957a,b], however it was first given an axiomatic approach by Shore and John-
son [1980], see also Skilling [1988, 1989] as well as Uffink [1995] for a discussion
on these past approaches and their relationship.

The derivation we will present here, along with interpretation and discussion,
will in the main follow the work of Caticha and Giffin [2006] which inspired this
chapter, though the reader should be aware there are some deviations in sec-
tion 3.3.3.1. It should be noted the exact status of the present theory and inter-
pretation is still (at least to our knowledge) controversial and especially unique-
ness (see the following section) has been the subject of flawed proofs [Shore and
Johnson, 1980, Tikochinsky et al., 1984b,a, 1985] as pointed out by Shimony
[1985a], Johnson and Shore [1985], Uffink [1995]. A simple proof for uniqueness
is also claimed in the appendix of Uffink [1995], however this proof too seems
to contain unclear points.

Finally, we would like to draw attention to the excellent book-length notes of
Caticha [2008] containing a much longer discussion on the present theory and
its interpretation.

3.2 Formulating the problem

What we seek is a tool for arriving at beliefs. As for the derivation of Bayes
theorem we will attempt to take an axiomatic approach: We will first clarify
the meaning of the statement “arrive at beliefs”, then we will arrive at cer-
tain desiderata such a process must fulfill and show how they define a unique
procedure.

Firstly, to talk of arriving at beliefs implies most of the theory in chapter 2.
For simplicity we denote by x all variables of interest and X the set of all valid
settings of x. That is, if we are considering a set of n propositions, A1, . . . , An, x
will be a n dimensional binary vectors and in the more familiar situation of data
and parameters outlined in eq. (3.3) x will stand for both data and parameter
vectors. Accordingly what we are interested in is a distribution p over the space
X .

Secondly, the statement “to arrive” implies change. In general terms, we consider
a situation where we go from some past state to a new state p. Consider what
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the past state may consist of: As a minimum, suppose we have access to a past
state of belief q of X based on careful deliberation. In this case it seems we
should at least admit the state of belief implied by q into the past state. How
if we really have no informed past beliefs? In the case where X is discrete and
finite, the derivation section 2.2.1 holds and we can conclude q(x) = 1

|X | . If X
is not finite, or even worse, if it is continuous X = Rd, we could loosely argue if
X is divided into non-overlapping sets of equal size an uninformed assignment
of belief should not give any preference for any subset implying q(x) ∝ 1, and
this suggest we should always include a prior state of belief q in our background
knowledge. Other related arguments on the meaning of ignorance is discussed by
Jaynes [2003], and we will so always assume our background knowledge include
some past state of belief q.

Thirdly, there must be something which restricts how we change our beliefs,
that is, affect our choice of p given the past state q. This information could
potentially come in many forms. For instance some states of belief p may lead
to decisions which are more costly than other and this would induce a degree of
preference amongst various p’s, however it is difficult to formalize this in general.
One simple situation we must be able to accommodate is if we are told something
for certain about x, for instance the value of a particular coordinate. Then our
new state of belief p cannot reasonably be one which expresses uncertainty about
this coordinate or that the coordinate takes a different value than was observed.

Inspired by this example we will limit ourselves to the simplest situation, namely
where some p’s can be ruled out explicitly or, put in another way, we are only
interested in probability assignments p ∈ C where C is the set of allowed assign-
ments. The formulation of the problem at this stage is now [Shore and Johnson,
1980]

Given a past state of beliefs q and a set of possible beliefs
C (possibly not containing q) how do we select select which
p ∈ C best represent our new state of belief?

(3.4)

Or put more simply, how do we update our beliefs from q to p given p must lie
in C.

The problem will be solved by posing certain desiderata this update operation
must fulfill. Some of these desiderata are similar in spirit to desiderata (I), (II),
(IIIa),(IIIb),(IIIc) considered in chapter 2 and which we naturally must insist
holds due to our assumptions beliefs are represented by probabilities, however
since the new desiderata refers to an update operation and not a set of beliefs
their exact meaning will differ and we will therefore state them anew.
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3.2.1 Desiderata for a method for updating beliefs

We will assume the following desiderata for the update operation eq. (3.4).
While the past references disagree slightly in the formulation, the desiderata
were first stated in their the present formulation in [Shore and Johnson, 1980]
(notice however application of the desiderate (C3) is controversial[Uffink, 1995]).
Later references that make use of the desiderate in their present (or nearly
present) form are Uffink [1996], Caticha and Giffin [2006], Caticha [2008]. Notice
the requirements have been stated (or partially stated) several times in other
contexts. For instance coordinate invariance (desiderata (C2)) form the basis
for Jeffreys method of assigning priors [Jeffreys, 1946, Jaynes, 2003]; arguments
for the use of entropy as the only measure of uncertainty (and so as a unique way
to quantify uncertainty) may be found in Khinchin [1957], Faddeev [1956]; these
arguments echo aspects of the seminal work of C. Shannon in 1948 [Shannon,
1948].

More related to the result taken here, and the axiomatic approach of Shore and
Johnson [1980], are axiomatic approaches to the principle of minimum cross-
entropy which can be found in Fotheringham and O’Kelly [1989], Kannappan
[1972] in the discrete case and in Johnson [1979] for the continuous case which
is also what we will consider.

With these comments the desiderata considered are [Shore and Johnson, 1980,
Caticha and Giffin, 2006, Caticha, 2008]:

(C1) Uniqueness: The update procedure should yield unique re-
sults.

(3.5)

That is, the choice of p based on q and C should be unique. This desiderata can
be compared to the desiderata beliefs corresponds to a single number.

(C2) Invariance: The choice of coordinate system should not
matter.

(3.6)

For discrete X , this requirement is simply invariance under relabelling. If we
assume the densities q and p are well-behaved and X is not discrete, it is the
requirement a smooth bijective change of coordinates Γ : X → X should not
affect which conclusions we arrive at, see also the approach of Jeffreys [1946] to
assigning prior distributions. This desiderata naturally echos desiderata (IIIb)
and (IIIc) used for the dice.

(C3)

System independence: If two systems are known to
be independent, and one receive independent information
about them, it should not matter if one treat them sepa-
rately or jointly.

(3.7)
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This desiderata consider the case of two systems a, b such that X = Xa × Xb,
q(xa, xb) = qa(xa)qb(xb) and the constraints defining the set C apply to each of
the two systems a, b independently. In this case the desiderata states we may
update each system independently or jointly and the two results must agree. A
very important point we will return to later is that we know the systems to be
independent and how this is intepreted quantitatively. It was this interpretation
which was a matter of controversy in the work of Shore and Johnson [1980] and
we will here follow the interpretation given by Uffink [1996], Caticha and Giffin
[2006].

(C4)
Subset independence: It should not matter whether one
treats disjoint subsets of system states in terms of separate
conditional densities or in terms of the full density.

(3.8)

This locality requirement state (for instance) if we update q to p1 based on some
constraint C, then if we resieve additional information which does not affect a
subset S ⊆ X then updating q to p2 while taking into account both constraints
should yeild equal results on S: p1(x|x ∈ S) = p2(x|x ∈ S).

Finally there is the principle of minimal update [Caticha and Giffin, 2006]

(C5) Minimality: Beliefs should be updated only to the extend
required by new information. (3.9)

This is for instance saying if q is admissable, that is, q ∈ C, we should not update
our beliefs, p = q.

3.3 Derivation of the maximum entropy principle

We will make the assumption not only to solve the problem of best selecting p
from q and C, but rather that we will consider the problem of finding a functional
S (which takes value in the real numbers) which induce an order of preference
for all p1, p2 ∈ C through

S[p1, q] ≥ S[p2, q] implies p1 is at least as preferable as p2. (3.10)

In this case the optimal p ∈ C can be selected1 as that which is most pre-
ferred [Shore and Johnson, 1980, Caticha, 2008]

p = arg max
p′∈C

S[p′, q]. (3.11)

1Assuming C is closed; we will not treat this and similar technical difficulties here.
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The next sections will consist of applying the desiderata (C1)–(C5) to the func-
tional S in order to derive an algebraic expression. This is the same approach
taken by Shore and Johnson [1980], however our derivation will follow that of
Caticha and Giffin [2006] more closely. We emphasize the arguments are taken
from this reference unless otherwise stated and our deviations from their proof
are very minor. A reader only interested in the application may skip to eq. (3.85)
and section 3.3.5.

3.3.1 Implications of Locality

Desiderata (C4), subset independence or locality, is understood intuitively as
the following restriction: Suppose the set of states X is decomposed into non-
overlapping regions X = X1 ∪ X2 and we impose the restriction the belief the
system is in states x ∈ X1 is constant, for instance

∫
x∈X1

dx p(x) = r ∈ [0, 1],
then imposing additional restrictions on p which only depend on the value p
take in X2 will not affect the most preferred value of p in X1.

This requirement may seem to technical to be accepted at face value so it will
be illustrated with an example where X is discrete. Consider

X1 = "Mammals" = ("Cat", "Dog", "Cow")

X2 = "Birds" = ("Eagle", "Chicken", "Hummingbird").

Suppose we have some prior belief of the above 6 classes of animals, q(x), and
based on this we arrived at a certain belief of the animal in question, p(x) (for
instance p(x) = 1

6 for all x). If we are told the belief the animal was one of the
“Mammals” was correct and should not change, p(X1) = 1

2 , however we should
take into account the restriction the expected flying altitude of the animal is
100m: ∑

x∈X2

CruisingAltitude(x)× p(x) = 100m (3.12)

this information can for instance make us suppose the animal is more likely to
be an eagle than a chicken, however it should not make us believe more strongly
the animal is a dog than a cow.

Desiderata (C4) decouple the functional S and restrict it to have the form

S[p, q] =

∫
x∈X

dx F (p(x), q(x), x) (3.13)

for a function F : R+ × R+ ×X → R. The argument follow Caticha and Giffin
[2006].
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Consider the discrete case X = {xi}ni=1. In this case S is fully characterized as
a function of the 2n parameters pi ≡ p(xi), qi ≡ q(xi):

S[p, q] ≡ S(p1, . . . , pn, q1, . . . , qn). (3.14)

Assume X is divided into two non-overlapping parts X = X1 ∪ X2. Since X is
discrete, denote the indexes corresponding to each set by D1 and D2:

X1 = {xi}i∈D1
and X2 = {xi}i∈D2

. (3.15)

and denote by p(1) = (pi)i∈D1
and p(2) = (pj)j∈D2

the probabilities correspond-
ing to the two sets. We will use the informal notation p = (p(1), p(2)).

The subset independence desiderata (C4) state any constraint on X2 will not
affect the conditional assignment of probabilities in X1:

p(xi|xi ∈ X1) =
pi∑
i∈D1

pi
. (3.16)

Restrictions on X2 may however affect the numerical value of a pi, i ∈ Xi by
an overall multiplicative factor. To deal with this complication we will assume∑
i∈D1

pi = r is constant and the restriction imposed on X1,X2 mean p(1), p(2)

are restricted to manifolds parameterized by u ∈ Rd1 , 1 ≤ d1 ≤ |D1| − 1 and
v ∈ Rd2 , 1 ≤ d2 ≤ |D2| − 1

u 7→ p(1)(u) = (pi(u))i∈D1
, v 7→ p(2)(v) = (pj(v))j∈D2

, (3.17)

and such that
∑
i∈D1

pi(u) = r,
∑
j∈D2

pj(v) = 1 − r are constant for all u, v.
The most preferred value of p is then p̂ ≡ (p̂(1), p̂(2)) ≡ (p(1)(û), p(2)(v̂)) where
each coordinate ûk û fulfill

∂

∂uk
S[p, q]

∣∣∣∣
(u,v)=(û,v̂)

=
∑
i∈D1

∂S[(p(1), p(2)), q]

∂pi

∂pi(u)

∂uk

∣∣∣∣
(u,v)=(û,v̂)

= 0. (3.18)

Introducing fi(p, q) = ∂S[p,q]
∂pi

, keeping the parametrization of p(1) fixed and
noticing this must hold for any restrictions imposed on X2, particulary to re-
stricting p(2) to take any value that sum to 1−r, we have by subset independence
for each k and p(2) such that

∑
j p

(2)
j = 1− r:∑

i∈D1

fi(p
(1)(û), p(2), q)hik = 0 where hik = ∂pi(u)

∂uk

∣∣∣
u=û

. (3.19)

The only way for this to hold for general linear combinations is if the functions
fi(p, q), i ∈ D1 are independent of pj , j ∈ D2 and since the domains D1,D2 are
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arbitrary we must have that ∂S
∂pi

is independent of all (pj)j 6=i and so eq. (3.14)
become

∂S[p, q]

∂pi
= fi(pi, q1, . . . , qn). (3.20)

A similar argument can be carried through for q. Consider a small variation of
q on D2. That is a small vector δq(2) such that

n∑
j=1

δq
(2)
j = 0 and for j ∈ D1: δq

(2)
j = 0. (3.21)

In this case eq. (3.20) become for i ∈ D1

∂S[p, q]

∂pi
= fi(pi, q + δq(2)). (3.22)

However from the subset independence desiderata local changes to D2 must have
no effect on D2 and comparing to eq. (3.19) for this to have no change on the
local maxima of p(1), fi must be independent of δq(2). In this case eq. (3.22) is
simply

∂S[p, q]

∂pi
= fi(pi, qi). (3.23)

Integrating we get

S[p, q] =

n∑
i=1

Fi(pi, qi) + F̃ (q). (3.24)

for functions Fi and F̃ . Since F̃ does not affect the choice of p it may be omitted
without loss of generality. Taking the continuum limit we arrive at eq. (3.13):
S[p, q] =

∫
x∈Xdx F (p(x), q(x), x).

3.3.2 Implications of coordinate invariance

Next we show coordinate invariance (C2) implies eq. (3.13) take the form

S[p, q] =

∫
dx q(x)Φ

(
p(x)

q(x)

)
(3.25)

for some function Φ. The argument follow that of Caticha [2008] with some
minor variations. Consider maximizing the objective eq. (3.13):

S[p, q] =

∫
x∈X

dx F (p(x), q(x), x) (3.26)
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under a single linear constraint
∫
dx a(x)p(x) = 0. By calculus of variation it

follows the posterior satisfy (for all x):

λ+ µa(x) + F1(p(x), q(x), x) = 0 (3.27)

for Lagrange multipliers λ, µ and using the convention from chapter 2 that F1

correspond to the derivative of F with respect to the first coordinate. Next,
consider any smooth coordinate transformation Γ : X → X , i.e. x = Γ(y). The
transformed prior density q′(y) is then

q(x) = q′(y)

∣∣∣∣det(∂y∂x
)∣∣∣∣ = q′(y)J(x) (3.28)

where J(x) is the determinant of the Jacobian of the inverse of the mapping Γ
evaluated at x. We also assume the transformed constraint function a′ fulfill
a′(y) = a′(Γ(x)) = a(x). In these coordinates and for all y:

λ′ + µ′a′(y) + F1(p′(y), q′(y), y) = 0 (3.29)

for new Lagrange multipliers λ′, µ′. By insertion eq. (3.29) is easily seen to be
equivalent to

λ′ + µ′a(x) + F1(J−1p(x), J−1q(x),Γ(x)) = 0. (3.30)

Combining eq. (3.30) and eq. (3.27) we arrive at

F1(J−1p(x), J−1q(x),Γ(x))

F1(p(x), q(x), x)
=
λ′ + a(x)µ′

λ+ a(x)µ
. (3.31)

Next suppose X = ∪Kk=1Xk is a partitioning of X and q(x), a(x) is constant in
each Xk. Since the system of coordinates carry no information it follows p(x)
must be constant too in each Xk. In this case for any fixed transformation
eq. (3.31) reduces to

for all x ∈ Xk:
F1(J−1(x)pk, J

−1(x)qk,Γ(x))

F1(pk, qk, x)
= Ck. (3.32)

for constant Ck. Suppose in the region Xk there are two subsets A,B ⊂ X such
that the mapping Γ is the identity Γ(x) = x for x ∈ A and has J(x) = 1 for
x ∈ B but is not the identity. Considering x ∈ A, the left-hand side of eq. (3.32)
is 1. Thus Ck = 1 within X and so for x ∈ B:

for all x ∈ B:
F1(pk, qk,Γ(x))

F1(pk, qk, x)
= 1. (3.33)

For this to hold in the general case F1 must be independent of x. Next suppose
Γ is still the identity on A but an arbitrary smooth transformation on B. In
this case

for all x ∈ B:
F1(J−1(x)pk, J

−1(x)qk)

F1(pk, qk)
= 1. (3.34)
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For eq. (3.34) to hold for arbitrary transformations and so arbitrary J−1(x) it
follows F1 can only depend on the ratio of it’s arguments, i.e. there is a function
h̃ such that

F1(x, y) = h̃

(
x

y

)
(3.35)

which implies the general solution

F (x, y) = xh

(
x

y

)
+ v(y) (3.36)

for functions h and v. Since the function v will not affect the minimum it may
be omitted. Introducing Φ(x) = xh(x) we obtain eq. (3.25).

3.3.3 Subsystem independence

The next step is to limit the functional form of Φ in eq. (3.25). We will first show
due to desiderata (C3) the available choices of Φ limit S to be equivalent (up to
monotone transformations which preserve order such as scaling and translation)
to the following Rényi entropy-like functions [Rényi, 1962] parameterized by
η > −1 (in the following we will simply denote this as a Rényi entropy):

S[p, q] = Uη[p, q] =
1

η(1− η)

(
1−

∫
dx p(x)

(
p(x)

q(x)

)η)
. (3.37a)

It is instructive to examine the limits η → 0 and η → −1, the former will be of
particular interest later. Taylor expanding in η and making use of log(1 + ε) ≈
ε+O(ε2) and xε ≈ 1 + ε log x+O(ε2) we obtain by l’Hôpital’s rule for η → 0
(see [Hardy et al., 1952])

lim
η→0

Uη[q, p] = lim
η→0

1

1− 2η

d

dη

(
1−

∫
dx p(x)

[
1 + η log

p(x)

q(x)

])
= −

∫
dx p(x) log

p(x)

q(x)
. (3.38)

And for η → −1

lim
η→1

Uη[q, p] = lim
η→1

1

η(1− η)

(
1−

∫
dx q(x)

(
p(x)

q(x)

)η+1
)

= lim
η→1

1

1− 2η

d

dη

(
1−

∫
dx p(x)

[
1 + (η + 1) log

p(x)

q(x)

])
=

∫
dx q(x) log

p(x)

q(x)
. (3.39)
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For other limiting cases see Uffink [1995], Wootters [1981].

Before addressing the general result we need to formalize the notion of desider-
ata (C3), system independence. Loosely speaking, system independence mean
systems which are independent must have independent solutions, that is, if they
are treated independently or jointly they will lead us to select the same poste-
rior. The intuition behind this requirement is simple. Suppose there are two
systems a, b composed of two blackjack tables, one in Las Vegas and the other
at a casino in Alpha-Centauri and suppose we have prior belief qa and qb on
the state of the tables xa, xb which is independent: qab(xa, xb) = qa(xa)qb(xb).
Then if we receive two pieces of independent information, one which only relate
to table a and one which only relate to table b, we will draw the same conclusion
about the tables if we treat them jointly or independently.

3.3.3.1 Formalization of subsystem independence

There is a subtle point in how to formalize subsystem independence which high-
lights some important aspects on appropriately processing restrictions raised by
Uffink [1995]. In Shore and Johnson [1980] the axiom was given the following
interpretation: Consider again two systems a, b with prior densities qa, qb and
assume we obtain new information in the form of two constraints on a and b,
for instance ∫

dx pa(x)fa(x) = 1

∫
dx pb(x)fb(x) = 1 (3.40)

Let Ca and Cb be the space of distributions satisfying eq. (3.40) and Cab the
space of joint distributions pab(xa, xb) satisfying both requirements marginally,
that is if pab ∈ Cab:

∫
dxb pab(·, xb) ∈ Ca and

∫
dxa pab(xa, ·) ∈ Cb. According

to Shore and Johnson [1980] subsystem independence means either processing
the two systems independently or separately will result in the same posterior
density. Specifically if

pa = arg max
p∈Ca

S[p, qa] (3.41a)

pb = arg max
p∈Cb

S[p, qb] (3.41b)

pab = arg max
p∈Cab

S[p, qaqb] (3.41c)

then pa(xa)pb(xb) = pab(xa, xb) for all xa, xb.

The key point is the following: In the above treatment we merely assumed our
prior belief was independent and the information we received referred to the
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marginal distribution over the systems a, b, however in this case we would do
better by formulating subsystem independence to refer to that situation and not
use the formulation that “the systems are independent”.

The problem is that simply because we do not a-priori believe two systems
are dependent (that is, our prior belief factorize: qab = qaqb), and we obtain
independent information, it is much less clear why we should require our final
state of belief to be independent too. After all, it might be the case the systems
were in fact dependent and we would certainly not have erred in having a
posterior belief with some dependency!

To give an example analogous to Uffink [1995], consider a system composed of
two hands a, b and the state of the system refer to the skin color of the hands
which can be either black or white. We assume all four states of coloring of the
hands have equivalent probability of 1

4 . Now we are given the (independent)
pieces of information that “Hand a (or b) is attached the secretary of the prime
minister in Brazil”. Assuming we do not know anything about the skin color of
the secretary of the prime minster in Brazil this tell us nothing about the color
of each hand a,b, however we would certainly now suspect the hands have the
same color, whatever it is!.

We could criticize the above argument by saying our background information
that the same person has the same color of hands would have made our factorized
prior impossible, or should have resulted in us considering a more complicated
model from the outset. This might be the case, however the problem still re-
mains that the only reason we should admit a desiderata such as subsystem
independence is if we feel compelled to do so, and the only reason we would feel
truly compelled to do so is if the systems are actually known to be independent,
e.g. if one hand is known to be in China and the other hand is known to be
in France. Following Karbelkar [1986], Uffink [1995] we will therefore assume
“system independence” refer to some physical or logical property which implies
the posterior too factorizes:

pab(xa, xb) = pa(xa)pb(xb). (3.42)

Specifically, subsystem independence means the following two optimization tasks
should give equivalent results

(i) Determine the distribution pab(xa, xb) = pa(xa)pb(xb) according to

arg max
pa∈Ca,pb∈Cb

∫
dxa qa(xa)Φ

(
pa(xa)

qa(xa)

)∫
dxb qb(xb)Φ

(
pb(xb)

qb(xb)

)
(3.43)
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(ii) Determine the distribution pab(xa, xb) = pa(xa)pb(xb) according to

arg max
pa∈Ca,pb∈Cb

∫
dxadxb qa(xa)qb(xb)Φ

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
(3.44)

Notice this is a much weaker requirement than that of Shore and Johnson [1980].

3.3.3.2 Consequence of subsystem independence

Having arrived at a formal translation of system independence we are now ready
to show the functional eq. (3.27):

S[p, q] =

∫
dx q(x)Φ

(
p(x)

q(x)

)
(3.45)

corresponds to a Rényi entropy Uη. Historically, the first proof this was so was
by Shore and Johnson [1980], however as argued above this proof assumes a
too strong definition of independence, namely in that it uses a formulation of
system independence which is stronger than implied by the desiderata. The
second proof is due to Uffink [1995], however this proof too seem to contain a
difficulty. In [Uffink, 1995, p. 258] it is assumed for a system of 3 states and
two densities q2, p2 that: q2(xi)

p2(xi)
= α for i = 1, . . . , 3. It follows α = 1, however

the proof rest on characterizing a linear form by varying α. This is likely due
to a typesetting issue or a misunderstanding on our part, however we have been
unable to tell which. The final proof is due to Caticha and Giffin [2006] which
we follow below, however we will slightly extend the first part of the argument.

Consider first the case where the belief about systems a, b are obtained inde-
pendently according to method (i), eq. (3.43) under the constraints eq. (3.40).
In this case

Φ̇

(
pa(xa)

qa(xa)

)
= µafa(xa) + κa (3.46a)

Φ̇

(
pb(xb)

qb(xb)

)
= µbfb(xb) + κb (3.46b)

for Lagrange multipliers µa, µb and κa, κb. Next we treat the systems jointly
according to method (ii), eq. (3.44). In this case the variational problem becomes

δ

[
S[papb, qaqb]− α

∫
dxadxb (pa(xa)pb(xb)− 1)

−λa
∫
dxa (fa(xa)pa(xa)− 1)− λb

∫
dxb (fb(xa)pb(xb)− 1)

]
. (3.47)
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For our purpose we only need to consider the variation with respect to pa(xa)
and pb(xb):

Da(xa) ≡
∫
dxb pb(xb)Φ̇

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
= λafa(xa) + α (3.48a)

Db(xb) ≡
∫
dxa pa(xa)Φ̇

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
= λbfb(xb) + α. (3.48b)

Multiplying eq. (3.48) by pb(xb) and pa(xa) respectively, summing over xa and
xb and using that the constraints eq. (3.40) normalize to 1 we obtain eq. (3.51)
with the definitions eq. (3.49) and eq. (3.50):

Q[pa, pb] ≡
∫
dxadxb pa(xa)pb(xb)Φ̇

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
(3.49)

λ ≡ λa = λb. (3.50)
Q[pa, pb] = λ+ α. (3.51)

Using eq. (3.51) and letting Q be shorthand for Q[pa, pb] we can eliminate the
unknown multipliers in eq. (3.48):

Da(xa) = λfa(xa) +Q− λ = λ(fa(xa)− 1) +Q (3.52a)
Db(xb) = λfb(xb) +Q− λ = λ(fb(xb)− 1) +Q. (3.52b)

Eliminating λ in eq. (3.52) and simplifying gives

Da(xa) = Q+
(Db(xb)−Q)(fa(xa)− 1)

fb(xb)− 1
(3.53)

Inserting the definition of Da(xa) from eq. (3.48a) into eq. (3.53) and re-ordering
the terms on the left-hand side we obtain∫

dxb pb(xb)Φ̇

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
= fa(xa)

Db(xb)−Q
fb(xb)− 1

+
−Db(xb) +Qfb(xb)

fb(xb)− 1
.

(3.54)

Taking the functional derivative with respect to pb(xb) on both sides of eq. (3.54)
and using the assumption the optimum found using method (i) and (ii) must be
equivalent to eliminate fa(xa) using eq. (3.46) we obtain:

Φ̇

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
+
pa(xa)pb(xb)

qa(xa)qb(xb)
Φ̈

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
= Φ̇

(
pa(xa)

qa(xa)

)
Mb +Kb

(3.55)

where Mb and Kb are defined as

Mb ≡
1

µa

δ

δpb(xb)

[
Db(xb)−Q
fb(xb)− 1

]
(3.56)

Kb ≡
δ

δpb(xb)

[
−Db(xb) +Qfb(xb)

fb(xb)− 1

]
− κaMb. (3.57)
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Notice that in the argument of the functional derivatives in the definition of Mb

and Kb the parameter xa is integrated out. Taking the functional derivative
with respect to pb(xb) does not change that. Accordingly Mb and Kb are not
functions of xa. Thus, if we differentiate eq. (3.55) after xa and solve for Mb we
obtain

Mb =

[
d

dxa
Φ̇

(
pa(xa)

qa(xa)

)]−1

×
[
d

dxa

(
Φ̇

(
pa(xa)pb(xb)

qa(xa)qb(xb)

)
+
pa(xa)pb(xb)

qa(xa)qb(xb)
Φ̈

(
pa(xa)pb(xb)

qa(xa)qb(xb)

))]
.

(3.58)

Since the expressions on the right-hand side are functions of ya ≡ pa(xa)
qa(xa) and

yb ≡ pb(xb)
qb(xb)

so is Mb. However since

0 =
∂Mb

∂xa
=
∂ya(xa)

∂xa

[
∂Mb(ya, yb)

∂ya

]
(3.59)

hold for arbitrary prior beliefs qa(xa) it follows ∂Mb(ya,yb)
∂ya

= 0. Accordingly
we can consider Mb to be a function of yb alone and write Mb ≡ Mb(yb); a
similar argument show Kb ≡ Kb(yb) too and considering the system a allows
us to define Ma(ya) and Ka(ya). Using the symmetry of the left-hand side of
eq. (3.55) we arrive at

Φ̇

(
pa(xa)

qa(xa)

)
Mb(yb) +Kb(yb) = Φ̇

(
pb(xb)

qb(xb)

)
Ma(ya) +Ka(ya). (3.60)

From here on the rest of the argument is also found in Caticha and Giffin
[2006]. Consider the case where the space of xa and xb are equivalent and we
have the same prior information qa = qb and the same constraints fa = fb.
In this case it follows by eq. (3.46) the optimal values are equal too and we
can choose µa = µb ≡ µ and κa = κb ≡ κ. It also follow by definitions that
Ma(y) = Mb(y) ≡ M(y), Ka(y) = Kb(y) ≡ K(y). We can then consider
eq. (3.60)

Φ̇(yb)− κ
µ

M(ya) +K(ya) =
Φ̇(ya)− κ

µ
M(yb) +K(yb). (3.61)

Computing the derivative ∂
∂yb

of eq. (3.61) to obtain eq. (3.62) and ∂2

∂ya∂yb
to

obtain eq. (3.63) we get by rearranging:

Φ̈(yb)M(ya) = Φ̇(ya)Ṁ(yb) + K̇(yb) (3.62)

Ṁ(ya)

Φ̈(ya)
=
Ṁ(yb)

Φ̈(yb)
. (3.63)
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Keeping yb fixed and considering eq. (3.63) a function of ya we can integrate
and obtain:

M(ya) = c0Φ̇(ya) + d0 (3.64)

for constants c0 = Ṁ(yb)

Φ̈(yb)
and d0. Plugging this into eq. (3.62) and using

eq. (3.63) we have

K̇(yb) = Φ̈(yb)
(
c0Φ̇(ya) + d0

)
− Φ(ya)Ṁ(yb)

= Φ̈(yb)

(
Ṁ(yb)

Φ̈(yb)
Φ̇(ya) + d0

)
− Φ(ya)Ṁ(yb)

= d0Φ̈(yb) (3.65)

K(yb) = d0Φ̇(yb) + f0 (3.66)

for constant f0. Substituting this into eq. (3.60) we obtain

Φ̇(yayb) + yaybΦ̈(yayb) = c0Φ̇(ya)Φ̇(yb) + d0

[
Φ̇(ya) + Φ̇(yb)

]
+ f0. (3.67)

Since this equation must hold for general problems we can consider a particular
problem in which yb = pb(xb)

qb(xb)
take the value 1. Fixing yb to 1 and considering

y ≡ ya we obtain

Φ̇(y) + yΦ̈(y) = c0Φ̇(y)Φ̇(1) + d0

[
Φ̇(y) + Φ̇(1)

]
+ f0. (3.68)

Taking the derivative of this equation with respect to y and defining η ≡ c0Φ̇(1)+
d0 − 1 this reduces to

y
...
Φ(y) = (1− η)Φ̈(y). (3.69)

Recall the objective is to determine Φ. It is easy to see eq. (3.69) behaves
differently when integrated if η = 0 or η = −1 (The case η = 1 is not interesting
and will not be considered). We treat the different possibilities for η below

The case η 6= −1, 0 Integrating eq. (3.69) twice we finally obtain

Φ̇(y) = uyη + v. (3.70)

The above was derived under the assumption yb = 1 and need not hold for all
yb. Indeed, plugging eq. (3.70) into eq. (3.67) result in the necessary conditions

u(1 + η) = c0u
2 (3.71a)

0 = c0uv + d0v (3.71b)

v = c0v
2 + 2d0v + c. (3.71c)
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The solution u = 0 result in a order of preference independent of the distribution
p and can be ruled out. There remain three non-trivial solutions

u =
1 + η

c0
v =
−d0

c0
f0 =

d0(1− d0)

4c0
. (3.72)

Inserting this into eq. (3.70), integrating and inserting the solution of Φ into the
definition of S[p, q] in eq. (3.46) we obtain

Φ(y) =
1

c0
yη+1 − d0

c0
y + C (3.73)

S[p, q] = Uη[p, q] =
1

c0

∫
dx p(x)

(
p(x)

q(x)

)η
− d0

c0
+ C (3.74)

which is equal to the desired result up to a linear transformation.

The case η = 0 If η = 0 it is easy to verify eq. (3.69) and eq. (3.46) has the
solution

Φ(y) = u′y log y + v′y + w′ (3.75)

S[p, q] = U0[p, q] = u′
∫
dx p(x) log

p(x)

q(x)
+ v′ + w′ (3.76)

which is equivalent to a linear transformation of the ordinary conditional en-
tropy.

The case η = −1 Finally if η = −1 we arrive at the solution

Φ(y) = u′′ log y + v′′y + w′′ (3.77)

S[p, q] = U−1[p, q] = u′′
∫
dx q(x) log

p(x)

q(x)
+ v′′ + w′′ (3.78)

which is equivalent to a linear transformation of the (reverse) conditional en-
tropy.

3.3.4 Selecting the right entropy

Having shown the desiderata naturally point to the order of preference S[p, q]
as being a Rényi entropy-like function Uη characterized by η it is natural to
ask which value of η is the correct one. This endeavor face both hindrance
and encouragement. The hindrance is the desiderata considered so far cannot
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fix η since it can be shown all possible values of η will satisfy them (see for
instance Uffink [1995], Karbelkar [1986]). Fortunately there is also good news.
If the desiderata are only satisfied by a single type of functional (up to order-
preserving transformations) characterized by a single parameter we are able to
treat the problem empirically.

In our case there is overwhelming physical evidence that η = 0 from thermody-
namics Jaynes [1957a,b, 1989, 2003] which force us to either accept η ≈ 0, or
if we suggest a value of η very different from 0, then we must either showing
how these applications are defective or show some physical considerations ex-
empt these cases from one of the considered desiderata. For completeness, we
will briefly sketch one such argument based on the weak law of large numbers
and subsystem independence (desiderata (C3)). The argument was first consid-
ered by I. Csiszár in [Bernardo, 1985, p. 83] (see also Grendár Jr and Grendár
[2003]), however our presentation will follow that of Caticha and Giffin [2006],
Caticha [2008].

Consider a set of n systems and assume each system can be in m distinct states
i = 1, . . . ,m. Each system is given identical priors qi ≡ q(i) and the posterior
distributions, pi, are each subject to a linear constraint such as

m∑
i=1

pifi = E. (3.79)

A typical example of this situation is a finite Ising spin lattices with k spins [On-
sager, 1944, Lenz, 1920] where (assuming no symmetries) m = 2k and the above
constraint would correspond to the energy. The system can now be treated in
two ways.

Independent treatment Assume η is at it’s correct value and letting CF
be all posteriors fulfilling eq. (3.79), the correct (most preferred) posteriors can
then be found by maximizing the order of preference

popt = arg max
p∈CF

Uη[p, q] (3.80)

Joint treatment We could also imagine preparing a large number of equiva-
lent spin systems and allowing them to thermalize by bringing them into contact
with a heatbath with the same temperature as the single system. If we measure
the state of each system at any given point, we expect (in the limit of many
systems) that the number of systems found in any given state i, ni, should be
proportional to the frequency we expect from the single system case and the
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average energy found in the n systems is equal to the energy constraint in the
single-system case:

p̃i ≡
ni
n

(3.81)

Ẽ ≡
m∑
i=1

p̃ifi (3.82)

and p̃i → pi, Ẽ → E for n→∞. Ignoring the equality constraint eq. (3.79) and
only considering the prior distribution, the probability of a single observation
of frequencies p̃ = (nin )i is given by the multinomial distribution

pn(p̃|q) =
n!∏m
i=1 ni!

m∏
i=1

qnii ,

m∑
i=1

ni = n. (3.83)

Using Stirlings approximation log n! = n log n−n+ log
√

2πn+O( 1
n ) we obtain

1

n
log pn(p̃|q) ≈

m∑
i=1

ni
n

log
ni
nqi
−

m∑
i=1

log

√
ni
n
− (n− 1) log

√
2πn

= Uη=0[p̃; q]−
m∑
i=1

1

2n
log p̃i −

n− 1

n
log
√

2πn. (3.84)

In the large-n limit the entropy-term will dominate, and deviations from the
true frequency will be more and more disfavored. If we introduce Lagrange
multipliers to satisfy the energy constraint eq. (3.79) for the entire ensemble the
argument becomes slightly more complicated because the values of E that can
be realized will depend on n, however intuitively the most preferred distribution
in the joint case is obtained by maximizing the η = 0 entropy subject to a linear
constraint in a similar fashion as Jaynes [1957a]. A more rigorous treatment of
these issues is given by I. Csiszár in [Bernardo, 1985, p. 83].

Since per assumption the joint and independent treatment should be equivalent
we can conclude η must be equivalent for the joint and independent treatment
and thus we arrive at the familiar result for the order of preference S [Caticha
and Giffin, 2006, Caticha, 2008].

S[p, q] = Uη=0 = −
∫
dx p(x) log

p(x)

q(x)
(3.85)

3.3.5 Bayes rule as a special case of ME

Consider again the situation outline in section 3.1.1 where we are given a data
vector x ∈ X and we wish to use an observation of x to draw conclusions about
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a vector of parameters θ ∈ Θ. An examples could be where x corresponds to
a sequence of flips of a coin and θ corresponds to the probability the next flip
is heads. Suppose we observe a particular sequence of flips, xo, and based on
these observations we wish to infer the probability of various values of θ. We
are thus given two pieces of information

(i) There is some non-trivial relationship between x and θ which describe how
a-priori plausible we consider the joint observation of two values of x and
θ to be: q(x, θ).

(ii) After we have observed the data we know the data vector x takes a definite
value xo.

The information we observe a particular value of xo affect our beliefs of θ. If
for instance we observe x = xo = (“heads” , “heads” , “tails”) then we cannot
afterwards believe x = (“tails”, “heads”, “tails”). If we denote our beliefs after
observing xo by the distribution po(x, θ) we must rule out those beliefs where x
take another value than xo. In particular it must hold for po(x) =

∫
dθ po(x, θ):

po(x) = δx−xo (3.86)

and we denote by C the distributions p(x, θ) which satisfy this constraint:

C =

{
p :

∫
dθ p(x, θ) = δx−xo

}
. (3.87)

While clearly smaller than the set of all distributions on X × Θ, this set of
distributions contain all distributions with a density of the form δx−xoµ(θ) where
µ is an arbitrary density of θ. We can now apply the above machinery and use
eq. (3.85) to assign an order of preference on all posterior distributions p(x, θ)
subject to C. In particular the most preferred distribution po is given by

po = arg max
p∈C

S[p, q]. (3.88)

The set eq. (3.87) might appear slightly discomforting, however consider any
given value of x, x′ ∈ X . If x′ happens to be equal to xo then a distribution
p ∈ C should have support on x′, p(x′) > 0. On the other hand if x′ 6= xo then
p(x′) = 0. We can write this as follows:

for all x′ ∈ X : p(x′) = δx′−xo (3.89)

Now recall p(x′) =
∫
dθ p(x′, θ). We can re-write the left-hand side of the above

expression in the following manner:

for all x′ ∈ X :
∫
dxdθδx−x′p(x, θ) = δx′−xo . (3.90)
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Notice the above has the form of one linear equality constraint for each x′ ∈ X .
Optimizing eq. (3.85) under eq. (3.90) (and introducing one lagrange multiplier
λx′ for each x′ ∈ X ) we obtain the variational problem

δ

{
S[p, q] + α

(∫
dxdθ p(x, θ)− 1

)
+

∫
dx′ λx′

(∫
dxdθδx−x′p(x, θ)− δx′−xo

)}
.

(3.91)

Taking the functional derivative and maximizing we arrive at

p(x, θ) =
1

Z
q(x, θ) exp(λx) = q(θ|x)

1

Z
q(x) exp(λx) (3.92)

where Z is a normalization constant. The constants λx can be fixed by inserting
eq. (3.92) into eq. (3.90) to obtain

q(x′)

Z
exp(λx′) = δx′−xo . (3.93)

Inserting eq. (3.93) into eq. (3.92) results in

p(x, θ) = δx−xoq(θ|x). (3.94)

This expression is clearly marginally equivalent to q(θ|xo), consistent with sim-
ply applying Bayes rule.

It is apparent the above framework reduce to the maximum entropy principle
Jaynes [1957a,b] if the linear constraints are of the usual sort and the prior q
is chosen uniformly. However the above principle allow mixing constraints with
observed data; it is by allowing such mixing it can be said to generalize the
maximum entropy principle and Bayes updating [Caticha and Giffin, 2006].

While the form eq. (3.94) might appear ugly, the above treatment give a more
accurate description of learning: In a standard description of Bayesian learning
it is common to distinguish verbally between q(θ) and q(x|θ) (the prior and the
likelihood), however here it is treated as a single object q(x, θ) which capture all
relevant information available before observing data. After observing the data
we are left with eq. (3.94); this object provide a better representation of what
we know after observing the data than p(θ|xo), namely how plausible different
values of the parameters are and also what data was actually observed.

This result is encouraging in another way too. Suppose we first observe some
data x1 and then x2. Denoting all data by x = (x1, x2), the inference we should
like to draw about the parameter θ is

q(θ|x1, x2) ∝ q(x1|x2, θ)q(x2|θ)q(θ) (3.95)
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Consider sequential updating of our beliefs q by first observing x1 (to q1(θ|x1))
and then x2 (to q2(θ|x2)). Omitting some details the updating based on eq. (3.11)
would give:

q2(θ|x2) ∝ q(x2|θ)q1(θ|x1) (3.96)
∝ q(x2|θ)q(x1|θ)q(θ). (3.97)

This result show sequential updating is equal to Bayes updating eq. (3.95) in the
case where the data is marginally independent conditional on the parameters.

While conditionally independent models such as the above play a very central
role in machine learning, it is worth keeping in mind the derivation is not simply
applying Bayes rule and in general there are cases where treating the constraints
in different order give different results. In this case they are said to be noncom-
muting, see Caticha [2008], Caticha and Giffin [2006] for further discussion and
an example.

3.4 Application of the MEP to Bayesian Dropout

So far we have argued under certain assumptions, desiderata (C1)–(C5), there
exist a single unique order of preference for updating beliefs, namely the (neg-
ative) Kullback-Leibner divergence. However there still remains the question
which constraints are relevant. For instance in the example of the coin in sec-
tion 3.3.5 it is apparent no other constraint except for the (canonical) data
constraints should be imposed. On the other hand, if we consider a situation
where other constraints are relevant (such as an energy constraint as in an ideal
gas[Jaynes, 1957a,b]), the theory certainly allow us to impose additional data
constraints, but it is in this context hard to imagine a situation where we actu-
ally had such data and would be interested in the resulting posterior.

We suggest this might be due to simply looking at the wrong place for con-
straints. Consider the canonical situation where expectancy constraints of the
form eq. (3.79) are relevant, e.g. energy constraint such as for the Ising spin
model or in an ideal gas. If we try to see this in a machine learning perspec-
tive the particles in the ideal gas, i.e. their position and momentum, is what
we would expect to measure. Accordingly we are easily lead into thinking we
should look for a situation where we have (some) partial observation of data
(position and momentum) and in addition a constraint also expressed on the
data. However in this case the data and constraints compete for degrees of free-
dom, i.e. if we observe all the data an expectancy constraint such as eq. (3.79)
expressed on the data will be fully determined and will either be irrelevant or
lead to a conflicting state of information.
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Posed in this way it is natural to not look at the data but at the parameters of
the model as the place where constraints might apply. This lead to two lines
of thought: Either the parameters represent something physical, for instance
gender and days of week as in the example with the girl born on a Tuesday
in chapter 2. In this case constraints should represent some physical fact in
themselves, i.e. representing an energy or magnetization constraint. This bring
us back to the situation outlined in the previous paragraph only with the ad-
ditional complication statistical models do not usually come with parameters
with such a rigid physical role (this is leaving out the additional problem from
where we would know the value of the expectation, i.e. the right hand side of
eq. (3.79)).

On the other hand the parameters might have a more free-floating interpretation,
i.e. they are simply the way the model happens to be parameterized out of
analytical convenience. However in this case why is it reasonable ignore some
possible posteriors by applying constraints?

Before fully accepting this negative lesson it is important to consider what the
model represents. The model too is simply a restriction on the class of possible
posteriors and on this view there is little reason to prefer one type of restriction
(a particular functional form of the model) over another (some sort of con-
straint). While much work in machine learning has focused on constraints of
the first form, models, in the next section we will consider a technique which
fall under the second form. The section is based on the work found in Bayesian
Dropout [Herlau et al., 2015].

3.4.1 Dropout

Consider a completely different setting, namely a classical feed-forward neu-
ral network. A neural network attempt to model data y based on input x by
adapting weights θ. In a typical neural network application the input-output
relationship is complicated (for instance the input could correspond to natural
images and the output could correspond to the identification of certain faces in
the images) and so in the absence of strong prior information the parametriza-
tion must support many possible mappings. This is typically done by using
several intermediate layers with many neurons.

This lead to the problem different settings of parameters will be able to model
the input-output relationship perfectly while giving very different (poor) predic-
tions on the test data. This problem is sometimes called co-adaptation because
different coordinates of the parameter vector co-adapt to each other to give
predictions specific for the training and not the test data [Hinton et al., 2012].
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Dropout, originally proposed by Hinton, Srivastava, Krizhevsky, Sutskever, and
Salakhutdinov [2012] has been proposed as a way to reduce such co-adaptation.
Dropout is best explained as an online algorithm: A neural network is typically
trained by gradient descent, that is, in each iteration the gradient (at the current
setting of the parameters) is computed and the parameters are changed in the
direction of the gradient. With dropout, at each iteration the parameter vector
is altered by “turning off” a subset (chosen stochastically) of the parameters,
typically by fixing their value to zero. We write this operation as:

θ̃ ← I ◦ θ

where I is a new (random) vector and ◦ is the operation where the parameters
is perturbed. The coordinates not set to zero is then updated based on the
gradient computed at θ̃.

This technique limits co-adaptation in that no parameter, even on the same
training data, will have access to the exact same configuration of other parame-
ters as these are stochastically dropped out. The technique has shown to lead to
significant performance gains (see for instance Hinton et al. [2012], Krizhevsky
et al. [2012], Dahl et al. [2013]). In the remained of this section we will give it
a probabilistic interpretation using the MEP.

It is natural to consider the following generative model for each observation yi
given xi:

θ ∼ q(·) (3.98a)
for each i: Ii ∼ q(·) (3.98b)

yi|Ii, θ, xi ∼ q(·|Ii ◦ θ, xi) (3.98c)

Where it is assumed omitting I will give some valid neural-network like model.
While this formulation is seemingly what we want from dropout, the role played
by I is very different. In the current formulation I is adapted to each observa-
tion; that is to say, we adapt both the weights and which weights are dropped
out to the particular observed data yi. While doing this within a Bayesian
framework will likely reduce the co-adaptation (ie. θ is not only selected as a
single value but as a distribution over different values), it is clearly a very dif-
ferent approach than dropout where we actively prevent co-adaptation. There
are various ways to formulate this discrepancy, the most pointed is to say there
is something “wrong” in us learning

q(Ii|xi, yi, θ). (3.99)

This immediately suggest a solution: To say we should not learn (or co-adapt) Ii
based on the data (xi, yi) and weights θ is exactly to say our posterior knowledge
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(after observing the data) should be the same as our prior knowledge insofar I
is concerned. Specifically:

Bayesian Dropout : p(Ii|xi, yi, θ) = q(Ii). (3.100)

Now the idea is simply to update p from q based on data and the above con-
straint. The resulting posterior become [Herlau et al., 2015]

p(θ) =
1

Z
q(θ) exp

(∑
i

∑
Ii

q(Ii) log q(yi|xi, Ii ◦ θ)

)
. (3.101)

This naturally leave a few questions open. For instance the above form will in
general constitute a double-stochastic sampling problem which is not trivially
solved. In Herlau et al. [2015] we discuss three different techniques for inference
and illustrate them on linear model and logistic regression. The bottom line
is there seem to be some benefit for the above technique when the number
of data dimensions is large compared to the number of samples; exactly the
situation where we would expect dropout to work Hinton et al. [2012]. Taking
the logarithm of the above target, throwing away the prior terms and optimizing
recovers the objective:

O(θ) =
∑
i

∑
Ii

q(Ii) log q(yi|xi, Ii ◦ θ) (3.102)

This objective function is implied by dropout from standard arguments form
stochastic optimization in the small stepsize limit [Amari, 1997, Robbins and
Monro, 1951] and has previously been independently proposed by amongst other
Wang and Manning [2013], we will however not discuss the result further here
and only mention it briefly in the conclusion in chapter 7.
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Chapter 4

Symmetries and invariance

Consider the following situation: In 2024, scientists are trying to determine if a
particular elementary particle (particle P) exists. They attempt to do so in an
experiment in which particles are smashed together in an accelerator and based
on these independent collisions they attempt to draw inference on the particles
existence. We imagine data analysis has changed by 2024, such that instead of
considering p-values, the scientists have constructed a robot which attempts to
compute p(H| · · · ) where

H : "The particle P exists." (4.1)

and the dots stand for the available evidence such as the result of collisions,
physical theories and other relevant information. The robot is built to act in
full accordance with the theory encountered in chapter 2. After one year of
smashing particles the day has finally come where they ask the robot:

Scientist: Here is the data from the last year, Ya, does particle P exist?

Robot: Particle P exists, p(H|Ya, · · · ) = 0.63.

Scientist: Great! That should ensure funding for next years operations.

Robot: Particle P does not exist, p(H|Ya, · · · ) = 0.47.
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Scientist: That is absurd. We don’t know anything about the potential colli-
sions next year! I might as well have said we could have smashed particles
for a million years starting tomorrow–

Robot: Particle P exists, p(H|Ya, · · · ) = 0.52.

This behavior is certainly paradoxical, but it is not inconsistent with anything
in chapter 2. To understand what happends we need to be more explicit: Let
Ya correspond to the data for the first year and Yb the data for the next year.
Ignoring any other information the key observation is the joint distributions
are defined over different sets of variables: pa(H,Ya), pab(H,Ya, Yb) and so the
marginal distributions:

pa(H|Ya) =
pa(H,Ya)

pa(Ya)
(4.2a)

pab(H|Ya) =

∫
dYb pab(H,Ya, Yb)

pab(Ya)
(4.2b)

need not be equal. Thus at the beginning of the dialogue the robots available
data corresponded to the computation in eq. (4.2a), however when it learned
there would be another year of (unobserved) data it rightly changed to the
computation in eq. (4.2b), and similar when it considered a potentially infinite
stream of data.

While what the robot does is formally possible, it is clearly not drawing the
right inferences: We want the robot to not care about unobserved data. One
way to state this requirement is to say the robot should act consistently in the
sense:

pa(H,Ya) =

∫
dYb pab(H,Ya, Yb). (4.3)

An additional mistake the robot could possible make is if the order the experi-
ments matter. Consider a new dataset Y ′a obtained by permuting the entries in
Ya, for instance by flipping the observation made last Tuesday with those made
last Monday. Quite clearly the labelling information should carry no informa-
tion (we assume the robot is considering fixed natural laws and equipment) and
we expect the two distributions to agree as well. The notion of exchangeabil-
ity, which we will discuss below, captures invariance under permutations and
consistency in the sense of eq. (4.3).

More generally, this chapter will consider random objects (or structures) such
as lists, arrays, partitions or trees as well as various probabilistic symmetries
that are thought appropriate for each type of object. An example is a list (for



75

instance a list of observations as in the previous example) and the symmetry
is exchangeability, that is, that the distribution of the object is invariant under
permutations.

After identifying appropriate symmetries and objects, the most apparent prob-
lem is to characterize the class of objects for a given type which obey a particular
symmetry, for instance all partitions that are exchangeable. In this section we
will give some examples of structures and symmetries that will be used in the
later work.

A brief note on formality It is worth emphasizing words like probability
will now have a quite different meaning than in chapters 2 and 3. In the previous
chapters the probability distribution (or simply the probability) was considered
a function and in chapter 3 even an analytical function, however from a technical
perspective probability theory is a subfield of measure theory.

Changing the underlying mathematical object between chapters is regrettable
from a formal perspective, but it was necessary to discuss the different concepts.
One way to overcome this tensions is to consider “probability theory” as what
we arrived at in chapter 2 and measure theory as providing a particular math-
ematical model of probability theory realized in the formalism of measurable
sets [Ballentine, 2001], however such an attempt require a long discussion on
the meaning of “theory”, “model” and is open to the charge the derivation in
chapter 2 quite obviously assume a particular mathematical underpinning al-
beit not a very rigorous one. We will not discuss this issue further and simply
assume probabilities are now understood in the context of measure theory.

We emphasize the following sections are not intended as a comprehensive guide
to non-parametric methods but a brief review of some important results from
the field. Good introductions to the field may be found in Kingman [1993]
(point processes and random measures), Aldous [2010] (exchangeable random
arrays, trees and other structures), Pitman and Picard [2006] (covering random
partitions, Brownian motion, and coalescent with a focus on combinatorics),
Kallenberg [2005] (likely the most comprehensive text on the subject but not
an easy read). In addition to these texts Orbanz and Roy [2013] provide a
recent review of non-parametric methods for machine learning with focus on
the Aldous-Hoover theorem.
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4.1 Exchangeable sequences

To properly express the results in this chapter we will need to distinguish be-
tween random variables and their value. To this end, let (xi) = (x1, x2, . . . ) be
a sequence of elements of a space X , (xij) a two-dimensional array of elements
of X and so on for higher-dimensional arrays (more properly, (xij) is a mapping
N2 → X ). When presenting the general results we will properly distinguish be-
tween a particular value xi and the corresponding random variable Xi by using
upper case letters.

Let (Xi) be a sequence of random variables over the same space X . We call the
sequence exchangeable if it satisfy

(X1, X2, . . . )
d
= (Xσ(1), Xσ(2), . . . ) (4.4)

for all finite permutations σ [Kallenberg, 2002, p. 168], [Aldous, 1985]. Before we
relate the above expression to the previous discussion of the robot, we will make
a few remarks on the notation. A finite permutation is a bijection σ : N 7→ N
that only permute a finite number of elements, that is, for any permutation σ
there is an integer Kσ ≥ 1 such that σ(i) = i for i ≥ Kσ. All permutations will
be finite in the following and the word will be omitted.

Secondly, the symbol d
= means equal in law. To convert the definition into more

familiar territory, assume (Ai) is a sequence of measurable subsets of X , for
instance small intervals centered around a sequence of points (ai), ai ∈ X . The
statement: Xi ∈ Ai is then the Boolean statement if the outcome of experiment
i fall into interval Ai and the definition eq. (4.4) is [Orbanz and Roy, 2013]

P (X1 ∈ A1, X2 ∈ A2, . . . ) = P (Xσ(1) ∈ A1, Xσ(2) ∈ A2, . . . ). (4.5)

We will follow the standard practice in using upper-case letters to denote the
probability when it is understood in a measure-theoretical [Kallenberg, 2002].

For a discrete space X and in more standard (sloppy) notation eq. (4.5) would
be

p(x1, x2, . . . ) = p(xσ(1), xσ(2), . . . ). (4.6)

To connect this definition with the motivation, notice the outcome of a particular
experiment (xi)

n
i=1 is obtained by marginalizing out the (infinite) sequence of

observations (xi)
∞
i=n+1 and it follows the distribution of the first n observations

is consistent with that of the first n + 1 observations with observation xn+1

marginalized out. Furthermore, the permutation ensures the distribution of any
subsequence of (xi) of length n is equal in law to the distribution of the first n
observations.
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A main result, originally due to De Finetti [1931] (see also de Finetti [1974])
who first showed the result for binary observations. The general statement given
below was first proven in Hewitt and Savage [1955], see also Ressel [1985], Aldous
[2010] and Orbanz and Roy [2013] for re-statements in more familiar notation.

Theorem 4.1.1 (de Finetti, Hewitt-Savage). Let (Xi) be a sequence of random
variables in X . The sequence (Xi) is exchangeable if and only if there exist a
probability measure µ on the set of probability measures M(X ) on X such that
for all n and all measurable A1, . . . , An:

P (X1 ∈ A1, . . . , Xn ∈ An) =

∫
M(X )

n∏
i=1

θ(xi)µ(dθ). (4.7)

In addition, µ is the distribution function of the empirical measure, ie. if we
define the empirical measure on X as

Sn(·) ≡ 1

n

n∑
i=1

δXi(·) (4.8)

Then Sn converge to θ with probability 1:

Sn(A)→ θ(A) (4.9)

for all measurable A.

To put the first part of the theorem in familiar language we will first ignore
the measure theoretic difficulties by for instance assuming X is discrete. The
de Finetti theorem can then be put in the naive form: There exist some high
(possibly infinite)-dimensional object θ and probability distribution p(θ) such that
each xi is i.i.d. conditional on G with marginal distribution pθ:

p(x1, . . . , xn) =

∫
dθ

n∏
i=1

pθ(xi)p(θ). (4.10)

The above form, where θ is considered a (potentially infinite) set of parameters
for a parametric density pθ (the particular parameterization is of course deter-
mined by the type of sequence) is often more intuitive and the text will often
resort to this form.

4.1.1 Example: The normal mixture-model

Suppose we wish to model continuous observations in Rd, for instance we can
consider the outcome of a collision in the particle accelerator as being com-
posed of d scalar measurements from d detectors, xi. For fixed K the following
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construction could be proposed as a starting point:

p(xi|θ) =
1

K

K∑
k=1

N (xi|µk,Σk) (4.11a)

µk ∼ N (0, Id) (4.11b)

Σk = σ2
kId (4.11c)

σk ∼ Gamma(1, 1). (4.11d)

In this case notice θ ≡
(
(µk)Kk=1, (σk)Kk=1

)
and according to de Finetti’s theo-

rem the above construction is exchangeable. It should be apparent it is easy to
construct a generative process for an exchangeable process, however the above
model is limited to a particular choice of K. While we might soften this re-
quirement by letting K come from some distribution, our initial desire to model
a source of observations (xi) of arbitrary length gives rise to a dilemma: If we
let this distribution select K from a simple distribution such as from a Poisson
distribution, K may appear very conservative if the particular observed subse-
quence of (xi) happens to be very long. On the other hand, if K is selected to
have uniform support, p(K) ∝ 1, what then is the generative process?

Solving these problems in the most general way that leads to tractable inference
has been the focus of much research in probability theory and Bayesian non-
parametrics in machine learning. If we accept the above intuition as having
general applicability, it is easy to see the more general models are those obtained
by letting K be large; it turns out again and again in different settings the
principal way to select a parameter such as K is to let K be countably infinity
and choose a parameterization which solves the problems which naturally arises.
In the following sections we will briefly review some of these results.

4.1.2 Convergence

Consider again the de Finetti theorem 4.1.1. According to eq. (4.7) the data
is explained by first drawing a random measure θ from a distribution µ over
all measures M(X ). Thus, if we observe a particular sequence of data (Xi)

n
i=1

we can compute the posterior distribution of θ by conditioning on the data; to
avoid measure-theoretical problems we will give the result in the naive notation
eq. (4.10)

p(θ|(xi)ni=1) ∝
n∏
i=1

p(xi|θ)p(θ). (4.12)

The second part of de Finetti’s theorem, eq. (4.8) implies that if the sequence
(xi)

n
i=1 was actually generated using eq. (4.7) from a particular random measure
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θ drawn from µ then the posterior distribution will converge to a particular
measure θ which is also the empirical measure. Notice this result assumes the
data was generated from a particular distribution of random measure µ and
it was this distribution we used as the prior when we applied Bayes theorem.
Normally this cannot be expected to be the case nor would we know it was the
case for actual data, and even if the posterior is concentrating the de Finetti
theorem does not tell us how fast it is converging and in particular if it has
converged by any meaningful standard on the particular data set.

In general, one should not assume the lesson from ordinary Bayesian inference,
that is, any usual model with a prior of wide support will be sufficient to guar-
antee convergence if we are given enough data. The default position implied by
the de Finetti theorem should be we do not have the correct model and thus
we are not guaranteed convergence and convergence results have to be obtained
by more elaborate arguments. In practice, non-parametric models appear well-
behaved and convergence do not appear to be an issue. The interested reader
is invited to consult Ghosal [2010] for a general introduction as well as Kleijn
and van der Vaart [2006] for convergence in the misspecified case for (para-
metric) mixtures and nonparametric regression as well as Ghosal and van der
Vaart [2007] for special cases involving Dirichlet mixture of normals and van der
Vaart and van Zanten [2008], Castillo [2012] for special cases involving gaussian
processes.

4.2 Exchangeable Partitions

To progress beyond the de Finetti theorem requires further assumptions on
the data source. A particular important example is if the data represent a
partition, in this case de Finetti’s theorem take a particular simple form and
the continuous representation θ in eq. (4.7) can be identified as what is called
a paintbox. The notation will be important when discussing models for random
hierarchies (trees) later in section section 4.4. The definitions in the following
section are taken from [Kingman, 1978, Pitman and Picard, 2006]

Elementary definitions Recall a partition π of a set X is a collection of
subsets B1, . . . , BK of X such that for all 1 ≤ ` < m ≤ K (K may be infinite):

B` 6= ∅,
K⋃
`=1

B` = X , B` ∩Bm = ∅ (4.13)
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written as π = {B1, . . . , BK} and each B` is called a block and we use the
notation b ∈ π to indicate b is a block in π, ie. b = B` for some 1 ≤ ` ≤ K.

We will write ΠX for a random partition of the set X . In the following we will
be particularly interested in the case where X is discrete. Since the labelling of
the elements in X is assumed unimportant, we use the shorthand Πn ≡ Π[n].
For a partition π = {B1, B2, . . . , BK} of X and a permutation σ of X we may
define the action of σ on π by

σ(π) ≡ {σ(B) : B ∈ π} (4.14)
σ(A) ≡ {σ(i) : i ∈ A}. (4.15)

A random partition ΠB is then called exchangeable if for all permutations σ:

P (ΠB = π) = P (ΠB = σ(π)). (4.16)

This is in turn equivalent to saying the distribution of ΠX only depend on the
size (and not order) of the blocks of the partition, i.e. there is a symmetric
function p|X | such that

P (ΠX = π) = p|X |(|B1|, . . . , |BK |) (4.17)

where p is symmetric in its arguments. This function is called the exchangeable
partition probability function (EPPF) [Pitman, 1995].

Assume A,B ⊂ X (in the following it will always be the case that A,B ⊂ N).
Suppose π is a partition of B and A ∩ B 6= ∅. We define the projection of the
partition z onto A ∩B by

projA(π) ≡ {b ∩A : b ∈ π, b ∩A 6= ∅} (4.18)

Clearly the projection is also a partition of B ∩A.

Suppose (Πn) = (Π1,Π2,Π3, . . . ) is an infinite sequence of exchangeable random
partitions on ([n]) = ([1], [2], [3], . . . ). The sequence is called projective if for all
m:

P (proj[m] Πn = π) = P (Πm = π). (4.19)

That is, the behavior of a partition of m elements is the same as the behavior
of a partition of n elements restricted to a subset of m elements.

A fundamental result due to Kingman [1978] allow us to get rid of the infi-
nite sequence of random partitions (Πn) in the definition above without loss of
generality.
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Theorem 4.2.1 (Kingman). An infinite sequence (Πn) of finitely exchangeable
random partitions is projective iff. there is an exchangeable random partition of
N, Π∞, such that for any B ⊂ N: ΠB

d
= projB Π∞.

It follows without loss of generality we can exclusively consider exchangeable
random partitions Π∞ of N. With these definitions in place we are ready to
consider the equivalent of de Finetti’s theorem (theorem 4.1.1) for partition-type
data. This requires an identification of the partition Π∞ with the the sequence
(Xi) on the left-hand side of eq. (4.7) and determine a parameterization of the
random measure θ.

Kingman [1978] gave an example of such a parameterization known as a paint-
box: First, the space of parameters consist of all infinite ordered sequences
θ = (t1, t2, . . . ) such that each ti ∈ [0, 1] and satisfy:∑

i

ti ≤ 1 t1 ≥ t2 ≥ t3 ≥ . . . . (4.20)

The reader should have the following picture in mind: Consider a stick of unit
length. The stick is divided (starting from the left and moving to the right) into
one interval covering I1 = [0, t1[, then another interval covering I2 = [t1, t1 + t2[
a third covering I3 = [t1 + t2, t1 + t2 + t3[ and so on. Since the length in general
may sum to less than one there might remain some last part of the stick I∞. In
general we define:

Tk =

k∑
i=1

ti, Ik = [Tk−1, Tk[, I∞ = (1− T∞, 1]. (4.21)

The sets (Ik)k and I∞ should be thought of as the boxes in the paint-box. Each
interval of the stick (a box) is assigned a particular color chosen at random;
let the color for interval Ik be ck chosen at random from some space; to give
an explicit example, consider the case where the colors are chosen as RGB
coordinates:

for k ∈ N: ck ∼ Uniform([0, 1]3). (4.22)

The last box, I∞, is for now assumed to be uncolored. The mixture distribution
pθ is then defined as drawing a random number Ui ∼ Uniform([0, 1]) and setting

Xi =

{
ck if Ui ∈ Ik
c if Ui ∈ I∞ and c ∼ Uniform([0, 1]3).

(4.23)

Clearly by the de Finetti theorem this induce an exchangeable random coloring
(Xi), however each realization (xi) of (Xi) induces an infinite partition π by
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the convention i, j, i 6= j are in the same block in π iff. xi = xj . As before we
denote by Π∞ the induced random partition corresponding to (Xi) and we will
call both (Xi) and Z∞ the the paint-box distribution with parameter θ.

The fundamental result is now summarized in the following theorem: [Kingman,
1978]

Theorem 4.2.2 (Kingman). Let Π∞ be a random partition. Π∞ is exchange-
able if and only if it has the same distribution as the partition structure induced
by the paint-box construction

P (Π∞ ∈ ·) =

∫
dθ

∞∏
i=1

pθ(·)µ(dθ) (4.24)

for some µ on the set of infinite sequences θ and pθ being the paint-box distri-
bution. Furthermore, if Π∞ is exchangeable and for each fixed n the sequence
(N↓n,i) is the decreasing rearrangement of block sizes of Πn with the convention
N↓n,i = 0 if Πn has fewer than i blocks then the block sizes ti in eq. (4.20) may
almost surely be recovered as

ti = lim
i→∞

N↓n,i
n

(4.25)

Notice the two parts of theorem 4.2.2 correspond to the two parts of de Finetti’s
theorem eqs. (4.7) and (4.8). Secondly, notice a draw Xi from the paint-box
construction parameterized by θ can simply be written as:

Xi ∼ pθ(·) ≡ (1− T∞)Uniform([0, 1]3) +

∞∑
k=1

skδck . (4.26)

It is the right-hand side of the above expression which can be substituted for
the random measure in eq. (4.7). Consistent with chapter 2 we will use the
shorthand zi ≡ ` for a partition π = {B1, . . . , BK} to indicate i ∈ B`, i.e. the
index of the block i belong to.

What we have not specified is the distribution over θ. Once again we find our-
selves in the situation the theory suggest nearly everything is possible as far as
arriving at a proper generative model, however if we (as we would nearly always
do) ask for the probability of any particular partition P (Πn = {B1, B2, . . . , Bk})
most suggestions would lead to analytical inconveniences. To proceed further
we need to study particular choices of θ in de Finetti’s theorem eq. (4.7) and
this will be the goal of the next section.
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4.2.1 The Dirichlet Process

Random measures play a crucial role for exchangeable structures, both in the de
Finetti theorem (theorem 4.1.1) and in Kingmans paint-box construction (theo-
rem 4.2.2). In this section we will introduce a particular construction for random
measures, the Dirichlet process, which, while arguably not the simplest construc-
tion or most fundamental construction, is certainly the construction that has
played the largest role in Bayesian non-parametrics for machine learning.

Consider again the setting of the de Finetti theorem (theorem 4.1.1) where we
consider an exchangeable sequence of random variables (Xi), each taking values
in a space X , and the implied representation make use of a random measure pθ
(or simply θ) on the right-hand side of eq. (4.7). For the Dirichlet process this
measure is normalized, ie. pθ(X ) = 1. The reader is encouraged to consider X
to be a connected subset of R2 for convenience.

A normalized random measure can informally be thought of as follows: Suppose
we have a small machine with a button. When we press the button, the machine
produce a measure, pθ(·), of X . This measure behaves just as any other measures
in that for each measurable subset A ⊂ X we can compute the number pθ(A) ∈
[0, 1]. The machine is the equivalent of a random measure, that is, an object
which (randomly) produces measures.

Consider the measure pθ(·) again and suppose we wish to know what pθ does
but we do not have access to its analytical form. What we can do is to evaluate
pθ on various sets. Suppose we partition X into a large number K of small
pieces A1, . . . , AK . In the following discussion the reader should think of these
pieces as fixed but arbitrarily chosen, and in the example of the subset of R2

the reader can imagine a fine grid. If K is very large, the vector

w ≡
(
pθ(A1), pθ(A2), . . . , pθ(AK)

)
∈ [0, 1]K (4.27)

will now tell us nearly all there is to know about pθ. Notice
∑K
k=1 wk = 1 since

the measure is normalized. Suppose we keep the particular partition (Ak)Kk=1

fixed and press the button N times on the machine to produce N measures:
p

(i)
θ , i = 1, . . . , N . Evaluating eq. (4.27) now give N K-dimensional vectors
w(i); in the same sense eq. (4.27) tell us nearly all there is to know about a
single measure pθ when K is large, the set of N vectors (w(i))Ni=1 tells us nearly
all there is to know about the random measure (or machine) when K and N
are both large.
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To proceed it is natural to consider the mean and variance of (w(i))Ni=1:

wN =
1

N

N∑
i=1

w(i) Var[w] =
1

N

N∑
i=1

(w(i))2 − w2. (4.28)

where both are understood as K dimensional vectors. Now, consider the case
where the above machine, µ, enters into the de Finitti representation eq. (4.27).
Then for any set A and a sequence of (just) one variable X1:

p(X1 ∈ A) =

∫
dθ pθ(A)µ(dθ) (4.29)

By exchangeability, we are justified in calling the right-hand side of eq. (4.29)
the mean distribution of this particular random measure evaluated on A. It is
in other words a characteristic of the machine that produced measures. Denote
this mean by H To be completely explicit, H is the normalized measure on X
defined as

H(A) ≡
∫
dθ pθ(A)µ(dθ) (4.30)

for any A ⊂ X . Clearly we can evaluate H on the partition (Ak)Kk=1; it is not
hard to see

lim
N→∞

wN = (H(A1), H(A2), . . . ,H(AK))

Notice we have so far not put any limitations on the machine which produced
random measure, µ: H is simply a property any such well-behaved machine must
have and for any such machine we can compute the set of vectors w(i) which will
have some distribution. Now, suppose we ask what distribution this particular
set of vectors have. If we are optimistic we could hope this distribution was
simple; the simplest case we could hope for was the Dirichlet distribution. That
is, there is an α > 0 such that

(w1, w2, . . . , wK) ∼ Dirichlet (αH(A1), αH(A2), . . . , αH(AK)) . (4.31)

Notice the average of this Dirichlet distribution come out correctly asH(A1), . . . ,H(AK)
regardless of α. The limits α→ 0 and α→∞ should be kept in mind and will
be consistent with the basic properties of the Dirichlet distribution. The former
correspond to maximal variance and the later to a variance of 0.

The preceding discussion has assumed (Ak) was fixed and eq. (4.31) simply rep-
resented a particular possibility for how a particular machine µ behave on this
particular set (Ak). Any fixed partition is only sufficient to give partial charac-
terization of the underlying random measure, however the following definition
due to Ferguson [1973] overcomes this limitation
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Definition 4.2.1 (Dirichlet Process). Assume H is a fixed distribution over X
and α > 0 a real number. We say a random measure θ(·) on X is distributed as
a Dirichlet Process (DP) with base measure H and concentration parameter α
if for any finite measurable partition A1, . . . , AK of X

(θ(A1), . . . , θ(AK)) ∼ Dirichlet (αH(A1), . . . , αH(AK)) . (4.32)

This is written as θ ∼ DP (α,H).

If X is non-trivial, the number of measurable partition will be uncountable and
so eq. (4.32) will consist of an uncountable number of constraints on the DP.
Thus it is natural to ask at least three questions: Firstly, if such an object
can exist, secondly, if it can be represented in a sensible and useful way and
thirdly, if it allows simple computation of posterior predictive distributions and
other useful quantities. Fortunately, the answer to all these question are yes.
Firstly, there are several ways to establish existence first discussed by Fergu-
son [1973] under certain regularity conditions on H and X , see also Blackwell
and MacQueen [1973]. These restrictions can be softened significantly by the
construction given by Sethuraman [1991].

4.2.1.1 Posterior Distribution

Suppose (xi)
n
i=1 is a sample drawn from a Dirichlet process. I.e. we first draw

θ ∼ DP (α,H) and then draw Xi i.i.d. from θ. Assume again (Ak)Kk=1 is a
finite partition of X . Consider the posterior distribution implied by a standard
application of Bayes theorem and the definition in eq. (4.32):

p(θ(A1), . . . , θ(AK)|x1, . . . , xn)

∝

[
n∏
i=1

K∏
k=1

θ(Ak)1Ak (xi)

]
Dirichlet(θ(A1), . . . , θ(AK)|αH(A1), . . . , αH(AK))

(4.33)

which implies

p(θ(A1), . . . , θ(Ak)|x1, . . . , xn)

= Dirichlet(θ(A1), . . . , θ(AK)|αH(A1) + n1, . . . , αH(AK) + nK). (4.34)

Where nk = |{i : xi ∈ Ak}| and 1Ak(xi) is equal to 1 if xi ∈ Ak and 0 otherwise.
Since the above holds for all partitions (Ak) of X the posterior distribution
must be a DP too. Notice nk depend on Ak. Rearranging eq. (4.34) shows
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that the posterior DP can equally well be written as a new DP with updated
concentration parameter and base measure:

(α,H)|x1, . . . , xn =

(
α+ n,

αH +
∑n
i=1 δxi

α+ n

)
. (4.35)

The Dirichlet process is thus conjugate under posterior updates, and this should
naturally make us suspect the predictive posterior distribution, that is, the
density of Xn+1 conditional observations x1, . . . , xn, should be simple. Indeed,
the posterior of θ(A), θ(X \ A)|x1, . . . , xn is given by eq. (4.35) and thus the
posterior can be found as simply:

P (Xn+1 ∈ A|x1, . . . , xn) =

∫
dθ θ(A)P (θ|x1, . . . , xn)

=
1

n+ α

(
αH(A) +

n∑
i=1

δxi(A)

)
. (4.36)

In other words, assuming X is large, with probability one it will be true with
probability n/(n+α) the new observation xi will be equal to one of the previous
x1, . . . , xn. Assume there areK unique values of xi and denote these by (x∗k)Kk=1.
Letting nk = |{j : xj = x∗k}| then eq. (4.36) simply becomes:

xn+1|x1, . . . , xn ∼
α

n+ α
H +

K∑
k=1

nk
n+ α

δx∗k . (4.37)

Thus we can easily obtain a sample x1, . . . , xn from a DP (α,H) process by
using eq. (4.37) n times and, having obtained such a sample the likelihood will
be:

p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1) (4.38)

where each probability is simply obtained from eq. (4.37). The reader should
assure himself both of these procedures are easy to implement on a computer.
Now, with a bit of tedious algebra it should be easy to see that, taking eq. (4.37)
together with eq. (4.38) as the definition of a particular distribution of n data
points and rearranging one obtains:

p(x1, . . . , xn) =

n∏
i=1

p(xi|x1, . . . , xi−1)

=

n∏
i=1

p(xσ(i)|xσ(1), . . . , xσ(i−1)) = p(xσ(1), . . . , xσ(n)) (4.39)
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for any permutation σ. Since this is true for any n the sequences generated by
eqs. (4.37) and (4.38) will be exchangeable. We can then invoke de Finetti’s
theorem to conclude there exists a random variable θ̃ such that any sequence
(Xi) is composed of iid. draws

P (X1 ∈ A1, . . . , Xn ∈ An) =

∫
µ(dθ̃)

n∏
i=1

θ̃(Ak). (4.40)

Assume a very long sequence (xi)
n
i=1 was generated from the de Finetti repre-

sentation (4.40) using a particular θ̃. Since, per assumption, θ̃ was drawn from
a DP (α,H) process eqs. (4.35) and (4.37) can also be used to describe the pos-
terior measure thus we get the measure µ in eq. (4.40) must be the Dirichlet
process establishing existence. A rigorous version of this argument was first
used by Blackwell and MacQueen [1973] to show the existence of the Dirichlet
process.

4.2.1.2 The Dirichlet process and clustering

As already noted, the posterior representation of the Dirichlet process eq. (4.37)
for n observations has the property of grouping objects together into K groups
each of nk objects and this induces an exchangeable partition. Suppose we are
only interested in the partition structure, as a direct consequence of exchange-
ability and eq. (4.38) the density of any given partition π becomes independent
of H:

p(π|α) = p(n1, . . . , nK |α) =
Γ(α)αK

Γ(n+ α)

K∏
k=1

Γ(nk). (4.41)

Any partition with this density can be generated in an analogous fashion to
eq. (4.37), namely by (i) starting with a single element (ii) adding a new ele-
ment to a new block with probability proportional to α or an existent block with
probability proportional to nk. This process is known as the Chinese restaurant
process and its study, originally motivated in the study of population genet-
ics, predate that of the Dirichlet process [Ewens, 1972, Aldous, 1985]. In the
following we will write π ∼ CRP(B,α) to indicate π is a partition of a set B
distributed as a Chinese restaurant process eq. (4.41) and if B is assumed known
we will abbreviate this as π ∼ CRP(α).

Let us recap some of the properties of the Dirichlet process discussed so far.
Starting from the abstract definition of the Dirichlet process eq. (4.31) defined
in terms of its action on any partition we have shown the Dirichlet process must
be (i) exchangeable and (ii) give rise to posterior updates of the form eq. (4.37)
and (iii) the posterior updates naturally induces a clustering, the CRP.
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What we have so far not seen is the actual representation of the underlying
infinite-dimensional measure θ implied by the de Finetti theorem. This con-
struction was given by Sethuraman [1991] and turn out to be very simple. As-
sume α > 0, 0 ≤ d < 1 and for k = 1, . . . ,∞:

Vk ∼ Beta(1− d, α+ kd) x∗k∼ H (4.42a)

πk = Vk

k−1∏
`=1

(1− V`) θ =

∞∑
k=1

πkδxk (4.42b)

Then if d = 0, the generated vector θ is distributed according to a DP(α,H)
process (the case of general 0 < d < 1 will be discussed below). Notice

∑
k πk =

1 with probability 1, thus by sorting (πk)k the above construction thus also
become identical to the paint-box representation we know must exist by theorem
4.2.2. It follows the length of the sticks must also determine limiting frequency of
the clusters in the CRP. As already noted, from a formal perspective the above
construction extends the range of spaces H that allow a DP [Sethuraman, 1991].

4.2.2 Beyond the Dirichlet process

In the study of exchangeable observations, the Dirichlet process is undoubtedly
the most widely applied object in modern Bayesian non-parametric modelling.
Roughly speaking, the preceding sections has presented three approaches to con-
structing the Dirichlet process: (i) The characterization of the Dirichlet process
by its action on subsets in eq. (4.32) (ii) The Chinese restaurant metaphor, ie.
as a description of how one new observation xn+1 is generated from existing
observations x1, . . . , xn as in eq. (4.37) (iii) As a prior over sticks using the
construction in eq. (4.42).

Though the discussion has been somewhat interweaved in the preceding sections,
each of these constructions could have been taken as a starting point and we
would have ended up with roughly the same construction, the Dirichlet process.
Notice the three descriptions offer different advantages and disadvantages, the
most obvious is how to generate data. The construction (ii) is entirely trivial to
generate samples from as it is contained in the definition. The construction (iii)
is somewhat more difficult due to the inconvenience of having an infinite number
of sticks, however if the sticks are generated dynamically it too would be fairly
easy to implement. The approach (i) stands out in this regard as requiring one
to first derive a representation before samples can be generated. On the other
hand it should be apparent approach (iii), being nearly identical to a paint-box
representation, offers easy generalizations while (i), being independent of the
representation, might appeal the most to a mathematician.
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These three approaches persist when we consider generalizations of the Dirichlet
process. When considering generalizations from a machine-learning perspective
we typically attempt to arriving at a more flexible model while still maintain-
ing tractability, both analytical and computational. One of the most successful
approaches which archive both aims is the two-parameter Poisson-Dirichlet pro-
cess first proposed by Perman, Pitman, and Yor [1992] and further examined
in various other papers Pitman and Yor [1997], Pitman [1995]. In the machine
learning literature the process was popularized by Ishwaran and James [2001]
as the Pitman-Yor process in the notation of a stick-breaking construction and
may be obtained from eq. (4.42) by considering general 0 ≤ d < 1. The density
of the induced partition, i.e. the direct generalization of eq. (4.41) for block-sizes
n1, . . . , nK is the two-parameter Chinese restaurant process [Pitman, 1995]. In
the case α ≥ 0 (notice this is not the most general range of α, c.f. [Pitman and
Picard, 2006]):

p(z|α, d) = p(n1, . . . , nK |α, d) =
αK

(α− 1)(1)

(α
d

)(n)∏
b∈z

(−d)(|b|) (4.43)

where: x(k) =
Γ(k + x)

Γ(1 + x)
(4.44)

A more general class of processes is known as the Gibbs-type priors which, to our
knowledge, was first introduced by Gnedin and Pitman [2006] and can be seen
as falling under the approach (ii) of proposing a different rule for generating
a new observation. Aside the Pitman-Yor process, Gibbs-type priors contain
the normalized inverse Gaussian process [Lijoi et al., 2005] and the normalized
generalized gamma process [Lijoi et al., 2007b] as special cases [De Blasi et al.,
2013]. These processes was also shown to intersect with the newly introduced
extended Poisson-Gamma class of priors, a two-parameter family which admit
a stick-breaking construction in the vein of (iii) which was recently introduced
by James [2013].

The preceding list is by no means meant to be exhaustive and is by a large not
very well explored from a computational perspective in the machine-learning
literature. Some examples of notable applications which go beyond the Dirichlet
process can be found within survival analysis[Jara et al., 2010],linguistics [Teh,
2006], topic modelling [Teh and Jordan, 2010] and biology[Lijoi et al., 2007a,
Navarrete et al., 2008].

4.2.3 Completely random measures

Lastly we will consider an extension which we will loosely associated with ap-
proach (i), thought this requires some qualifications. Recall approach (i) at-



90 Symmetries and invariance

tempted to characterize the random probability measure by its distribution when
evaluated on arbitrary measurable subsets of X , see eq. (4.32). A generalization
is to study a random measure which, as the name suggests, is a distribution
over measures. The idea being if µ ∼ Θ is a random measure over over some
space X then the measure µ̃ defined by

µ̃ : A 7→ µ(A)

µ(X )
(4.45)

for any set X will act as a random probability measure provided 0 < µ(A), µ(X ) <
∞. To illustrate this construction, suppose x1, x2 and x3 are three ordinary inde-
pendent random numbers and consider the case where x1, x2, x3 ∼ Gamma(A, 1)
i.i.d. In this case the distribution of the normalized vector

x =
1

x1 + x2 + x3
[x1, x2, x3]T (4.46)

follows a Dirichlet(A,A,A) distribution. By way of analogy, if we consider a
random measure µ and a partitions A1, A2, A3 of X , then the random variables
X1 ≡ µ(A1), X2 ≡ µ(A2) and X3 ≡ µ(A3), are independent but can be made
dependent through the normalization procedure eq. (4.45), and if the variables
X1, X2, X3 are Gamma(A, 1) then the normalization procedure would behave as
a Dirichlet process for this partition. Indeed, it has been argued most classes of
random probability measures treated in modern Bayesian non-parametrics can
be derived trough a suitable transformations of a particulary simple random
measure known as a completely random measure [Lijoi and Prünster, 2010].

In the remainder of this section we will highlight a few important results for
completely random measures beginning with the definition:

Definition 4.2.2 (Completely random measure). A completely random mea-
sure (CRM) on X is a random function µ from the collection of measurable
subsets of X into [0,∞] such that (i) µ(∅) = 0 (ii) µ(A) < ∞ for any bounded
measurable subset A ⊂ X and (iii) for any countable partition A1, A2, . . . of X
the random variables (µ(Ak))k are independent and

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak). (4.47)

Or put more simply, a CRM is a random measure such that it gives rise to inde-
pendent random variables µ(A1), . . . , µ(Ak) when evaluated on disjoint subsets
A1, . . . , Ak ⊂ X .

As was the case for the Dirichlet process [Blackwell and MacQueen, 1973], a
realization of a completely random measure is almost surely discrete and can be
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represented as [Kingman, 1967]

µ = µ0 +

∞∑
i=1

wiδθi +

∞∑
i=1

viδφi (4.48)

(compare to eq. (4.37)) where µ0 is a fixed measure, (wi, θi)i is a random se-
quence in X × R+, (vi) is a random sequence in R+ and (φi)i is a fixed (non
random) sequence in X . In addition the sequences (vi) is independent of the
other quantities. The non-random measure µ0 will be assumed to be zero in the
following.

The sequence (wi)i are commonly denoted the random masses and (θi) the
random locations and each element (wi, θi) an atom.

The second sum in eq. (4.48), where the locations are fixed, is important when
characterizing the posterior of a CRM (compare to the fixed sequence in eq. (4.37)),
but is often ignored when considering the CRM as a prior. Suppose then vi = 0
for all i. A CRM µ is then characterized by the Lévy-Khintchine representation
which states there exists a measure ν on R+ ×X obeying∫

R+

∫
B⊂X

min [s, 1] ν(ds, dx) <∞ (4.49)

for all measurable, bounded B and such that for any measurable function h :
X 7→ R it holds

E
[
e−

∫
X µ(dx)h(x)

]
= exp

(
−
∫
R+×X

ν(ds, dx)
[
1− e−sh(x)

])
(4.50)

assuming
∫
|f |dµ < ∞ (with probability 1). The characteristic measure ν is

commonly denoted the Lévy-intensity of the CRM µ or simply the intensity.
For proof and further discussion see Kingman [1967, theorem 2].

Notice the important special case where h(·) ≡ u1A(·) is the indicator function
on a bounded set A scaled with u > 0. In this case eq. (4.50) reduces to

E
[
e−uµ(A)

]
= exp

(
−
∫
R+

ν(ds,A)
[
1− e−su

])
(4.51)

that is, the Laplace transform of the random variable µ(A). Accordingly the
representation allows amongst other things to compute the mean and other
moments of µ(A) for all measurable A ⊂ X assuming these are finite.

To carry out the normalization procedure eq. (4.45) in a rigorous manner re-
quires the denominator, µ(X ), to be greater than zero and finite with probability
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1. This can be ensured by the conditions∫
R+×X

ν(ds, dx) =∞, (4.52a)∫
R+×X

[
1− e−us

]
ν(ds, dx) <∞ for all positive u. (4.52b)

then the corresponding CRM µ characterized through eq. (4.50) satisfies

0 < µ(X ) <∞ (4.53)

almost sure[Regazzini et al., 2003]. When the conditions eq. (4.52) are met for
an intensity ν the normalization construction eq. (4.45) can be made rigorous,
i.e. we define µ̃ ≡ µ

T where T = µ(X ) and µ is a CRM with intensity ν and µ̃
is denoted a normalized random measure with independent increments (NRMI)
and will again be almost surely discrete [James, 2003], that is, the NRMI has a
representation:

µ̃ =

∞∑
i=1

w̃iδθi (4.54)

for sequences (w̃i)i in R+ and (θi) ∈ X (compare this to the stick-breaking
representation of the CRP given in eq. (4.42)).

4.2.3.1 The Poisson process and completely random measures

The references in the preceding section argues many non-parametric random
priors can be constructed through suitable transformation of a CRM [Lijoi and
Prünster, 2010], for instance the normalization eq. (4.54) which allows the con-
struction of random probability measures. It was also shown a CRM can be
characterized through the intensity measure ν (eq. (4.50)), however this char-
acterization itself does not allow us to carry out common operations such as
sampling a CRM, i.e. obtaining the random masses and atoms (wi, θi)i in the
representation eq. (4.48) (or at least an arbitrarily large subset of these). This
limitation can however be overcome using another random process, the Poisson
process, which can in turn be seen as a particulary instance of a CRM. A Poisson
process (PP) Π on a set X is a random (countable) subset of X . Suppose Π is
a (countable) subset of X . Then for any measurable A ⊆ X define

N(A) ≡ |A ∩Π|. (4.55)

Notice if Π is a Poisson process N(A) for any A is a random variable and
N(A) ∈ N ∪ {∞}. We can now define [Kingman, 1993]
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Definition 4.2.3 (Poisson Process). Suppose ν is a measure on a space X . A
Poisson process on X is a random subset of X such that if N(A) is the number
of points in the intersection of a measurable A and Π then (i) N(A) is Poisson
distributed random variable

N(A) ∼ Poisson
(
ν(A)

)
(4.56)

and (ii) if A1, . . . , Ak is a collection of disjoint measurable subsets of X then
the random variables N(A1), . . . , N(Ak) are independent.

In the definition it is assumed if ν(A) = ∞ then the Poisson random variable
N(A) is also fixed at ∞. It is easy to show

E
[
N(A)

]
= ν(A) (4.57)

and for this reason ν is commonly denoted themean measure of Π. An important
point is that the Poisson process, in principle, allows an easy sampling scheme.
Suppose ν(X ) = ∞ and consider the following way to approximate a random
sample D: (i) select a subset A ⊂ X where 0 < ν(A) < ∞. It follows N(Π ∩
A), N(Π ∩ (X \ A)) are independent. (ii) sample n ∼ Poisson(N(A)) and (iii)
add n points sampled i.i.d. from ν(·)/ν(A). Repeat the construction for a new
subset A′ ⊂ X \A. The construction can be continued until a sufficiently large
subset of X has been exhausted. Naturally, if ν(X ) <∞ one could simply select
A = X to obtain an exact sample.

While the Poisson process is defined as a random subset of X and a CRM is a
random measure on X , the two are nevertheless closely related since the function
N(·) is a random measure on X and fully characterizes the random set of the
Poisson process. N(·) is commonly denoted a Poisson random measure. The
distinction between finite additivity for the PP in eq. (4.56) and infinite for the
CRM in eq. (4.47) can be overcome by a standard continuity argument [King-
man, 1993].

With these definitions in place we are now ready to state the main result. A
CRM µ with Lévy-intensity ν can be represented as a linear function of a poisson
random measure on R+ ×X with mean measure ν through [Kingman, 1967]:

µ(A) =

∫
R+×A

sN(ds, dx). (4.58)

or to put this in more familiar terms, by sampling the sequence (wi, θi)i ∼ PP(ν)
and constructing µ through eq. (4.48) where N ∼ PP(ν) denotes a Poisson pro-
cess with mean measure ν, see also James [2005] for a comprehensive treatment
on the construction of random measures from Poisson processes.
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Completely random measures (and constructions based on these) can be char-
acterized by the properties of ν. An important special case is if

ν(ds, dx) = ρ(ds)ν0(dx) (4.59)

in which case ν is said to be homogeneous and otherwise non-homogeneous. A
NRMI based on a non-homogeneous Lévy intensity will have the special prop-
erty of allowing statistical correlation between stick-length (group size of the
induced partition) and spatial location of the sticks. However by far the most
studied class of intensities are homogeneous intensities in particular the gener-
alized gamma process [Brix, 1999] where:

ρ(s) = cs−a−1e−bs, b, c > 0, 0 < a < 1 (4.60)

and by normalizing the induced NRMI one obtains the normalized generalized
gamma process (NGG) [Lijoi et al., 2008].

A difficult problem for constructions based on CRMs is that the characterization
of the posterior distribution which requires careful analysis. For a comprehensive
reference on the available analytical tools see [James, 2002, James et al., 2009].

Priors based on non-homogeneous measures have a long history in the mathe-
matical statistics community. They have primarily being applied for temporal
survival data and planar spatial phenomena, see for instance [Ferguson, 1974,
Hjort, 1990, Walker and Muliere, 1997]. In the recent years there has been some
progress in tractable inference for non-homogeneous intensities due to [James
et al., 2009, theorem 1] which also contain an application as well as [Lijoi and
Prünster, 2010, chapter 3]. The recent work of Griffin and Walker [2011] contain
additional details including discussion of a slice-sampling algorithm.

4.3 Random Graphs

This section considers relational data. By relational data refer to data which
consists of relationships between discrete units. Examples could be a single set
of units, people, and the relationship could be binary, is-friends. Other examples
could be two sets of units, people and books, and the relationship could be has-
read, indicating a particular person has read a particular book. This discussion
offer several immediate generalizations. For instance we could consider multi-
adic relationships such as the tri-adic relationship on the set

people× people× places (4.61)

consisting of someone-kissed-someone-at-someplace. Notice this relationship is
symmetric in the first two arguments, indicating if a kissed b under the bridge
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then b kissed a under the bridge as well. Finally one could consider an additional
complication by making the relationship more complicated than simply binary,
in the example of books and people, the relationship considered could be how-
many-times-has-the-person-read-the-book, in which case a natural choice for its
value would be natural numbers 0, 1, . . . , rather than the Boolean label has-read.
With fairly simple modifications, the ideas considered in this section applies to
all cases. For simplicity we will therefore consider either dyadic relationships
between two types of units, such as has-read, and when convenient relationships
between objects of a single type, such as is-friends.

4.3.1 The Aldous-Hoover theorem

Any particular observation of relational data can be written as a d-dimensional
array and so it is natural to study models of random d-dimensional arrays. We
will later consider reasons not to consider this to be the only appropriate repre-
sentation of relational data, however in the following it will be taken for granted.
The discussion will follow that of random lists leading to the de Finetti theo-
rem: First we will introduce appropriate notions of symmetry (for lists this was
exchangeability) and later describe how this lead to a general characterization
of the random array.

We will write (Xij) for a random infinite 2-dimensional matrixX11 X12 · · ·
X21 X22 · · ·
...

...
. . .

 (4.62)

where for a realization (xij) of (Xij) each element belong to a space X . Such a
random matrix is said to be either separately or jointly exchangeable if

(Seperately exchangeable:) (Xij)
d
= (Xσ(i)σ′(j)) (4.63a)

(Jointly exchangeable:) (Xij)
d
= (Xσ(i)σ(j)) (4.63b)

for any two permutation σ,σ′. Compare this definition to that of exchange-
ability, eq. (4.4). The Aldous-Hoover theorem, discovered independently by
very different methods [Aldous, 1981, Hoover, 1979] (see also Austin [2008] for
additional discussion of higher-dimensional arrays and further references) now
states

Theorem 4.3.1 (Aldous-Hoover). A random array (Xij) is seperately/jointly
exchangeable if and only if it can be represented as a random function F :
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[0, 1]3 7→ X such that

(Seperately:) (Xij)
d
= (F (Ui, Ũj , Uij)) (4.64a)

(Jointly:) (Xij)
d
= (F (Ui, Uj , Uij)) (4.64b)

for sets of variables (Ui), (Ũi), (Uij) where Ui, Ũi, Uij ∼ Uniform([0, 1]) iid.

An important special case is when the graph is simple, that is, undirected mean-
ing for all instances (xij) of (Xij) it holds (xij) = (xji) that there are no self
loops xii = 0 and the graph is binary xij ∈ X = {0, 1}. In this case the
Aldous-Hoover represented theorem can be recast as [Orbanz and Roy, 2013]

Theorem 4.3.2 (Aldous-Hoover for simple graphs). A random simple graph
(Xij) is jointly exchangeable if and only if it can be represented as a random
symmetric function W : [0, 1]2 7→ [0, 1] (zero on the diagonal, W (x, x) = 0) such
that

(Xij)
d
= Bernoulli(W (Ui, Uj)) (4.65)

for a list of iid. random variables (Ui), Ui ∼ Uniform([0, 1]).

The random function W is called the graphon and the above expression will
later play an important role for describing network models.

When we discuss network models in chapter 6 we will refer extensively to
the graphon. To give a specific example, recall the simple block-type model
eq. (2.90) introduced in chapter 2. The definition was for a particular K:

zi ∼ Multinomial

(
1

K
, . . . ,

1

K

)
(4.66a)

θ`,k ∼ Beta(b1, b2) (4.66b)
Aij ∼ Bernoulli(θzi,zj ). (4.66c)

It is easy to see if W is the random function obtained by partitioning the unit
interval into K intervals V1, . . . , VK such that:

Vi =

[
i− 1

K
,
i

K

[
(4.67)

then writing W as the random function obtained by first drawing K(K + 1)/2
random θ`k values according to eq. (4.66b) and setting

W (x, y) ≡
∑
`k

θ`k1V`(x)1Vk(y) (4.68)
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(with the convention θ`k = θk`) we obtain the corresponding random function.
It takes little imagination to replace the finite set of intervals (Vk)Kk=1 with that
of a draw from the Poisson-Dirichlet process eq. (4.42); we will return to this
construction later in chapter chapter 6.

4.3.1.1 Sparsity

An important consequence of the Aldous-Hoover theorem is the random network
models are dense [Orbanz and Roy, 2013, Lloyd et al., 2013]. By dense we mean
the number of edges scale as n2. To be specific, for a random simple graph
model (Xij) we define the expected number of edges as

L(n) =
∑

1≤i<j≤n

xij . (4.69)

If the graph is simply exchangeable it is a consequence of the Aldous-Hoover
theorem 4.3.2 that

L(n) =
W0

2
n(n− 1), W0 =

∫ 1

0

∫ 1

0

dudv W (u, v). (4.70)

Thus, any particular draw from the prior will either have no edges with proba-
bility 1 if W0 = 0 or the number of edges will scale as n2 and the same hold in
expectation over W . It is widely believed the degree-distribution of many large
networks follow a power-law[Newman, 2010, Newman et al., 2001, Strogatz,
2001]

p
(
Fraction of vertices with k edges

)
∼ k−γ , γ > 0 (4.71)

where γ roughly falls in the interval 2 − 3. In this case the number of edges
grow as O(nα), α < 2 [de Solla Price, 1965, Barabási and Albert, 1999]. Such
as statement is of course subject to many qualifications. After all, we only have
access to a single network and not an infinite-dimensional ensemble wherein we
can take the limit eq. (4.69), and even if we registered consecutively larger parts
of a social network one should worry if the corresponding density of friendships
was really reflecting the way the social network was being sampled. However it
seems to be a plausible assumption that in many settings the units corresponding
to vertices has physical limitations, for instance and upper bound on the number
of friendships, that makes it reasonable to say the number of edges scale slower
than O(n2).

While this scaling behavior seems unobtainable for exchangeable random graphs,
we will briefly mention some recent work that imply such as negative lesson
should be subject to qualifications. Let’s for a moment not consider networks
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but something quite different, namely a large shallow tank of water and very
long sides, say A meters. Assume the water in the tank is polluted with small,
non-interacting dark particles of pollen lying on the surface of the water. We
assume the concentration of particles is 1000 particles per liter of water and
above the tank we assume there is a camera pointing directly downwards. The
location of the camera is fixed and we assume the aperture of the camera is so
small it can only see a small rectangular region in the middle of the tank of side
length a.

We assume the following setup: At different points in time we (1) stir the tank
and wait for the water to settle down (2) take a picture with the camera. Each
picture of the camera will contain a number M of particles and, since it is a
digital camera, the particles will have (x, y) positions relative to the aperture of
the camera, L = (xi, yi)

M
i=1 ⊂ R2. Clearly repeating the procedure of stirring

and taking snapshots will induce a distribution over discrete subsets L of R2. It
is not hard to seeM will be binomially distributed and, if the tank is very large,
very well approximated by a Poisson distribution. Furthermore it is not hard
to see the distribution of L (for a particular camera) is the same as if we could
“freeze” the water in the tank, cut it into small cubes wi × wj , wi = [wai , w

b
i [

and apply a permutation σ on the cubes to produce a new tank wσ(i) × wσ(j).

Suppose each set L is given the following interpretation: The coordinate (xi, xj)
corresponds to assuming there are two vertices i and j and they are connected
by an edge (ij). Since xi 6= xj with probability 1 for different i, j this network
would (with probability 1) contain M edges and 2M vertices. If we made the
camera zoom out to capture 4 times the area, the new (induced) network L′ ⊂ R
could be expected to contain 4 times as many vertices and 4 times as many edges
on average; however notice the distribution of the subset L = L′ ∩ ([0, a[×[0, a[)
would be the same. It would appear the induced networks both shared many of
the important features of exchangeability while the expected number of edges
only grew proportionally to the number of vertices. An issue with this argu-
ment is the network is somewhat trivial and only containing disconnected edges,
however if we assumed the available choices of x and y was limited, for instance
because the camera only captured a finite number of pixels, some of the po-
sitions would coincide and the resulting graph would be non-trivial. Such a
construction was proposed by Caron [2012] (see also Caron and Fox [2014]) and
may be briefly sketched as the following generative model

µ ∼ CRM(ν) (4.72a)
L ∼ PP(µ× µ) (4.72b)

where the CRM and Poisson process discussed in section 4.3.1.1. Notice the
result of this procedure, L, is a a random set of points on the space where ν
(the intensity of the CRM, see eq. (4.50)) is defined. For additional discussion
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see [Caron, 2012, Caron and Fox, 2014]. Different choices of ν will control the
properties of L and allow the construction of random sparse networks [Caron and
Fox, 2014]. It might appear the above construction, a model of random graphs
that are not dense, is in conflict with the Aldous-Hoover theorem, however
this is not the case because the construction is not a model of exchangeable
arrays in the sense of eq. (4.63) but of points sets obeying a different type of
invariance [Kallenberg, 2005, Chapter 9]; we expect this construction to play an
important role in the coming years and will briefly discuss it later in chapter 6,
however since it has played no further role in our work we will not provide
additional details here.

4.4 Random Hierarchies

The last section will treat priors over rooted trees also known as hierarchies.
Since a tree is a graph, it might be tempting to consider a theory of random
trees as closely related to that of random graphs, however the treatment will be
much more closely related to that of a partition.

Algorithm 1 Generate a fragmentation t← FRAG(B)

t← {B}
if |B| ≥ 2 then
π ← CRP(B,α)
for bk ∈ π do
t← t ∪ FRAG(B)

end for
end if
return t

The central object we will study is a fragmentation. A fragmentation can be
thought of as starting with a set B and then (i) construct a partition π of B
(ii) recursively apply the partition scheme used in (i) to each block Bk ∈ π (iii)
terminate when one is left with singletons. Fragmentations are thus simplest
described by an algorithm which generate partitions. Recall π ∼ CRP(B,α)
denotes that π is a partition of B obtained from a Chinese restaurant process
with parameter α. For instance if B = {1, 4, 5, 8} then it may be the case
π = {{1, 4}, {5}, {8}}. A simple algorithm for generating fragmentations is
then illustrated in algorithm 1 and a fragmentation of B could be tB where

tB ≡ FRAG(B) = {{1, 4, 5, 8}, {1, 4}, {5, 8}, {5}, {8}, {1}, {4}}. (4.73)

To give a formal definition: a fragmentation tB of B is a collection of non-empty
subsets of B such that: (i) B ∈ tB and (ii) if |B| ≥ 2 there is a partitioning
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πB = {B1, . . . , BK} of B such that K ≥ 2 and

tB = {B} ∪ tB1
∪ tB2

· · · ∪ tBK (4.74)

where each tBk is a fragmentation of Bk. Notice it follows from the definition
tB must contain all singletons: {i} ∈ tB if and only if i ∈ B.

Fragmentations are easily seen to be equivalent to rooted trees. Each element
of tB is identified with a vertex in the tree such that {B} is the root of the
tree and each singleton {i}, i ∈ B is a leaf. Edges are induced by the definition
eq. (4.74): In the used notation we would identify vertex corresponding to {B}
as having K children, B1, . . . , BK and we would say each tree tBi is a subtree
of tB . Notice that according to this definition no vertex in the tree can have a
single child.

Fragmentations, and trees in general, are objects of great practical importance.
The earliest pioneering studies was as pure combinatorics and go back to Bor-
chardt [1860], Schröder [1870], Cayley [1889], however as statistics began to play
a greater role in the study of evolution so was hierarchies naturally made an
object of study from a statistical perspective as a model of cladograms. For
modern treatments see Aldous [1996], Bertoin [2001], Haas et al. [2008] and Mc-
Cullagh, Pitman, Winkel, et al. [2008], the later serving as the primary reference
of this section.

What we are interested in is models of random fragmentations. That is, simply
a probability distribution over the set of all fragmentations of finite sets of all
sizes. This is analogous to our desire to find a distribution over all partitions of
all sets of finite size.

The project proceeds entirely parallel to that of partitions and arrays: First
we identify (postulate) an appropriate symmetry condition (for partitions this
was exchangeability, for arrays this was joint or separate exchangeability), then
this symmetry induces an appropriate characterization in terms of an infinite-
dimensional object. For exchangeable sequences this was a random measure (for
partitions the paint-box characterization) and for exchangeable arrays it was the
Aldous-Hoover representation, specifically the graphon for joint exchangeable
graphs. Finally this object can be used to specify a model for the discrete
object in question that fulfills the desired invariance, an example was the one
and two parameter Chinese restaurant process for partitions.

Where our presentation will depart slightly from this scheme is the notion of ex-
changeability most appropriate for fragmentations will be more restrictive. This
will significantly limit the family of possible exchangeable random fragmenta-
tion models. We will in this presentation not provide the underlying (infinite-
dimensional) characterization corresponding to the paint-box or graphon and
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only describe the distribution over finite trees analogous to the Chinese restau-
rant process. We hope this omission does not obscure the similarities to the
preceding sections we encourage the reader to consult [McCullagh et al., 2008]
for the details.

4.4.1 Exchangeable fragmentations

As for the case of the robot in the introduction to this chapter, an important
role of exchangeability is ensuring models of different sizes are consistent under
marginalization. To make the notation less cumbersome we will define the notion
in terms of finite trees. Consider first a partition π of B for some finite B.
Assume A is some set and A∩B 6= ∅. Recall the projection operation of π onto
A ∩B from eq. (4.18) was defined as

projA(π) ≡ {b ∩A : b ∈ π, b ∩A 6= ∅} . (4.75)

Notice the projection operator also work for trees. Specifically if tB is a frag-
mentation of B and A ∩B 6= ∅ then tA∩B = projA(tB) is also a fragmentation.
In a similar fashion to the theory of exchangeable partitions section 4.2, denote
by TB a random fragmentation of the set B. A model of random fragmentations
is then a collection of all such random variables (T[n]).

We are now in a position to state the symmetry for fragmentation. We will say
a model of random fragmentation is

• Consistent if, for all A ⊂ B such that A 6= ∅, the projection projA(TB) is
distributed as TA∩B .

• Markovian if, letting ΠB = {B1, . . . , BK} denote the stochastic variable
corresponding to the split of B at the root, the K trees

projB1
TB , . . . ,projBK TB (4.76)

conditional on ΠB are i.i.d. distributed as TB1
, . . . , TBK .

A random model of fragmentations with both of these properties will be called
exchangeable. Notice the Markovian property is implicit in a generative model
such as algorithm 1 and naturally arise if we do not wish subtrees to influ-
ence each other, meanwhile the consistency property, while less obvious from a
generative perspective, is analogous to that of eq. (4.19) for partitions.

Remarkably, the above two requirements along with a further requirement dis-
cussed below are enough to narrowly identify the possible distributions. We
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will only outline the argument which can be found in [McCullagh et al., 2008].
Firstly, an exchangeable model of random fragmentations can be characterized
by its splitting rule, the equivalent of the EPPF for partitions. Assuming tB
fragment B into π = {B1, . . . , BK} then the splitting rule is the function s:

P (ΠB = π) = s(n1, n2, . . . , nK) (4.77)

where nk = |BK | and s(1) = 1. Naturally the function s is symmetric in its
coordinates. By the Markovian property the full distribution of tB is then of
the form:

P (TB = t) =
∏
B∈t

s(|B1|, |B2|, . . . , |BK |) (4.78)

where it is implied t fragments B into the sets B1, . . . , BK . If we assume the
splitting rule s is of the Gibbs form:

s(n1, n2, . . . , nK) =
a(K)

c(n)

K∏
k=1

w(nk), n =

K∑
k=1

nk (4.79)

for some w(n) ≥ 0 if n ≥ 1, c(n) > 0 if n ≥ 2 and a(k) ≥ 0 k ≥ 2 with the special
values: w(1) = a(2) = 1 we can now state the main result due to McCullagh,
Pitman, Winkel, et al. [2008] and is here repeated nearly verbatim.

Theorem 4.4.1 (McCullagh-Pitman-Winkel). Let s be the splitting rule for
random fragmentation model P . If s is of the Gibbs form eq. (4.79) and consis-
tent, then s is associated with the two-parameter Ewens-Pitman family

w(n) =
Γ(n− d)

Γ(1− d)
, n ≥ 1 and a(k) = dk−2 Γ(k + α/d)

Γ(2 + α/d)
, k ≥ 2. (4.80)

including limits in d. c(n) is determined by normalization. The allowed param-
eter range is as follows

0 ≤ d < 1 and α > −2d: Multifurcating with arbitrary block numbers

d < 0 and α = −md: Multifurcating with no more than m blocks where m is an
integer

d < 1 and α = −2d: Binary hierarchies

d = −∞ and α = m: for integer m ≥ 2. The “recursive coupon collector” of
McCullagh et al. [2008]

d = 1: Singleton blocks.
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To apply Gibbs a fragmentation trees to a particular model one need to compute
the posterior likelihood of any particular tree which require one to compute c(n)
in the above. We will focus on the first range of parameters, 0 ≤ d < 1 and
α > 0. Using the definition eq. (4.78) and the form of the splitting rule eq. (4.79)
it is simple to verify s(n1, . . . , nK) must be of the form

s(n1, . . . , nK) =

(
α
d

)(K)
dK−1

α(n) − (−d)(n)

K∏
k=1

(−d)(nk). (4.81)

where again x(k) = Γ(k+x)
Γ(1+x) . This is simply the density of the two-parameter

Chinese restaurant process of eq. (4.44) conditional on there being at least two
blocks.

4.5 Discussion

It is interesting to relate the discussion of this chapter to that of the previous
two. Firstly, Bayesian non-parametrics, as a research subject, is perhaps best
understood as finding (i) relevant types of data (ii) relevant symmetries and
invariance principles appropriate for that type of data. Having arrived at a good
question under (i)–(ii), it is a mathematical problem to derive representations
of the probability distribution that satisfies both. Machine learning is naturally
interested in the same problems, however with a strong preference for ease (or
often simply feasibility) of implementation at the cost of generality.

This asymmetry means the mathematical statistics literature has historically
been ahead of machine learning. A particular object (a list, an array, a frag-
mentation, etc.) is very often first studied in mathematical statistics and then,
sometimes decades later, the same type of object is appear and is studied in the
machine learning literature in the context of particular problems. This provides
ample reasons to search the mathematical literature for novel objects or results,
and consult the machine-learning literature for applications and problems. This,
and the fact the mathematical statistics field is relatively mature, implies refer-
ences older than the past few years still have immense practical value, a fact I
only discovered relatively late.

This chapter completes the theoretical building-blocks. The next two chapters
will, respectively, treat the practical problem of inference in discrete model and
applying the previous material to network modelling.
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Chapter 5

Inference

In this chapter, we will consider the problem of inference. To illustrate the
problem, suppose we have a Bayesian model consisting of a large collection
of parameters x. The variables may be continuous or discrete, and they may
encode a complicated data structure such as a hierarchy. For simplicity and
definiteness, the reader is invited to consider the case where x consists of a list
of variables, x ≡ (xi)

n
i=1 and where each xi is discrete: xi ∈ Xi.

In a Bayesian framework we will typically assume we have access to some data
Y (which may also be of any sort) and a model

p(Y, x) = p(Y |x)p(x). (5.1)

Suppose we observe data Y and assume the model is all we know. In this case
all the comments in chapter 3 do not apply and we are left with Bayes theorem.
The posterior density becomes:

p(x|Y ) =
p(Y |x)p(x)∫

dx′ p(Y |x′)p(x′)
. (5.2)

To appropriately formulate the main results we will continue to distinguishing
between probability measure and densities as in chapter 4, however we will follow
the custom in the literature of using Greek letters for the probability density
and in particular use π for the probability of interest, that is, corresponding to
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the density p(x|Y ) in eq. (5.2). In addition we will often use the same symbol
for the distribution and density. Assuming µ is the standard (Borel) measure
on X then we will write

π(dx) = π(x)µ(dx), dx ⊂ X (5.3)

where π(x) = p(x|Y ) in the notation of eq. (5.2). We will otherwise continue to
work with the usual notation of measure and integration theory, see Kallenberg
[2002, chapter 1] for a comprehensive reference. In itself, formulating a theory
for the (correct) probability distribution π may seem quite limited since we
can normally only compute p(x, Y ) in closed form, nevertheless it is customary
to work with the normalized distribution π since the derived results will be
unaffected by the scaling.

5.1 The inference problem

What we have not concerned ourself with so far is what we are supposed to
do with the posterior distribution π. In this chapter, we will assume only one
thing concerns us: The computation of expectations. More exactly evaluation
of expectations of the form:

E[f ] =

∫
π(dx) f(x) (5.4)

for one or more measurable functions f . We will assume f is well-behaved and
the integral always converges. This type of averages arises in many circum-
stances. Suppose for instance in additional to the data Y there is some addi-
tional unobserved data Yu and x capture all latent information about the obser-
vations: p(Y, Yu|x) = p(Y |x)p(Yu|x). In this case p(Yu|Y ) =

∫
dx p(Yu, x|Y ) =∫

dx p(Yu|x)p(x|Y ) thus:

p(Yu|Y ) = E[f ], f(x) = p(Yu|x). (5.5)

Alternative situations could be that f(x) represents a cost or reward of a state
x, a physical quantity depending on x such as energy, force or position or the
indicator function on an set A: f(x) = 1A(x). This chapter treats the prob-
lem of evaluating (or rather, approximating) such integrals using Monte Carlo
methods. Monte Carlo methods denotes a very large class of algorithms, meth-
ods and theoretical results and Monte Carlo methods are in turn a subset of
all inference methods applicable to Bayesian models. We will not attempt to
review this literature nor will we give a particular throughout account of Monte
Carlo methods. Rather, after a brief introduction, the chapter will be focused
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rather narrowly on the case where the variables of interest x corresponds to a
partition.

A reader who is interested in Monte Carlo methods in general, especially for
models with continuous parameter spaces, should consult some of the many ex-
cellent general references on the topic [Neal, 1993, Doucet, 2001, Gilks, 2005,
Robert and Casella, 1999, Rubinstein and Kroese, 2011]; In addition, a compre-
hensive theoretical perspective on Markov chains is found in Kallenberg [2002].

5.2 Monte Carlo methods

In most situations integrals such as eq. (5.4) will be analytically intractable due
to the form of p(x|Y ). In this case numerical integration can be attempted, see
for instance Press et al. [1990], Davis and Rabinowitz [2007]. However, if the
system contains many non-trivial dimensions, these methods will be insufficient.
It is in this regime Monte Carlo methods becomes relevant.

Monte Carlo methods rest upon a very simple idea. Assume π is the probability
density of interest for a random variable X in X . The strong law of large num-
bers [Scheaffer and Young, 2009] states that, assuming f(X) has finite variance
and letting (Xt)

n
t=1 be n realizations of X, then almost surely

1

n

n∑
t=1

f(Xt)→ E[f ] as n→∞ (5.6)

In other words, suppose we can generate n samples x1, . . . , xn from π then the
average (f(x1) + · · · + f(xn))/n will approximate E[f ]. This method is known
as the Monte Carlo method[Metropolis and Ulam, 1949]. The method may be
extended in two important ways. Suppose we cannot sample from π, however
we can evaluate π. In this case we can consider an alternative method. Suppose
we can sample from another distribution t defined over X with decomposition
t(dx) = t(x)µ(dx) and such that t(x) > 0 if π(x) > 0. In this case we can
rewrite the problem eq. (5.4)

Eπ[f ] =

∫
π(dx) f(x) =

∫
µ(dx) t(x)

f(x)π(x)

t(x)
= Et

[
fπ

t

]
. (5.7)

Which suggests evaluating the expectation by generating n samples x1, . . . , xn
from t(·) and make use of the approximation

Eπ[f ] ≈
n∑
t=1

f(xt)π(xt)

t(xt)
. (5.8)
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This method is known as importance sampling [Hammersley and Handscomb,
1964]. This method is less general than the derivation might suggest. Firstly,
while most functions f of interest has finite variance, this is far less certain of
the ratio fπ/t and secondly, even if this expression is convergent the variance
will often be so high as to be problematic in practice. Standard results[Robert
and Casella, 1999, Rubinstein and Kroese, 2011] show the t which minimize the
variance of Eπ[f ] = Et[fπ/t] is given by

topt(x) =
|f(x)|π(x)∫

dx′ |f(x′)|π(x′)
(5.9)

Which, assuming f is more or less uniform, states the unsurprising result t
should approximate π. Since π was assumed hard to sample from to begin with
this is often unfeasible to obtain in practice.

The second extension is a standard trick: whenever one has a stochastic algo-
rithm which relies on i.i.d. random samples from some distribution, and those
samples are non-trivial to obtain, one should consider replacing the i.i.d. sam-
ples by correlated samples. This is the topic of the next section.

5.3 Markov Chain Monte Carlo

The idea of Markov Chain Monte Carlo methods can be simply stated as replac-
ing the independent copies of X, (Xt)

n
t=1, in eq. (5.4) by dependent variables

X1, . . . , Xn. The definitions and results in the following section can all be found
in Tierney [1994]. A particular simple way to define dependent variables is using
a Markov Chain. A Markov chain is a sequence of random variables (Xt)

n
t=0

with the property that given a particular state Xi takes a value xi, the past
(Xt)

i−1
t=0 and future (Xt)

n
t=i+1 states are independent. This implies for all t:

P (Xt ∈ A|X0 = x0, · · · , Xt−1 = xt−1) = P (Xt ∈ A|Xt−1 = xt−1) (5.10)

for any measurable set A. The conditional distribution on the right-hand side
plays a crucial role and is known as the transition kernel.

Formally, a transition kernel is a function T on X × B 7→ [0, 1] where B is the
measurable sets of X such that (i) T (x, ·) is a probability measure for all x ∈ X
and (ii) T (·, A) is a measurable function for all A ⊂ X. In this notation, the
Markov condition eq. (5.10) can be written

P (Xt ∈ A|X0 = x0, · · · , Xt−1 = xt−1) = Tt−1(xt−1, A). (5.11)
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Observe with this definition we can define the two-step transition kernel T (2)
t−2(xt−2, A)

by applying eq. (5.11) twice: [Tierney, 1994]

P (Xt ∈ A|Xt−2 = xt−2)

=

∫
xt−1∈X

P (Xt ∈ A|Xt−1 = xt−1)P (Xt−1 ∈ dxt−1|Xt−2 = xt−2)

=

∫
xt−1∈X

Tt−1(xt−1, A)Tt−2(xt−2, dxt−1)

≡ T (2)
t−2(xt−2, A). (5.12)

This inspires the following general definition for all t ≥ s ≥ 1 (the product is
understood as denoting n integral operators)

P (Xt ∈ A|Xt−s = xt−s)

=

(
s−1∏
i=1

∫
xt−i∈X

)
Tt−1(xt−1, A)

s−1∏
i=1

Tt−i−1(xt−i−1, dxt−i)

≡ T (s)
t−s(xt−s, A). (5.13)

With this definition in mind we can define the marginal distribution P (Xt ∈ A)
at any time t given some initial value x0 of X0

π(t)(A) ≡ P (Xt ∈ A|x0) = T
(t)
0 (x0, A). (5.14)

Furthermore, using the definition eq. (5.13) it follows π obeys the following
relationship:

π(t)(A) =

∫
π(t−1)(dxt−1) Tt−1(xt−1, A). (5.15)

Where we have included a time index on the transition kernels Tt. If the tran-
sition kernels are independent of time, that is, Tt(x,A) = T0(x,A) for all x,A, t
the Markov chain (and equivalently, the transition kernel) is called homoge-
neous. Otherwise it is called non-homogeneous. While we will later consider
non-homogeneous chains, for now we will assume the Markov chains are homo-
geneous unless otherwise mentioned. The result eq. (5.15) inspires the following
definition:

For a transition kernel T we say a distribution π is invariant (or stationary)
provided [Tierney, 1994]

π(A) =

∫
π(dx) T (x,A) (5.16)

for all measurable A ⊆ X . Notice the definition trivially extends to general
measures µ provided µ(X ) <∞.
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Suppose π, the distribution we wish to obtain samples from, is the stationary
distribution of some transition kernel T . Then, given x0 ∼ π, we can generate
n samples from π, (xt)

n
t=1, by sampling xt from T (xt−1, ·) for t = 1, . . . , n and

use these samples in the approximation eq. (5.4).

There are two issues with this scheme. The first is we cannot assume the initial
point x0 is distributed as π, the second is the samples will not be i.i.d. samples
from π. Convergence results for Markov chains are thus concerned with showing
which conditions must apply for the transition kernel for allowing this scheme
to converge. Before this, however, we will illuminate the balance condition
eq. (5.16) from an intuitive perspective.

5.3.1 The balance condition

Consider the balance condition eq. (5.16) in the case where X is finite, X =
{x1, . . . , xM}, and the kernel is homogeneous. In this case for all x ∈ X :

π(x) =

M∑
k=1

T (x|xk)π(xk). (5.17)

The balance condition can now be given a simple interpretation. Suppose each
state xk of X correspond to a barrel and π(xk) is the amount of water (in
liters) in the barrel. Drawing a random sample from π is now equivalent to
selecting a barrel xk with probability proportional to the amount of water in
the barrel. This can be done as follows: First, put a mark on the side of the
barrel indicating the amount of water. Next, empty all the barrels into a large
basin. Third, place a microscopic radio transmitter of neutral buoyancy in the
basin and stir. Fourth, pour the water back in the barrels to their original level.
The barrel xk with the radio transmitter has then been selected with probability
π(xk).

Suppose we come up with the following time-saving scheme: Instead of filling
and refilling the barrels, we connected the barrels with pipes such that for any
two barrels there are two pipes connecting them. To each pipe there is a pump,
and the rate of flow of all pumps is carefully adjusted such that the amount of
water in each barrel do not change, for instance by having the same flow from
barrel A to B as from B to A. If this system is left to its own for sufficiently long
time the flow will eventually have re-distributed the water evenly, imitating the
effect of collecting-and-redistribution scheme. Accordingly, the location of the
radio transmitter will again be random and the particular barrel it is located in
will be randomly sampled with probability π. The balance equation eq. (5.17)
can be framed as the pumps keeping the water levels constant and the image
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of the current state xt, corresponding to the radio transmitter, as flowing in a
state space provide a useful illustration of the conditions for convergence.

5.3.2 Convergence

In this section, we will briefly review some basic convergence results. To discuss
these requires introducing properties of a Markov chain useful for expressing the
convergence conditions. The definitions are somewhat technical since uncount-
able spaces X introduces measure-theoretical difficulties and for this reason it
is worth having the illustration with the barrels, pipes and the radiotransmitter
in mind to illustrate which situations the definition are trying to avoid.

Consider a Markov chain (Xt)
∞
t=0 with invariant (in the sense of eq. (5.16))

measure π and transition kernel T (·, ·) on a space X with σ-algebra F . We wish
to avoid that the Markov chain behaves fully deterministically or that it will not
visit some region of state space infinitely often. The following definitions largely
follow Tierney [1994] with slightly more explicit notation. For any measurable
A define the random variable τA through

τA = inf{t ≥ 1 : Xt ∈ A} (5.18)

with τA =∞ if the chain never visit A. τA denote the first time the chain enters
a region A. Clearly a chain which, with some probability, never visits a “large”
region A will (with the same probability) give samples that are uninformative
regarding that region. Conversely, it should not matter if a chain fails to visit
a single point with measure 0. After all, for an uncountable space the chain is
guaranteed to only visit a countable subset. The following definitions will be
important

• The chain is said to be φ-irreducible if there exist a σ-finite measure φ on
X such that φ(X ) > 0 and for any initial state x0 ∈ X and any measurable
A ∈ F such that φ(A) > 0 then P (τA <∞|X0 = x0) > 0. For our purpose
it will suffice to take φ = π.

• Aperiodicity is the simple requirement the chain does not jump between
states in a deterministic manner. Formally, a π-irreducible Markov chain
is said to be aperiodic if there exist no partition B0, . . . , Bk−1 where k ≥ 2
such that x0 ∈ B0, π(Bk) > 0 for all k and for all t:

T (t)(x0, Bt (mod k)) = 1. (5.19)

• Recurrence is the property there is no states the chain will only visit a
finite number of times. Formally, we say a π-irreducible Markov chain
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with stationary distribution π is recurrent if for all A ⊂ X such that
π(A) > 0

P (τA <∞|X0 = x0) > 0 for all x0 ∈ X (5.20)
and P (τA <∞|X0 = x0) = 1 for π-almost all x0 ∈ X . (5.21)

• As a corollary to the above, the chain is said to be Harris recurrent if
P (τA <∞|X0 = x0) = 1 for all x0 ∈ X .

• Finally the chain is said to be ergodic if it is positive Harris recurrent and
aperiodic.

The following result shows the above four properties are in a sense necessary
and sufficient for convergence.

Theorem 5.3.1. Suppose a Markov chain with transition kernel T is π-irreducible
and admits π as the stationary distribution. Then T is positive recurrent and
π is the unique invariant distribution of T . If T is also aperiodic, then, for
π-almost all x0 ∈ X

‖Tn(x0, ·)− π(· )‖var → 0 for n→∞ (5.22)

If T is Harris recurrent, then the convergence occurs for all x0 ∈ X .

In the result eq. (5.22) the variational distance between two measure µ, ν is
defined as

‖µ− ν‖var = sup
A⊆X

|µ(A)− ν(A)| − inf
A⊆X

|µ(A)− ν(A)| (5.23)

where the supremum and infimum is taken over all measurable A.

The formulation of the above result follows Tierney [1994]. For proof and ad-
ditional details see Nummelin [1984], Athreya, Doss, and Sethuraman [1992],
Rosenthal [2001]. The above conditions are also necessary if the relationship
eq. (5.22) hold for all x Tierney [1994]. Keep in mind that theorem 5.3.1, taken
alone, only establish we will eventually converge towards a single sample, not
that the average eq. (5.6) converges. This is establish in the following result

Theorem 5.3.2. Suppose (Xt)
∞
t=0 is ergodic with equilibrium distribution π and

suppose f is real-valued and
∫
dπ |f | < ∞. Then for any initial distribution of

X0

1

n

n∑
t=1

f(Xt)→
∫
π(dx)f(x) for n→∞ (almost surely). (5.24)
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The formulation is again taken from Tierney [1994], for proof see Revuz [1975,
theorem 3.6].

On one hand, the conditions for the above results are very minimal and insofar
one relies on standard constructions (see the next section) they are unlikely to be
violated. On the other hand they do not say how fast the chain (or the average
eq. (5.6)) will converge. There exist a number of convergence result which all
impose additional constraints on the transition kernel [Tierney, 1994, Nummelin,
1984, Chan, 1989, Rosenthal, 1995a]. These results either come with conditions
that are hard to verify for any particular transition kernel or, alternatively,
contain constants in the results which cannot be estimated in practice. For this
reason, while nearly any proposed Markov chain based method can be expected
to converge in the sense of theorems 5.3.1 and 5.3.2, it may do so very slowly
and the question how well a particular sampler (by which we mean a transition
kernel) actually works is by a large empirical.

5.4 Constructing samplers

In this section, we review two standard techniques for constructing transitions
kernels which obey the invariance condition eq. (5.16).

5.4.1 Gibbs sampling

Gibbs sampling, while arguably not as general as Metropolis-Hastings sampling
which we will consider in the next section, is nevertheless one of the most com-
mon single method for Bayesian inference by Markov chain Monte Carlo and for
all problems that admit a computationally feasible implementation it is consid-
ered the go-to method.

The basic idea behind Gibbs sampling is the following. Suppose each element
x ∈ X is represented as a product of d spaces, ie. x = (x1, . . . , xd) and X ≡
X1 × · · · × Xd. Write xi for the variables belonging to subspace i, ie. xi ∈ Xi
and correspondingly x\i for the other variables:

x\i ∈ X1×, · · · ,Xi−1 ×Xi+1 × · · · Xd (5.25)

In a similar vein we will introduce stochastic variables Xi and X\i and let

π(Xi ∈ ·|X\i = x\i) (5.26)
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denote the conditional distribution of Xi|X\i. Introducing time-indices t to
arrive at xt,i, xt,\i (and let xt denote the full state), the Gibbs sampler generates
the next state of the chain xt+1 from xt by first setting xt+1 = xt and then
updating each subspace using the conditional probability eq. (5.26):

• Iterate i = 1, . . . , d:

– Generate: x∗i ∼ π(·|X\i = xt+1,\i)

– Update: xt+1 = (xt+1,1, . . . , xt+1,i−1, x
∗
i , xt+1,i+1, . . . , xt+1,d).

There is nothing special about the order in which the variables are iterated over.
The stationarity condition eq. (5.16) is straight-forward to verify through some
tedious algebra.

Gibbs sampling was originally invented in statistical physics in the context of
Ising spin systems by Ehrman, Fosdick, and Handscomb [1960] (Ehrman et al.
[1960] in turn claim the idea is closely related to Metropolis et al. [1953], Wood
and Parker [1957], Fosdick [1957], however the two former references fall within
the Metropolis-Hastings framework and the third reference was not obtainable).

The first application of Gibbs sampling in machine learning was in image pro-
cessing [Geman and Geman, 1984] and was later popularized in a number of
important publications, c.f. [Tanner and Wong, 1987, Gelfand and Smith, 1990,
Casella and George, 1992, Liu, 2008]. Gibbs sampling has been subject to a
number of important modifications suitable for different conditions. This include
blocking and collapsing [Liu, 2008, 1994], data augmentation [Tanner and Wong,
1987, Van Dyk and Meng, 2001] and general axillary variable techniques [Hig-
don, 1998] such as slice sampling [Neal, 2003]. A good overview can be found
in [Brooks et al., 2011].

As mentioned in the introduction, Gibbs sampling is often considered the de-
fault method when at least some of the marginal distribution has an tractable
analytical form which admits easy sampling, and even when this is not the case
Gibbs-inspired techniques such as metropolis-within-Gibbs[Gilks et al., 1995,
Tierney, 1994] can sometimes be applied.

5.4.2 Metropolis-Hastings

The Metropolis-Hastings algorithm provides a far more flexible framework for
constructing transition kernels obeying the invariance condition eq. (5.16) than
Gibbs sampling, and can be seen as an extension of the importance sampling
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method eq. (5.7). Again the goal is to construct a transition kernel T which
admits π as its invariant distribution and this is accomplished as follows: Start-
ing from some point xt ∈ X , a new point y ∈ X (the proposal) is generated
from a fixed axillary transition kernel Q which need not admit π as its invari-
ant distribution. To correct for this discrepancy, y may be rejected (with some
probability determined later) in which case xt+1 is set to xt. Otherwise xt+1 is
set to y. Surprisingly, the probability of accepting y turns out to have a simple
analytical form. In full details the construction is as follows:

Assume the current state of the chain is xt ∈ X and we wish to construct a
transition kernel T (x, ·) which determine the next state of the chain and admit
π as the invariant distribution. In line with the above description, we consider
a general transition kernel Q(x,A), x ∈ X , A ⊆ X which need not admit π as
the invariant distribution. Assume for definiteness that Q takes the form

Q(x, dy) = q(y|x)µ(dy) (5.27)

where µ is the usual Borel measure and we have used the usual notation for
conditional density for the function q of x and y to make the following more
familiar. To avoid trivial complications, let S = {x : π(x) > 0} be the support
of π and assume for all x /∈ S: Q(x, S) = 1. That is, when considering the
Markov chain induced by Q, it always sends a point x which are not in the
support of π into π’s support. For simplicity, assume S contains more than a
single point.

The acceptance rate a(y;x) is now defined through

a(y;x) ≡

{
min

{
q(x|y)π(y)
q(y|x)π(x) , 1

}
if q(y|x)π(x) > 0

1 if q(y|x)π(x) = 0.
(5.28)

thus, the acceptance rate is a function of two variables. With these preliminary
definitions we can proceed with the full method: Assume the current state of
the chain is xt ∈ X then xt+1 is generated by

• Generate y ∼ Q(xt, ·)

• Compute: a(y|x)

– With probability a(y|x) set: xt+1 = y

– otherwise set: xt+1 = xt.

It is instructive to write out the transition kernel induced by this procedure.
First define the function t through

t(y;x) ≡
{
q(y|x)a(y;x) if x 6= y
0 if x = y. (5.29)
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Then introducing

r(x) ≡ 1−
∫
µ(dy) t(y;x) (5.30)

the full transition kernel can be written as

T (x, dy) ≡ t(y;x)µ(dy) + r(x)δx(dy). (5.31)

By considering the different cases of eq. (5.28) and eq. (5.29) one obtains:

π(x)t(y;x) = π(y)t(x; y) (5.32)

from which the balance condition eq. (5.16) follows from simple calculations [Tier-
ney, 1994]∫

π(dx)T (x,A) =

∫
π(dx)

∫
A

T (x, dy)

=

∫
π(dx)

∫
A

[t(y;x)µ(dy) + r(x)δx(dy)]

=

[∫
µ(dx)

∫
A

µ(dy)π(x)t(y;x)

]
+

∫
A

π(dx)r(x)

=

[∫
A

µ(dy)

∫
µ(dx)π(y)t(x; y)

]
+

∫
A

π(dx)r(x)

=

[∫
A

µ(dy)π(y)(1− r(y))

]
+

∫
A

π(dx)r(x)

=

[∫
A

π(dx)(1− r(x))

]
+

∫
A

π(dx)r(x)

=

∫
A

π(dx) = π(A) (5.33)

The two terms in eq. (5.31) can be interpreted as the chance of moving from
x to y in an accepted move plus the chance of having the move rejected and
staying at x. As expected, convergence will depend on Q and more exactly on
the relationship between Q and π, see [Nummelin, 1984, section 2.4] for more
details.

The Metropolis-Hastings method depend on two separate innovations made 17
years apart. First by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
[1953] for symmetric proposal kernels, that is, q(x|y) = q(y|x) (notice the can-
cellation effect in eq. (5.28)) and later generalized to the present form by Hast-
ings [1970]. The choice of acceptance function is not unique, however it is
optimal in a number of circumstances [Peskun, 1973]. This leaves the choice
of proposal kernel. Clearly setting q(y|x) = π(y) is optimal in the sense of
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providing i.i.d. samples from π and having acceptance rate 1. As with Gibbs
sampling, a number of additional ideas and extensions are available. These in-
clude the hit-and-run algorithm [Smith, 1984], multistage sampling [Valleau
and Card, 1972], diffusion-based methods for continuous problems such as the
Metropolis adjusted Langevin algorithm [Roberts and Stramer, 2002], Hamilto-
nian Monte Carlo [Duane et al., 1987] and Riemannian Monte Carlo [Girolami
and Calderhead, 2011], the Multiple-try Monte Carlo method [Liu et al., 2000],
the reversible-jump method [Green, 1995] and a host of axillary variable tech-
niques, hereunder the double metropolis-hastings algorithm for models where
only an unbiased estimator of the normalization constant exist [Liang, 2010]
and, for spin systems, the Swendsen-Wang algorithm [Swendsen and Wang,
1987]. Again this list is certainly not meant to be exhaustive and more details
can be found in [Brooks et al., 2011].

The Metropolis-Hastings method is more generally applicable than Gibbs sam-
pling, however constructing good proposal kernels is by no means an easy task.
Specifically in the case of partition-based models most of the above techniques
are not applicable because they are designed to treat different issues (such as
growing parameter space or continuous problems), or because they are so general
they still require novel ideas to be applicable to partition-based problems.

5.5 Adaptive Markov chain Monte Carlo

In most circumstances a MCMC proposal kernel Q (see eq. (5.27)) will de-
pend on parameters which must either be set from a-priori information or by
performing multiple runs for determining the optimal setting. An idea which
is becoming more influential is to construct methods which attempts to learn
these parameters online as samples (xt)

∞
t=1 from the Markov chain (Xt)

∞
t=1 be-

comes available. The following treatment is based on Roberts and Rosenthal
[2007]. Consider a family of transition kernels {Tγ(·, ·)}γ∈Y parameterized by
a parameter γ in a space Y and assume all kernels have π as their stationary
distribution in the usual sense of eq. (5.16). We will assume each kernel Tγ is
irreducible and aperiodic, in other words, keeping γ fixed, Tγ acting upon an
initial state x0 will converge to π with probability 1.

The key idea in adaptive Markov chain Monte Carlo is to let γ at each iteration
t depend on the past states of the chain and past state of γ. To this end, let Γt
be a Y-valued stochastic variable determining the value of γ at time t. The past
information available at time t consists of the value of (X0, . . . , Xt,Γ0, . . . ,Γn).
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More formally the available information It is the natural filtration

It ≡ σ(X1, . . . , Xt,Γ0, . . . ,Γt) (5.34)

of the process {(Xt,Γt)}∞t=0. Recall a filtration is a σ-algebra which contain
all events that can happen up to time t, ie. all possible pasts. The joint state
{(Xt,Γt)}∞t=0 now depends on the past trough

γt ∼ P (Γt ∈ · |Xt = xt, It−1 = It−1) (5.35)
xt+1 ∼ P (Xt+1 ∈ · |Xt = xt,Γt = γt, It−1 = It−1) ≡ Tγt(xt, · ). (5.36)

It is the particular choice of eq. (5.35) that leads to a particular adaptive Markov
chain Monte Carlo algorithm. The concept will be illustrated with a few simple
special cases [Roberts and Rosenthal, 2007]. As a first example, if Γt = Γ0 for
all t the method reduce to ordinary Markov chain Monte Carlo. As a second
example, if the choice of the current kernel Γt does not depend on the past values
of X1, . . . , Xt convergence is also guaranteed. As a third example, if there is
some finite time τ after which the adaptation stops, i.e. Γτ+t = Γt, the sampler
also converges. The convergence of these schemes is perhaps not very surprising.

For a counter-example, consider a simple system consisting of two states, X =
{0, 1} and two transition kernels. One transition kernel, the random kernel,
choose a state at random, the other, the sticky kernel, stay in its current state
with probability 1 > a > 1

2 and choose the other state with probability (1− a).
Suppose we always choose the random kernel in state 0 and the sticky kernel in
state 1. In this case clearly we will not sample the stationary distribution (which
is uniform for both kernels) but the stationary distribution is now π̃(0) = 2−2a

3−2a .

The above example is very degenerate, but it illustrates the transition kernel
cannot deterministically depend on the current state. However if we impose the
condition that the kernel change less and less between each iteration convergence
can be guaranteed. This condition is specified in the following result [Roberts
and Rosenthal, 2007]

Theorem 5.5.1. Consider an adaptive Markov chain Monte Carlo algorithm
(Xt)

∞
t=1 on a space X with kernels Tγ for γ ∈ Y each with invariant distribution

π. If the following conditions apply the algorithm is ergodic with stationary
distribution π:

Simultaneous uniform ergodicity: For all ε > 0 there exist an N such that
‖T (N)

γ (x, · )− π(· )‖var ≤ ε for all x ∈ X and γ ∈ Y.

Diminishing adaptation: Let the It+1-measurable random variable Dt be de-
fined as Dt ≡ supx∈X ‖TΓt+1

(x, · )− TΓt(x, · )‖. The diminishing adapta-
tion property requires limt→∞Dt = 0 (in probability).
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The first property is intended to avoid pathologies associated with infinite pa-
rameter spaces Y. The second is the more important. Notice for instance it does
not require the adaptation to stop or converge. To take the above example of the
two-state system, and denoting the kernels T0 and T1, we may consider an adap-
tive method with transition kernel: Tt = cos(st)

2T0 + sin(st)
2T1, st =

∑t
i=1

1
i .

Clearly limt st = ∞, however from |st+1 − st| = (1 + t)−1 the diminishing
adaptation property follows by a simple analytical argument. The above result
admits a number of important special cases and alternative formulation, most
notably the simultaneous uniform ergodicity property can be relaxed [Roberts
and Rosenthal, 2007, section 6], however the alternative conditions are more
technical and it is an ongoing challenge to characterize the conditions under
which adaptive methods converges.

The idea of a changing transition kernel has a long history [Gelfand and Sahu,
1994, Gilks et al., 1994]. An important contribution which closely resembled
the above formulation of the problem as well as explicitly showed convergence
to the correct stationary distribution was given by Haario et al. [2001] for a
multivariate normal transition kernel. This quickly lead to many important
generalizations and convergence results [Andrieu and Robert, 2001, Atchadé
et al., 2005, Andrieu et al., 2006, Roberts and Rosenthal, 2007, Atchadé et al.,
2010, 2009]. The past decade has seen an increase in application of adaptive
Markov chain Monte Carlo. Noteworthy examples include adaptive Metropolis-
within-Gibbs [Bai, 2009], regional adaptation and neighbour-based methods [Bai
et al., 2011, Craiu et al., 2009], adaptive Gibbs sampling [Łatuszyński et al.,
2013], the Adaptive Equi-Energy Sampler [Schreck et al., 2013] and adaptive
parallel tempering [Araki and Ikeda, 2013] to mention some highlights from this
growing litterature. See also Roberts and Rosenthal [2009], Liu [2008] for good
overviews which covers many of these methods.

5.6 Remarks on convergence

A difficult problem when applying Markov chain Monte carlo methods is know-
ing how many iterations of the sampler are required before convergence results
such as those in theorem 5.3.2 attains a particular precision. For a few problems
(notably a hierarchical normal-means model) it is possible to obtain computa-
tional bounds [Rosenthal, 1995a,b], however these require sophisticated and very
laborious analysis.

Setting the general question aside for a moment, we might consider the simpler
question of how many iterations of the sampler is required before we can expect
the current state of the sampler to be a random sample form the true posterior
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distribution. Methods which guarantee samples from the true posterior are com-
monly denoted exact sampling techniques. This question too is very difficult to
answer, however for certain problems and methods there exists general results
using coalescent theory. In the simplest form, these methods revolve around
starting chains in all possible states X ; not only does this require X to be fi-
nite, for a problem where exhaustive enumeration is feasible one could simply
draw the samples explicitly. In a seminal contribution Propp and Wilson [1996]
demonstrated this requirement can be softened to consider as few as two chains
if the combination of transition kernel and X fulfilled certain properties and in
the same work exact sampling was applied to a ferromagnetic Ising spin systems
using Gibbs sampling and only two initial chains. These methods have subse-
quently been extended to certain continuous problems [Murdoch and Green,
1998], to more efficient samplers than Gibbs sampling on ferromagnetic Ising
systems [Huber, 1999], other discrete systems [Del Genio et al., 2010, Carter
et al., 2012] and as part of a sampler for double-stochastic systems [Murray
et al., 2012], however their computational cost tend to be large and requires
the system conform to strict requirements which has so far hindered widespread
usage of exact sampling.

5.6.1 Assessing convergence in practice

If we consider a general realistic setting, we are often in the situation where the
stochastic nature of the algorithms and our inability to tell which areas of the
posterior distribution has a high value beforehand conspires to put us in the
situation where it is not uncommon to have a method which not just take a long
time to converge, it is not possible to tell how long time the sampler should run
to converge and even if the sampler eventually begins to produce samples from
the posterior distribution, we have no general way to tell this is the case. It
is difficult to think of worse behavior for an algorithm which is guaranteed to
converge.

It is useful to consider this problem from a practical perspective. Suppose we
run a Markov chain for n iterations which gives the (coupled) states (Xi)

n
i=1.

We can now choose 0 < m ≤ n and an integer s ≥ 1 and for some function f
consider the stochastic variable

cn,s,m[f ] =
1

|S|
∑
i∈S

f(Xi), S =

{
s

⌊
i

s

⌋
: m ≤ i ≤ n

}
(5.37)

that is, the estimators based on samples from m to n with a spacing of s. m is
known as the burnin time and is typically chosen as a fraction of n, for instance
n/2. What we typically wish to know is how large to choose n, s andm such that
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the above stochastic variable closely approximate the average based on n0 > 0
i.i.d. samples from the invariant distribution π. In this case the Markov chain
is said to mix or (with loosely applied terminology) to have converged. Posing
the problem this way does not avoid any of the previously mentioned problems.
What is typically done is to set up criterions to determine if the sampler has not
run for sufficiently long time, under a common name these criteria are called
convergence diagnostics or statistics. If for instance the values of cn,s,m[f ] (for
a suitable function f) appears to be correlated or if they change systematically
(for instance if they tend to grow for the duration of the simulation) this is
indicative that the sampler has not been evaluated for sufficiently long time or
that the spacing s is to small.

Notice that by phrasing the problem as one of deciding the values of n, s and
m and thereby putting up criteria which may or may not be triggered the
problem is usually treated under decision theory or frequentistic statistics. Thus,
convergence is usually treated as a null hypothesis and convergence statistics are
commonly interpreted as ruling out convergence, not to provide a guarantee of
convergence.

There exists a range of possible convergence diagnostics which can roughly be
said to fall into two broad categories. The first are those which consider a single
Markov chain evaluated for a very long time and consider the function values of
a function f of Xi as a time series and use this quantity to assess convergence.
A plot of such a time series is known as a trace plot.

If f is a real function, we may expect the mean of f(Xi) to agree between the
first and last third of the time series. Assuming normality, this is a univari-
ate test which can be assessed using Z-score to produce a simple convergence
check [Geweke et al., 1991]. Related to this idea is the computation of autocor-
relation time which can subsequently be used to estimate the effective sample
size [Kass et al., 1998].

A potential issue with diagnostics that only consider a single chains may be
illustrated with the following example. Consider two chains with the same
stationary distribution and the following loose description of the behavior of
the chains: We assume the stationary distribution has two peaks in X such
that the chains tend to get stuck at each peak. Assume the first chain mix
very poorly and will invariantly get stuck at one peak and change peaks at a
frequency orders of magnitude lower than the longest realistic simulation time.
The other chain is slightly better and, while it still get stuck at each peak for
a long time, it will typically skip between the peaks a few times during each
simulation. While the first chain is no doubt worse than the second from any
objective standpoint, a comparison of the two chains by a single-chain statistic
influenced by the value at the two peaks will suffer from a Dunning-Kruger
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effect [Kruger and Dunning, 1999] in that the convergence diagnostic indicate
the first chain mix far better than the second because it mix so poorly it is
unable to uncover how poorly it mixes.

The above problem can be somewhat alleviated by running multiple chains in
parallel and investigating the behavior of the time series induced by f across
different chains. This is the idea behind the Gelman-Rubin reduction coeffi-
cient which compares the variance within each chain to that which is computed
between the entire pool of chains. This is collected in a single number, the reduc-
tion coefficient, which (assuming the chains mix) can be expected to converge
to 1 [Gelman and Rubin, 1992]. Clearly this method depends on the different
chains being initialized in states which are very spread out, i.e. such that if
the configuration space X consist of isolated peaks one has a good chance of
finding them as local minima. In addition to this difficulty all the preceding
issues regarding the choice of f applies.

Many additional methods for assessing convergence exist and the reader is re-
ferred to the reviews Cowles and Carlin [1996], Brooks and Gelman [1998] and
Plummer et al. [2006] for further references and discussion. In conclusion,
there exist no general-purpose test for convergence or divergence of Markov
chains. Within existing methods, between-chain diagnostics such as Gelman-
Rubin statistics seems to provide the better starting point, especially when
comparing methods where some may mix very poorly. From a practical per-
spective, especially when developing sampling methods, visual inspection of the
trace plots often offers more insight in the behavior of the chain than a con-
vergence statistics, with the obvious drawback of not offering a quantitative
comparison.

Additionally, suppose one considers a practical application where two Markov
chains is applied to the same problem. Suppose it is the case neither chain
converges, however one chain may performs far worse than the other. In this
situation one would tend to consider smaller problems, however it may be the
difference (in terms of proposing new states) between the methods is not very
great on smaller problems (say one method manipulates several variables jointly,
then this will presumably be less important when there are fewer variables to
manipulate), or that their time complexity is different and finally, the very
pragmatic considerations other researchers will, damn the torpedoes, disregard
convergence and apply the method to their particular problem and it is in that
setting they are really interested in the performance. However in this large-
system limit it may be all convergence diagnostics will (and should) agree neither
chain has converged and trace plots may be easier to interpret.

A general feature of convergence diagnostics is the reliance on a real functions
f . While this is an excellent starting point if the problem consists of a fixed set
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of continuous variables where a few can be expected to be very hard to sample,
for discrete structures such as trees, partitions or graphs any such single number
may be highly deceptive. To take partitions, one could consider the indicator
variable δzi−zj of the assignment of two observations i and j. If the problem
contains latent structure (which is hopefully the case!) most of these indicator
variables may be expected to be constant, and even when this is not the case, it
is typically the joint assignment of a subset of the variables which is crucial for
exploration. Alternatively, one could consider the number of blocks in a partition
as f ; however in our experience this statistics too can be highly misleading
because small, spurious, blocks and large important block contribute equally to
the statistic. Similar problems may be raised for other univariate statistics and
good literature on this problem has not been found (we discuss this briefly in
Herlau et al. [2014a]); mind we do not consider our contribution to have made
progress on this problem.

5.7 Sampling partitions

In this section, we consider a specialized application Markov chain Monte Carlo
the problem of sampling models based on partitions. The aim is to motivate
the adaptive sampling proposal, Adaptive Reconfiguration Moves for Efficient
Markov Chain Sampling [Herlau et al., 2014a], however the chapter will focus
on several related ideas that nevertheless did not work; we believe these other
failed attempts are worthwhile to mention despite being unsuited for publication.
While we will introduce much of the notational machinery required to describe
our method we will not describe it in much depth since these details can be
found in Herlau et al. [2014a].

5.7.1 Basic notation

The notation we will use will be consistent with what has previously been in-
troduced, but with some minor extensions. We will continue to use π to denote
a partition of a set X of n elements. Typically we will choose X = [n] =
{1, 2, . . . , n}. Let K = |π| denote the number of blocks in the partition and
recall the notation

π = {B1, B2, . . . , BK} where Bk ⊆ X . (5.38)

A partition π of X induces an equivalence relation [·]π and we will write:

[i]π = {j : i, j ∈ Bk for some k} (5.39)
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for the block of the partition π containing i. By a simple (or conjugate) parti-
tion based model we mean a model where any block-specific parameters can be
integrated out. Letting Y denote the data we may write the density of such a
model as

p(Y, π). (5.40)

In the following the function p(Y, π) is abbreviated by q(π).

5.7.2 The infinite relational model

The canonical example of such a model is the infinite relational model (IRM)
for network data Kemp et al. [2006], Xu et al. [2006]. The IRM is trivially
obtained form the stochastic block model eq. (2.90) of chapter 2 by replacing
the categorical distribution on π with the Chinese restaurant process eq. (4.41);
for completeness the full generative model becomes:

π ∼ CRP([n], α) (5.41a)
for 1 ≤ ` ≤ k ≤ |π| θ`k|z ∼ Beta (b1, b2) (5.41b)
for 1 ≤ i < j ≤ n Aij |θ, z ∼ Bernoulli (θ`k) st. i ∈ B`, j ∈ Bk. (5.41c)

Collecting the terms and integrating allows us to express the joint likelihood to
be sampled, q(π):

p(A, π) =

∫
dθ p(π|α)p(θ|π)p(A|θ, π) (5.42)

=
∏

1≤`≤k≤|π|

B(b1 +N+
`k, b2 +N−`k)

B(b1, b2)

Γ(α)α|π|

Γ(n+ α)

∏
b∈π

Γ(|b|) (5.43)

≡ q(z) (5.44)

where B(a, b) = Γ(a+b)
Γ(a)Γ(b) is the beta function and

N+
`k =

∑
i<j

Aij1B`(i)1Bk(j), N−`k =
∑
i<j

(1−Aij)1B`(i)1Bk(j) (5.45)

are the pseudo counts.

5.7.3 Operations on partitions

We will again make use of common operations on the partitions. Firstly, all
observations in the blocks of a partition π is written as ∪π ≡ ∪b∈πb and for a
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block A, recall that projA π denotes the partition obtained by restricting each
block to A and removing any blocks which do not overlap with A:

projA π = {B ∩A : B ∈ π and B ∩A 6= ∅} (5.46)

Assume I = {I1, . . . , I|I|} is a sequence of non-overlapping subsets of N such
that I ⊆ π ∪ {∅} and suppose A ⊂ N, A 6= ∅ and either (i) there exists a k
such that A ⊆ Bk or (ii) A is disjoint from the set of all observations in π,
A∩ (∪π) = ∅. We then define a (restricted) Gibbs sweep on π as the probability
kernel

κI,A(π′|π) (5.47)

in which the set of observations A is assigned to each block of π contained in I
and, assuming ∅ ∈ I, a new block only containing A. These partitions are then
sampled with probability proportional to q in a Gibbs sweep.

To be more specific, first consider the set of partitions (π(1), . . . , π(|I|)) obtained
from π by removing the elements in A from π and then adding A to each block
in I. Specifically for k = 1, . . . , |I| set

π(k) = {Ik ∪A} ∪ projX\(Ik∪A) π, X = ∪π and a(k) = q(π(k)) (5.48)

and then setting π′ = π(k) where k is sampled from a multinomial distribution
with weights (

a(1)∑|I|
k=1 a

(k)
, . . . ,

a(|I|)∑|I|
k=1 a

(k)

)
. (5.49)

To recover the standard Gibbs sweeps considered in the previous section I is set
equal to all available blocks in π and a new block (corresponding to the empty
set). To this end we define

κA(π′|π) ≡ κπ∪{∅},A(π′|π) (5.50)

and the standard Gibbs kernel for an observation i ∈ X can be written as

κ{i}(π
′|π). (5.51)

5.7.4 Split-merge sampling

The incremental nature of Gibbs sampling makes it prone to get stuck in local
modes where it either over or under estimates the true number of blocks Celeux
et al. [2000]. For this reason it is natural to consider alternative methods based
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on Metropolis-Hastings transitions which allow one to make larger changes in
the space of partitions in one operation.

One particular set of moves are split-merge moves where either a single block
is split into two new blocks or two blocks is merged into a single block and
in both cases all other blocks are kept fixed. While the merge step is unique,
there are multiple ways to perform the split step. One of the most popular is
the split-merge method of Jain and Neal [2004]. The method proposes a split
configuration by randomly selecting two observations i, j and then randomly
distributing the observations assigned to the block(s) containing i, j between
two new blocks, then perform a number of Gibbs updates restricted to only
moving observations between these two new blocks to obtain near equilibrium
split configuration and a final Gibbs update to arrive at a split-proposal. The
key observation, which may appear quite surprising, is one only needs to consider
the last restricted Gibbs sweep when computing the corresponding acceptance
probability eq. (5.28).

To introduce some relevant notation we might consider the full transition kernel
as follows: First, the kernel T (π∗|π) (for definiteness assume [i]π = [j]π) is a
mixture:

T (π∗|π) ≡ p(φ)Tφ(π∗|π) (5.52)

for an index set φ. Clearly if each kernel Tφ satisfy the balance condition
eq. (5.16) so will T ; and if just one Tφ (assuming p(φ) > 0 and φ is discrete)
is ergodic so is the full kernel. Now, the transition kernel is decomposed into a
proposal step tφ(π|π∗) and an acceptance step aφ(π∗|π) as in eq. (5.28). First,
the background information φ (in the simplest form) consist of two (distinct)
vertices i, j and a random initial partition of S into two blocks such that i and
j belong to different blocks. Denote by πl the entire path of launch state, that
is, the initialization of i, j into two different blocks (obtained deterministically
by restricting the partition of S in φ to the vertices in [i]π ∪ [j]π) followed
by the application of a number of restricted Gibbs transition kernels to obtain
the final launch state. Assuming tlφ(πl|π) is the density of this procedure and
let tφ(π∗|πl, π) denote the kernel corresponding to the application of a single
restricted Gibbs kernel to obtain the final state π∗ from the (last) state of the
path πl the acceptance probability is then defined as:

aφ(π∗|πl, π) = min
{

1,∆L
}
, ∆L =

{
q(π∗)

q(π)tφ(π∗|πl,π)
if [i]π = [j]π

q(π∗)tφ(π|πl,π∗)
q(π) if [i]π 6= [j]π.

(5.53)

Compared to the definition of the Metropolis Hastings procedure in eq. (5.28)
this operation differs in that the probability of the launch state is missing from
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the acceptance probability. In this notation, for π∗ 6= π, we may express the
transition kernel by marginalizing over all intermediate paths πl:

Tφ(π∗|π) =

∫
dπl tlφ(πl|π)tφ(π∗|π, πl)aφ(π∗|πl, π) (5.54)

with the caveat tφ(π∗|π, πl) deterministically merge the two blocks [i]π and [j]π
if [i]π 6= [j]π.

To show convergence, consider the case π∗ 6= π. It suffices to show the detailed
balance condition for each φ:

q(π)Tφ(π∗|π) = q(π∗)Tφ(π|π∗) (5.55)

which can easily be seen to imply the balance condition eq. (5.16) by summing
over π∗ and inserting into eq. (5.52). However by simple insertion of eq. (5.54)
into the right and left-hand side of the detailed balance condition eq. (5.55)
it is easily seen to be (assuming [i]π = [j]π with the other case following by
symmetry):

∫
dπl q(π)tlφ(πl|π)tφ(π∗|πl, π)aφ(π∗|πl, π)

=

∫
dπl q(π)tlφ(πl|π)tφ(π∗|πl, π) min

{
1,

q(π∗)

q(π)tφ(π∗|π, πl)

}
=

∫
dπl min

{
q(π)tlφ(πl|π)tφ(π∗|π, πl), q(π∗)tlφ(πl|π)

}
. (5.56)

And the reverse rate:∫
dπl

′
q(π∗)tl

′

φ(πl
′
|π∗)t(π|πl

′
, π∗)aφ(π|πl

′
, π∗)

=

∫
dπl

′
q(π∗)tl

′

φ(πl
′
|π)t(π∗|πl

′
, π) min

{
1,
q(π)tφ(π∗|πl′ , π)

q(π∗)

}

=

∫
dπl

′
min

{
q(π)tl

′

φ(πl
′
|π∗)tφ(π∗|πl

′
, π), q(π∗)tl

′

φ(πl
′
|π∗)

}
(5.57)

The crucial property is the information φ will, by construction, erase the dif-
ference of π and π∗ as far as the transition kernel is concerned, ie. such that
tlφ(πl|π∗) = tlφ(πl|π). Detailed balance now follows by simple relabelling.
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5.8 Other methods for sampling partitions

To understand the proposed extensions it is important to understand the limita-
tion of the Gibbs sampling. A view which is intuitively tempting but misleading
is as follows: while each assignment of π may change with relatively low prob-
ability, that probability must be positive and so, given sufficiently long time,
changes in the coordinate must accumulate and drive the state of the Markov
chain to different areas of state space.

In practice, for the IRM model even on small problems, the following very
crude view seem to better reflect what happens burnin: 95% of the observations
in π are fixed and remain fixed for the duration of the chain. The other 5%
change assignments during the simulation and tend to do so quite often, however
their change in assignment consist in jumping between the same fixed block
structure as defined by the remaining 95% of the observations. Different restarts
of the simulation will find different such patterns. As a consequence, there is no
exploration of state space.

Evidently, the problem has to do with changing the assignment of blocks of ob-
servations rather than single observations in one step. This is naturally not a
new observation [Celeux et al., 2000, Jain and Neal, 2004], however the degen-
erate behavior of Gibbs sampling on the IRM model is so striking even quite
naïve samplers which do move blocks of observations may have an advantage
over simple Gibbs sampling.

Idea 1 The idea of the first method is quite basic: Given a partition π =
{B1, . . . , BK}, randomly select a block Bk and a random subset b ⊂ Bk and
re-assign the observations in the subset b using a Gibbs sweep

π∗ ← κb(·|π) (5.58)

This superficial description leaves open how to appropriately select b; one way
is the following scheme based on coagulation theory. First, for a partition π =
{B1, . . . , BK} and a second partition c of [K] we define the coagulation as the
partition π′:

π′ = Coagc(π) ≡

{⋃
k∈S

Bk : S ∈ c

}
(5.59)

and we say that π is coagulated by c.

Secondly, we define the CRP-Coag(α,d) operation as a Markov transition kernel
on the set of partitions indexed by two parameters 0 ≤ d < 1 and α > 0. Acting
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on a partition π, it’s action CRP-Coag(α,d)(Π = π′, π) is defined through the
two-step procedure using the two-parameter CRP of eq. (4.44):

c ∼ CRP
([
|π|
]
, α, d

)
(5.60a)

π′ = Coagc(π). (5.60b)

It now holds that if π is distributed as a CRP([n], d, α) and π′ conditional on
π as a CRP-Coag(α/d,0)(·, π) then π′ is distributed as a CRP([n], 0, α). We
write the joint density of the two partitions obtained by these two procedures
as pCoag(π, π′|d, α). This is a very partial statement of more general results on
Markov chains on the space of partitions known as coagulation-fragmentation
processes. See for instance the comprehensive references Pitman and Picard
[2006, chapter 5],Pitman [1999, 2002], Bertoin [2006], Ho et al. [2006], James
[2009] for general treatments as well as Elliott and Teh [2012], Buntine and
Hutter [2010] for particular statements of these results in the discrete setting.

Returning to the problem of creating a sampler, assume q(π′) = p(Y, π′) =
p(Y |π′)p(π′) is the partition-based problem. If we assume p(π′) is distributed
as CRP([n], 0, α) we may consider

p(Y, π, π′) = p(Y |π′)pCoag(π, π′|d, α) (5.61)

for any 0 < α < 1 it follows q(π′) =
∫
dπ p(Y, π, π′) by previous discussion and

so we may consider a sampling method where the blocks in the refined partition
π are moved using Gibbs operations.

It turn out this method is very competitive compared to split-merge sampling
for the few problems where the method was applied. This is surprising since the
method is plainly absurd: The refinement of each block of π′ given by π is not
informed by the likelihood and will be suboptimal in nearly all cases. The only
reason why this method works is in a few cases the refinement will, by chance,
allow energetically favorable moves and this class of moves also encompass the
situation where a subset of observations changes between two blocks.

Idea 2 Given the observation in the past section it is natural to consider
various ways to inform the subpartition of the actual likelihood. To this end we
define the following: For two partitions πa and πb define the coarsest common
refinement as

π′ = πa ∨ πb ≡
{
A ∩B : A ∈ πa, B ∈ πb, A ∩B 6= ∅

}
. (5.62)

We may now consider the following sampling procedure: Suppose we have a
set of Markov chains for q(π) (or more formally, a single Markov chain on the
product space). If we consider the current state of two chains, πa and πb and
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compute π′ = πa∨πb we may for any i (for instance chosen at random) consider
the Gibbs sweep where the set of observations [i]π′ is jointly assigned in (for
instance) πa. This procedure does not define a valid Markov chain since when
computing the reverse probability [i]π′ may have changed. However if one ig-
nore this problem the resulting method is much more powerful than the simple
random method (Idea 1).

Idea 3 Since the above method seems very efficient we explored some ways
to make the construction more principal. One attempt is a tempered sampling
approach. Suppose some of the chains are tempered by the transformation:
q(β)(π) ∝ exp(β log q(π)). Suppose 3 chains are selected, πa, πb and πc such
that πa and πb are from the untempered distributions while πc is from the
tempered distribution with eg. β = 1

2 . If we now consider π′ = πa ∨πb ∨πc and
Gibbs sample [i]π′ in all three distributions from their joint distribution (notice
this can be computed by considering the corresponding three Gibbs updates
independently) under the restriction that for the new states, πa∗, πb∗, πc∗ and
π′
∗ we have [i]π′ = [i]π′∗ then this define a valid proposal operation on the joint

space. The method can trivially be extended by considering several values of
β until β is so low the problem is easily sampled with Gibbs sampling and this
was the method we considered.

The idea behind this proposal is innovations at the hard-to-sample β = 1 tem-
perature can be accepted by letting the higher-temperature chains incur the
potential cost (in terms of likelihood) of a sub-optimal assignment of the block
[i]π′ while the benefit (again in terms of likelihood) may be enjoyed by the
low-temperature chains. In addition one can hope innovations happening at the
easier-to-sample chains of higher temperature, being from a different but related
problem, might allow better exploration.

While this is an attractive idea, the simple fact is it does not appear to work very
well. When the cost of the many tempered chains is taken into account (2 to 4
temperatures at temperature intervals of β = 0.5k) seemed to be optimal) the
method was only slightly better than Idea 1, the random two-stage coagulation
moves and worse than Idea 2. It should be mentioned on the considered problems
it appeared to performed better than Split-Merge sampling.

5.8.0.1 Discussion

A clear limitation of the preceding methods, including split-merge sampling of
Jain and Neal [2004], is the reliance on the reassignment of a single block of
variables. Consider the ideal case of a split-merge operation: There exist two
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partitions πa and πb with q(πb) ≥ q(πa) such that they only differ in that a
block in πa corresponds to two blocks in πb:

πa = {A′1 ∪A′′1} ∪ {A2, . . . , AK}, πb = {A′1} ∪ {A′′1} ∪ {A2, . . . , AK}. (5.63)

By comparing the output of many chains it was observed it is very often the case
there are some small but crucial difference between πa and πb. Say instead of
simply splitting the block A′1∪A′′1 in πa into A′1 and A′′1 in πb, a few observations
from A′1 ∪A′′1 had to enter a third block in πb while it may be the case A′1 also
contained a few observations from a fourth block. While these differences most
often involved very few observations, experiments indicated it was sufficient to
guarantee there could often be no single split into a partition πb which were
favorable in the sense q(πb) ≥ q(πa). Since Gibbs sampling very often perform
no appreciable exploration, this appeared to be a very important contribution
to the poor mixing of split-merge sampling.

A second important factor is the requirement the number of components must
increase or decrease by 1 in split-merge sampling. While the block count do
very nearly always fluctuate, the larger reconfigurations are very often of the
form where one set of observations move from one larger block to another and
for many simulations it appeared no intermediate split or merged configuration
could be found, effectively guaranteeing these moves never occurred.

In addition to these serious problems split-merge sampling has two features that
almost guarantees a low acceptance rate. The simplest is any observations se-
lected at random should nearly never be split or merged (compared to their
current assignment) and the second is the acceptance rate eq. (5.53) can be sur-
prisingly low even when “correct” observations are selected. To see this, consider
the πa and πb example and consider the case where, by chance, two observations
in B1 and B2 has been selected and a launch state πl (recall this corresponds
to a split partition) has been obtained. The accept rate then contains the term
tφ(π|πl), a product of restricted Gibbs kernels, however there may be strong
correlation amongst the assignment of observations to the two partitions in πl
making the density (and thus accept rate) very low.

5.8.1 Adaptive reconfiguration moves

The primary idea behind our proposal in Herlau et al. [2014a] is to enlarge
the space of possible transitions to include more than simple split and merge
operations. To put it in a deflationary way, this is done by dressing up a method
simpler than the split merge method of Jain and Neal [2004]. We will first
briefly review of the construction in a simplified form and then provide the full
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Figure 5.1: A single reconfiguration move applied to the partition π and ob-
servations i, j shown in (B). First, assume partitions πa, πb are
chosen from the past states of S = 3 chains (A). The coarsest
common refinement of π, πa and πb is used to construct the ini-
tial split, and the subblocks of the blocks containing i, j in any of
the partitions are removed (C). The removed subblocks are Gibbs
sampled into the partition giving partition π(m),m = 6 (D). Fi-
nally all observations (subject to restrictions discussed later) are
allowed to move either from outside the blocks containing i, j and
into the blocks containing i, j, or from inside the blocks containing
i, j and outside creating the final partition π∗ in (E). The bottom
row shows the same process applied to create the reverse (merge)
operation.

construction. An illustration of the final construction, adaptive reconfiguration
moves (ARM) can be found in fig. 5.1 (figure and caption taken from Herlau
et al. [2014a]) The method assumes we are given partitions πa and πb and two
observations i, j such that [i]πa 6= [j]πa and [i]πb = [j]πb in addition to the
current partition π. Suppose [i]π = [j]π for specificity. A new partition π∗ is
then constructed by first computing the coarsest common refinement of π, πa
and πb, π′ = π∨πa∨πb, removing observations in [i]π∪ [j]π and using the blocks
[i]π′ , [j]π′ as the initial split.

The removed subblocks (the subblocks in π′ which have been removed) are
then Gibbs sampled into the partition and finally all other observations are
allowed to move either from outside the blocks containing i, j and into the blocks
containing i, j, or from inside the blocks containing i, j and outside creating the
final partition π∗.

The partitions πa and πb are selected at random from the past states of the
current and other chain. As this set grows it is in this sense the method become
an example of adaptive Markov chain Monte Carlo.

While the set of partitions which can be reached is not made larger by moving
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Figure 5.2: Trace plots of log likelihood for Gibbs (G), split-merge (SM), and
ARM sampling for four network datasets. All simulations are
based on running S = 8 chains using Gibbs sampling for 500
iterations, then continuing with Gibbs, SM or ARM sampling for
up to 10000 iterations. The x-scale is normalized and represents
the same computational effort.

subblocks initially (step (C)) rather than single observations, the use of sub-
blocks allows faster thermalization giving rise to higher acceptance rate. As
shown in Herlau et al. [2014a], the acceptance rate may be up to an order of
magnitude larger than split-merge sampling.

Naturally this brief discussion omits several details necessary to get detailed
balance. These mainly revolving around being able to compute the transition
density from one state to another, t(π∗|π), in the accept rate eq. (5.28) which
impose a very slight restriction to the move class. The reader is referred to
Herlau et al. [2014a] for these details as well as a proof of convergence.

In terms of performance the method has quite striking benefits compared to
split-merge sampling at least for the considered models and datasets, see fig. 5.2
for a reproduction of the trace plot for the IRM model for selected network
datasets.
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Chapter 6

Networks

A network is a term with no single agreed upon definition. A network typ-
ically denotes a collection of units which are interacting or otherwise related
in a quantifiable manner. Canonical examples of networks include the inter-
net [Faloutsos et al., 1999, Albert et al., 1999], where the network consists of
computers linked either by their interaction or physical connectivity, a society
where humans interact either by physical proximity or social acquaintance [Ea-
gle et al., 2009, Eagle and Pentland, 2006, Onnela et al., 2007, Gonzalez et al.,
2008, Moody, 2004] or biology where for instance chemical components in a cell
interact through relationships such as binding or catalysis [Barabasi and Oltvai,
2004, Combet et al., 2000, Jeong et al., 2001]. While examples of networks are
often mapped onto simple graphs, all common extensions to simple graph may be
considered such as hypergraphs, weighted networks, temporal changes and pro-
cesses which occur on or otherwise involve graphs. Importantly, sometimes the
word network is used to refer to something quite different from a simple graph,
for instance a brain network sometimes denote spatially overlapping blobs of
brain tissue [Bullmore and Sporns, 2009].
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6.1 Subjects of network science

The study of networks may roughly be divided into the following six areas loosely
adapted from the five areas of Newman [2010].

Zoology of networks Networks are interesting because many systems are be-
lieved to be well described as networks. Accordingly, networks are studied
empirically where the goal is to map physical systems to networks and
then describe and classify these networks based on their properties. The
references provided in the introductory section are examples of this type
of work.

Combinatorics and mathematical studies Networks was historically first
studied as combinatorial objects. Most definitions used in network science
was motivated within this are (graphs, trees, degree, cycle, etc.) and it
contain a large set of important theoretical results in combinatorics such
as conditions under which a coloring is possible (of edges or vertices),
counting of unique trees or graphs and a range of other problems [Harris
et al., 2008, Townsend, 1987, Chartrand et al., 2010].

Growth and physics Nearly everything that has to do with networks has been
invented or re-invented within the complex physics community. A novel
approach to the study of networks we associate with physics is the mindset
of statistical physics, namely how the microstructure define macrostruc-
ture in networks and, as a natural concern, what the relevant microstruc-
ture and macrostructure is. In terms of macrostructure it has typically
been properties such as degree-distribution, average paths lengths, reci-
procity, modularity, triangle/motif statistics and so on that has played
a central role with a large focus on when these properties follow a par-
ticular distribution such as a scale-free distribution. Microstructure has
sometimes consisted of (a subset of) the above properties, but also the fo-
cus on growth mechanisms of networks. The research question commonly
posed is: Can certain large-scale structures be identified as common in
networks and can these in turn can be explained by simpler assumptions
on the micro-structure [Erdös and Rényi, 1959, Newman, 2010, Barabási
and Albert, 1999, Girvan and Newman, 2002, Albert and Barabási, 2002].

Networks Algorithms This study, which we loosely identify with computer
science, is concerned with algorithms that take a network as an input
and compute certain properties of the network, for instance identifying all
subgraphs of a certain type or find the minimal cut-set. Concerns are thus
network representation, runtime, convergence and so on [Bang-Jensen and
Gutin, 2007, Jungnickel and Schade, 2005],
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Statistical Modelling This label covers typical statistical tasks such as pre-
dicting missing data or otherwise infer parameters in statistical models.
This will be the subject of this chapter.

Processes on networks Whenever one feel a particular task involving a sin-
gle network becomes too simple, one can consider processes taking place
on or involving a network. Examples include percolation theory for net-
works [Callaway et al., 2000], spreading phenomena such as information or
epidemics [Pastor-Satorras and Vespignani, 2001, Newman, 2002], search
and routing on a network [Stoica et al., 2001] and also other applications
involving networks such as games [Nisan, 2007] or statistical models [Koller
and Friedman, 2009]. Needless to say networks are interesting insofar as
they in some way relate to a problem in this category.

While we have tried to break the above discussion into elements which are some-
what divided between interests and fields, it should be emphasized many of the
above references are interdisciplinary. This section will be limited to a single
of the above topics, statistical modelling of networks, and within this topic we
will in the main only consider exchangeable models of random arrays where
the latent structure is easily expressed using the Aldous-Hoover representation
theorem 4.3.1 of chapter 4. A reader interested in a broader picture of network
modelling may consult “Networks” [Newman, 2010] which to our knowledge is
the most comprehensive reference; other noteworthy tutorials from various per-
spectives include the works of [Orbanz and Roy, 2013, Newman, 2003, Durrett,
2007, Goldenberg et al., 2010, Fienberg, 2012] and Schmidt et al. [2012].

An important topic not covered in this section is validation of network models.
The most popular validation method is link prediction, typically as measured
by AUC score or predictive likelihood [Schmidt et al., 2012], however the details
often differ between publications and we will not attempt to cover the various
approaches here.

6.2 Bayesian modelling of networks

Models for networks can roughly be divided into three categories. Those which
are probabilistic but not exchangeable, those which are probabilistic and ex-
changeable and those which are neither. By exchangeable we fully restrict
ourselves to exchangeable matrices and the Aldous-Hoover representor theo-
rem 4.3.1 [Orbanz and Roy, 2013]. To reiterate, the Aldous-Hoover theorem
states a random simple graph (ie. binary, symmetric and without self-edges)
(Xij) is jointly exchangeable if and only if there exists a random function
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W : [0, 1]2 7→ [0, 1] (with zero diagonal) such that the presence or absence
of a link xij is sampled from

xij |W, (Ui) ∼ Bernoulli(W (Ui, Uj)) (6.1)

for i.i.d. random variables Ui ∼ Uniform([0, 1]).

One important intuition to take away from the Aldous-Hoover theorem is it
shows an exchangeable array can be decomposed into three parts: Firstly, the
observational distribution. In eq. (6.1) this was the Bernoulli distribution. Sec-
ondly, the structural assumption that the parameter of the observational distri-
bution can be decomposed as (random) vertex-specific properties (in eq. (6.1)
this is the set of scalars (Ui), Ui ∈ [0, 1]) and thirdly, a (random) structure which
indicates how the vertex-specific properties interacts (in eq. (6.1) this was the
random function W ). Together these three parts defines the structural assump-
tion for a particular exchangeable model of random simple graphs. Accordingly,
if we define the (random) parameter(s) for edge (ij) as:

Wij ≡W (Ui, Uj). (6.2)

Any particular model can be described by indicating the observational distribu-
tion and the structural assumptions. We will loosely call this an Aldous-Hoover
type representation and the following sections will discuss a number of models
by specifying the parametrization in eq. (6.2).

This is not to say all there is to say about a particular model is said by specifying
the representation of Wij and the discussion below will often omit important
details. Otherwise all models considered would be exchangeable and this is not
the case. It is nevertheless an intuitive way to get an overview of the structural
assumption of the models and their relationship.

The particular parameterizations of Wij , or models, can again be roughly di-
vided according to the choice of space for the latent vertex-specific parameters
(Ui) which, in conjunction with the choice of graphonW , often induces a partic-
ular latent structure amongst the vertices. Examples of such structure include
partitions, latent features or hierarchies and we will use this description to group
the model and talk about partition-based models, latent feature-based models
and so on. We stress this classification is only approximate. Notice the idea
of classifying models according to their parametrization of (Ui) and choice of
graphon W was inspired by Lloyd et al. [2013].
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6.2.1 Exponential random graph-models

An important type of network models which are not well-described using the
Wij notation of eq. (6.1) are exponential random graph models (ERGMs) such as
the p∗ model [Duijn et al., 2004, Holland and Leinhardt, 1981]. In this approach,
one considers a (vector-valued) function s of a network A and assumes a density

(ERGM:) p(A|θ) =
1

Z
eθ
T s(A), Z =

∑
A

eθ
T s(A). (6.3)

Notice this model may be interpreted as a maximum entropy distribution and s
typically counts the number of triangles or edges. Models of this form, owning
to their flexibility in choosing s, has historically played a prominent role in the
literature of random graphs [Erdös and Rényi, 1959, Frank and Strauss, 1986,
Holland and Leinhardt, 1981]. Exponential random graph models have however
also been criticized (cf. Handcock [2003]) for their inferential complexity and
degeneracy which significantly hinders the ability to estimate and sample the
parameters θ in eq. (6.3), see also the very recent study by Chatterjee et al.
[2013] which, surprisingly, showed for many summary statistics s the realized
models are nearly identical to the Erdös-Rényi model.

6.2.2 Block-type models

The infinite relational model Kemp et al. [2006], Xu et al. [2006] and the stochas-
tic block model [White et al., 1976, Holland et al., 1983, Wasserman and An-
derson, 1987] provides the canonical example of a block-type model. In these
Ui ∈ {1, . . . ,K} (where K =∞ for the IRM) and the link probability is

(Block models:) Wij = ηUiUj (6.4)

where the entries of η is i.i.d. Beta distributed. Several models has been pro-
posed which in effect only impose additional restrictions to η. These include
letting the off-diagonal elements take the same value (η`m = η0 for all ` 6= m) ,
imposing community structure by ensuring η`` ≥ η`m + γ [Mørup and Schmidt,
2012] (Bayesian community detection), imposing η`` = η1 and η`m = η0 for all
m 6= ` [Hofman and Wiggins, 2008], drawing elements of η`m from a distribu-
tion containing fixed atoms (ie. P (η ∈ ·) =

∑
i wiδηi + P0(·)) to either obtain a

clustering such as a CRP or a slap-and-spike-type prior of the interactions, ie.
multiple entries in η share the same (slap) rate η0.

In addition the model trivially extends to weighted graphs. Suppose Aij ∈ X
and consider the case where X is a more general space than {0, 1} and let F
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be a distribution on X with parameters θ in a space Θ equipped with a prior
distribution H:

θUiUj ∼ H(·) (6.5a)
Aij |(Uh), (θ`k) ∼ F (·|θUiUj ). (6.5b)

Denoting the corresponding densities by p, if the integral over θ in eq. (6.5) is
analytically tractable we say the model is conjugate and the resulting model is no
harder to sample than the standard IRM. The idea of replacing the observational
distribution with some other distribution was to our knowledge first proposed by
Mørup and Schmidt [2012] in the case of a Poisson-Gamma observational model.
We also attempted this approach to relational modelling for the case where
X = R, F corresponded to a normal distribution, and the parameters θ was the
mean and variance and H a Normal-Gamma distribution [Murphy, 2007]. The
resulting model, dubbed the normal infinite relational model (NIRM), can be
found in the publications given Modelling Dense Relational Data [Herlau et al.,
2012b] which also contains implementation details. The same technique was
subsequently applied to a number of problems in knowledge structuring by my
co-author Fumiko Glückstadt [Glückstad, Herlau, Schmidt, and Mørup, 2014,
Glückstad, Herlau, Schmidt, and Morup, 2013a, Glückstad, Herlau, Schmidt,
Mørup, Rzepka, and Araki, 2013c, Glückstad, Herlau, Schmidt, and Mørup,
2013b].

A problem with e.g. the NIRM is relational data often contain a large number of
entries which takes the same value, most often 0. In this case a Poisson, or more
acutely, normal distribution as the choice of observational distribution F may
be unsuitable. A simple but very incremental idea is to replace the observational
distribution by a two-step procedure where one first generate a matrix Bij of the
non-zero elements and then draw the weights from the appropriate observational
distribution. In the notation of eq. (6.5) this may be written as

ηUiUj ∼ Beta(η+
0 , η

−
0 ) (6.6a)

θUiUj ∼ H(·) (6.6b)
Bij |(Uh), (θ`k) ∼ F (·|θUiUj ) (6.6c)
Iij |(Uh), (η`k) ∼ Bernoulli(ηUiUj ) (6.6d)

Aij = BijIij (6.6e)

If a sample from F is zero with probability zero, for instance if F correspond to
a normal observational model or one plus a Poisson distributed random variable,
one can integrate out η and θ and this model will likely be more suitable for
data with many zero entries.
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6.2.2.1 Block-type models with weights

The final simple extension to block-type models is the use of weights. Networks
often contain vertices of vastly different degree but similar community structure.
For instance in a social network two people (an introvert and an extrovert)
may have the same interests and form friendships along the same community
structure, but the extrovert may simply form more friendships. This is the idea
behind the degree-corrected stochastic block model [Karrer and Newman, 2011,
Newman, 2012] which admits a representation

(DCSBM:) Wij = U ′iU
′
jηUiUj (6.7)

where Ui ∈ {1, 2, . . . } indicate community membership and (U ′i) is a list of
scalars indicating the weight of vertex i. The observational distribution is Pois-
son with rate Wij . In terms of inference, Karrer and Newman [2011] considered
an optimization scheme; in the included work Infinite-degree-corrected stochas-
tic block model [Herlau et al., 2014b] we considered a Bayesian formulation of
eq. (6.7) which admitted both the weights (Ui) and interactions η to be inte-
grated out, specifically for i 6= j and assuming a partition π = {B1, . . . , Bk}
where k` = |B`|:

η`m ∼ Gamma(λa, λb) (6.8a)

(θ`) ∼ Dirichlet((γ)k`i=1) (6.8b)
Wij = kUikUjθiUiθjUjηUiUj (6.8c)
Aij ∼ Poisson(Wij) (6.8d)

where Ui denotes assignments to blocks in the partition π distributed as a CRP.
The resulting model leads to a sampling scheme no more costly than the IRM,
however this comes with the cost of not being exchangeable.

6.2.3 Distance and norm-based models

A slightly more general approach than partition-based models is consider each
Ui as points in a vector space (typically Rh for a small integer h) and a repre-
sentation

(Latent distance based models:) Wij = −d(Ui − Uj) (6.9)

for a distance measure d typically the euclidian distance. Since Wij is negative
it should then subsequently be put through a linear transformation followed by
a logistic map. This type of model is called a latent space based model [Hoff
et al., 2002] and Ui can be interpreted as the position of a vertex in a social
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space [Tang and Liu, 2009]. Thus, for h = 2 model may be considered a visual-
ization approach and as such share important conceptual features with Kohonen
projections [Kohonen, 1988].

An approach very related to this model is the eigenmodel [Hoff, 2007] where the
observational model is

(Eigenmodel:) Wij = −UTi DUj (6.10)

for a diagonal matrix D. Notice if the distance d in eq. (6.9) is in an inner-
product space with inner product 〈·, ·〉 we have the identity d(Ui, Uj) = 〈Ui, Ui〉+
〈Uj , Uj〉 − 2〈Ui, Uj〉 and so for positive semidefinite matrices D the latent space
model eq. (6.9) and eigenmodel eq. (6.10) are very similar. We will return to
the case of models with the same basic algebraic structure in the next section.

6.2.4 Latent feature-based models

Latent-feature based models are models in which the underlying structure is
interpreted as each vertex i having access to multiple features. The canonical
example is a social network where each vertex consists of a person and the
edges to friendships and the features may be workplaces, schools, a particular
football club or broader features like sex or age group. Each vertex may then
select zero or more features and these features, and we write this assignment as
Ui ∈ {0, 1}K where K may be∞, assuming each Ui only contain a finite number
of non-zero elements. The latent feature relational model of Miller, Griffiths, and
Jordan [2009], Miller [2011] is then written as

(LFRM:) Wij = UTi DUj (6.11)

where a normalization procedure is again implicit and D is assumed to be a
general matrix typically with i.i.d. normally distributed entries. As a prior for
the set of feature-assignments (Ui) an obvious choice, assumed in the following,
is the Indian buffet process (IBP) [Griffiths and Ghahramani, 2005] however we
will not discuss the details here.

A model falling somewhere between the LFRM and the partition-based models
described previously is the Mixed-Membership stochastic block model [Airoldi
et al., 2008]. In this model, the Bernoulli edge rate can roughly be written as

(MMSBM:) Wij = UTi ηUj (6.12)

where η is a symmetric matrix of i.i.d. beta-distributed entries and, as opposed
to the LFRM, each Ui belong to the K dimensional unit simplex {x : xk ≥
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0 and
∑
k xk = 1} and has the interpretation of selecting a mixed membership

between K clusters.

The formulation of the LFRM given in eq. (6.11) is very general and negative
(diagonal) entries of D implies having the same feature reduce the chance of an
edge. For this reason, and to simplify the inference procedure, a more struc-
tured interaction between the features give the Infinite Multiple Membership
Relational Model [Morup et al., 2011]

(MMRM:) log(1−Wij) = log(1− η0) + UTi log(1− η)Uj (6.13)

where each η`k is assumed Beta distributed, log(1 − η) is considered a matrix
where entry `k is log(1− η`k) and Wij is the link probability, i.e. the parameter
of a Bernoulli random variable as in eq. (6.1). The interpretation of the model
is that sharing features always increases edge probability.

An extension of the latent feature relational model is the infinite latent attribute
model [Palla et al., 2012] in which, in addition to assigning zero or more features
to each vertex i given by Ũi ∈ {0, 1}∞, for each feature m a partitioning of the
vertices is generated V (m) ∈ {1, 2, . . . ,∞}∞. The generative model can now be
written as

(ILA model:) Wij =
∑
m

ŨimŨjmD
(m)

V
(m)
i V

(m)
j

(6.14)

where each D(m) is an infinite matrix with i.i.d. normally distributed entries.
The model may also be written more compactly, introducing Uim ≡ ŨimV

(m)
i ,

as

Wij =
∑
m

1Uim1UjmD
(m)
UimUjm

(6.15)

where 1k is the indicator function equal to 1 iff. k > 0. Comparing to the
LFRM eq. (6.11), the main difference is each feature, Uim, is subdivided into
one or more non-overlapping subfeatures. For instance a feature play sports may
contain the subfeatures golf, soccer, tennis and so on which cannot overlap.

Such a hierarchical extension is not trivially the most appropriate ontology.
Consider for instance the case of the sex of a person; one can either consider it
as a feature (the sex ) with two subfeatures (male or female) with the problem
a person may have no sex at all or alternatively, one can consider two top-level
features sex-male and sex-female with a single subfeature with the problem a
person can then be both male or female). However the ILA is to our knowledge
the Bayesian model which offers the best link prediction. A disadvantage of the
ILA is the hierarchical composition of two discrete data structures, a feature
assignment and a partition, makes scalable sampling a difficult problem.
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6.2.5 Continuous feature-based models

An assumption the above models has in common is that the feature assignments
are discrete. This assumption can be relaxed by letting Ui be a general vector
in Rh for some h; we encountered this structure in the previous section for
the latent-distance and eigenmodel, however in terms of modelling goal and
interpretation of each coordinate of Ui it is commonly thought of as a latent
feature. This interpretation is particularly tempting for the case where Ui ∈ Rh+
which will be discussed later. The advantage of this formulation is the matrix
of interaction, for instance D for the LFRM eq. (6.11), may be absorbed into
the latent feature matrix Ui leading to a simplified formulation.

One particular example is the probabialistic matrix factorization method of Mnih
and Salakhutdinov [2007]. Letting σ(x) = (1 + e−x)−1 denote the sigmoid
function and assuming Ui, Vj ∈ Rh two general vectors this model rely on a
representation

(PMF-based model:) Wij = σ
(
UTi Vj

)
(6.16)

whereWij is thought to represent the mean of a normal distribution for weighted
bipartite graph data. The simplicity and choice of normal prior lead to an ef-
ficient inference method and the paper contain several interesting details on
handling missing data making it highly recommendable. The same basic alge-
braic form of PMF was given a throughout treatment by Menon and Elkan [2011,
2010]. Though the focus is on scalable inference in a likelihood-maximization
framework and integration of background information the network-specific parts
of the model may be well be formulated as

(Menon-Elkan model:) Wij = f
(
UTi Vj + aTUi + bTVj + c0

)
(6.17)

where different choices of link-function f is considered for instance the sigmoid
function for binary data. In the above a, b are h-dimensional vectors and c0 is
a bias term.

Both the PMF and the Menon-Elkan approach in eq. (6.16) and eq. (6.17) share
some common traits with matrix decompositions such as a SVD or PCA and, in
particular when the coordinates are given a latent-feature interpretation, with
non-negative matrix factorization [Lawton and Sylvestre, 1971, Paatero and
Tapper, 1994]. Since we are interested in Bayesian models we will certainly not
attempt to review this vast literature but only review selected Bayesian incar-
nations. The simplest is Bayesian non-negative matrix factorization [Cemgil,
2009], in this model for bipartite relational data the observations are assumed
to be Poisson distributed with a rate Wij given by

(BNMF:) Wij = UTi Vj (6.18)
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and Ui, Vj ∈ Rh+, the most obvious choice being an i.i.d gamma distribution.
Notice the choice of a Poisson-gamma parametrization lead to analytical simpli-
fications. The correlated topic modelBlei and Lafferty [2006] and latent Dirich-
let allocation Blei et al. [2003] share very similar decompositions, see for in-
stance Paisley et al. [2014] for a modern review and discussion of large-scale
implementation using stochastic variational Bayesian methods. If we break the
Aldous-Hover representation by admitting correlation between the Ui vectors
many other matrix factorization methods may be given a probabilistic interpre-
tation [Shashanka et al., 2008, Singh and Gordon, 2008].

6.2.6 Random-Function based models

Since the entire discussion has been focused around the Aldous-Hoover theorem
in which the central object, the graphon, is a random function the title is
perhaps a bit misleading. What is being referred to is that the graphon is
generated “directly” and not derived from other structural assumptions such as
feature allocations or partitions. An important example is the Mondrian process
of Roy and Teh [2008]. The Mondrian process is a prior of piecewise constant
functions over a rectangular domain. One way to describe the Mondrian process
is by the following recursive procedure to sample a functionW on some domain:
For a rectangular domain B1 ×B2, B1, B2 denoting intervals of R, either (i) let
the function W take a constant value x sampled from some distribution (for
instance a Beta distribution) on B1 ×B2 or (ii) select either B1 or B2, say B1,
and subdivide B1 into two new intervals B1 = b1 ∪ b2 and recursively call the
Mondrian process on two rectangular domains b1 × B2 and b2 × B2. Naturally
many variations of this procedure exists, see Roy and Teh [2008] for additional
information. Generatively we might write a Mondrian-process based model for
uniformly distributed random scalars (Ui)i as

(Mondrian-based model:) W ∼ MondrianProcess(·) (6.19a)
Wij = W (Ui, Uj). (6.19b)

The second idea, first proposed by Lloyd, Orbanz, Ghahramani, and Roy [2013]
is to use a composite function of a sigmoid function and a Gaussian process as
prior for W :

(GPRM:) W ∼ GP(0, κ) (6.20a)
Wij = W (Ui, Uj). (6.20b)

The better predictive performance for GPRM is obtained when the random
elements Ui belong to a vector space such as Ui ∈ R4. Notice our description
omits many important details such as the appropriate symmetrization of kernel
function and the use of an alternative parametrization to obtain reasonable
scalability. [Lloyd et al., 2013]



146 Networks

6.2.7 Random hierarchy-based models

Just as vertices can be divided into partition to give rise to partition-based
models such as the IRM, or vertices can be assigned features vectors to give
feature-based models such as the LFRM, vertices can be organized into a hier-
archy to give rise to hierarchical models. Generally speaking, a hierarchy may
be considered a feature assignment - the features associated with each vertex
being the path towards the parent node in the hierarchy. As a consequence, a
random hierarchy-based model can be considered more flexible than a random
partition-based model but less flexible than a random feature-based model.

As we have extensively reviewed hierarchical models in the papers Herlau et al.
[2012a] and Herlau et al. [2013] we will only give a brief review here assuming
the notation introduced in section 4.4. Suppose for each vertex i, the symbol
Ui denote a node in a random hierarchy t. Consider two nodes n1 and n2 in t
such that n1 is not a descendant of n2 and n2 is not a descendant of n1. In this
case there is a unique node n of the tree such that

• n is a parent of m1 and m2

• n1 is a descendant of m1

• n2 is a descendant of m2

This is simply saying that starting from two nodes n1 and n2 and tracing up in
the hierarchy towards the root we will eventually encounter a common node n.
We will denote the previous operation by the function

f(n1, n2) =

{
{m1,m2} if n1 6= n2

{n1} otherwise . (6.21)

Notice the convention if n1 = n2 the function f simply returns the current node
and f(n1, n2) = f(n2, n1).

The simplest hierarchical model, the binary hierarchical relational model of
Clauset, Moore, and Newman [2008], can the then be defined as the genera-
tive procedure where each Ui = {i} correspond to the leafs of a binary random
hierarchy t and

(bHRM:) Wij = ηf(Ui,Uj) (t binary) (6.22)

where each η-value is Beta distributed and Wij parameterize a Bernoulli distri-
bution. Clauset, Moore, and Newman [2008] considers a uniform prior over the
binary hierarchy t. In the given notation this model can easily be extended by
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simply letting Ui = i as before correspond to the leaf set of t but this time let
t be a general Gibbs fragmentation tree of the type considered in section 4.4.1.
This model, dubbed the hierarchical relational model (HRM), was considered by
us in Schmidt, Herlau, and Mørup [2013] and a similar idea for continuous data
in Schmidt, Herlau, and Mørup [2014]. A potential drawback of a hierarchical
model is the hierarchy is possibly not meaningful at a certain level. We consid-
ered a simple extensions of the HRM in which Ui ∈ {1, 2, . . . } (the distribution
of (Ui) being a CRP) and consider t as a tree with leaf-set again given by the
unique values of (Ui). To put this procedure slightly differently, the model first
partitions the vertices according to a CRP, then build a tree where each leaf
corresponds to exactly one block in the partition and proceed as in eq. (6.22)
giving:

(HRM, hierarchical IRM:) Wij = ηf(Ui,Uj) (t general hierarchy). (6.23)

Details can be found in Detecting Hierarchical Structure in Networks [Herlau
et al., 2012a]. A variation of this method based on fixed-depth hierarchies is
also discussed by Ho et al. [2012].

A common theme for the HRM and hierarchical IRM is the structure of the
hierarchy is used to directly generate the parameters η· of the observational dis-
tribution. The advantage of this approach is the η’s may be integrated out and
inference reduce to sampling a single discrete structure which can be accom-
plished quite efficiently. More sophisticated approaches forego this advantage
but gain a more flexible construction. An important example of this type of
model is that of Roy, Kemp, Mansinghka, and Tenenbaum [2007] who considers
(the model appears not to be named in the paper) the hierarchical Mondrian
relational model (HMRM) which can be thought of as the Mondrian process
based relational model with the important distinction the (recursive) subsplits
are not independent. To be more exact, consider the unit interval [0, 1] and a
recursive partition structure. That is, an infinite binary tree t such that the root
of t correspond to the unit interval, each node n to a subinterval Bn of [0, 1]
and such that for any node n of t with children n1, n2 we have that Bn1 , Bn2 is
a partition of Bn.

The hierarchical Mondrian process may now be described as a random function
model for a function W on the unit interval by the following procedure initial-
ized with (n, n) where n is the root node of the hierarchy: Given two nodes
(n,m) with some probability, either (i) let W take a random value from a fixed
distribution on Bn × Bm and terminate or alternatively, (ii) select one of the
nodes, say n with children n1, n2, and recursively call the method two times as
(n1,m) and (n2,m). To be explicit:

(HMRM:) W |t ∼ HierarchicalMondrian(·|t) (t binary). (6.24)
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The above description leave out many important details including if the method
converge at all. Furthermore the authors show the above procedure can be given
a discrete parametrization which admits the entire recursive procedure to be
integrated out such that only t need be sampled [Roy et al., 2007]. Evidently,
the process may be extended in several ways such as to include non-binary
hierarchies.

A feature of the HRM and in particular the HMRM is despite the ability to
integrate out many of the variables the inference method is still quite computa-
tionally intensive. This is due to the number of operations required to compute
the change in likelihood resulting from a change in a hierarchy tend to scale in
the number of nodes in the hierarchy compared to the number of blocks in a
partition; furthermore each of these operations often have a higher (constant)
cost.

Recently, Blundell and Teh [2013] proposed Bayesian hierarchical community
discovery. This method attempts to alleviate the computational cost while main-
taining flexibility using a greedy agglomerative clustering technique to construct
the underlying hierarchical structure. The structural assumptions in the model
may (very roughly) be described as an interpolation between the HMRM and
the HRM, however the method is very scalable and provides surprisingly good
link prediction.

6.3 Temporal Models

A temporal networks is a network which changes over time. We will distinguish
between the following cases: The first is networks where the edges are temporally
persistent, that is, the edges persist over intervals of time. Examples could be
friendships in a social network or the physical connectivity of computers on the
internet. The second is networks where the edges are temporally intermittent
meaning the edges denotes instantaneous interactions. Examples could be social
interactions (relative to a time scale of days) or electronic communication on
the internet.

For both types of networks one may observe actual snapshots of the network,
that is, for a persistent network the states of the edges at various time points
or for a temporally intermittent network a point set of events of the form
(Vertex,Vertex,Time) or alternatively one may observe the aggregated network
at different time points. The friendships in a digital social network are often
good examples of an aggregated network since edges are very rarely deleted even
if they no longer correspond to an ongoing social interaction.
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In addition to these effects it is often (but not always) appropriate to consider the
vertices as having different life spans. A slightly morbid example is a friendship
network where people are born and die.

The distinctions illustrate that temporal network data do not refer to any one
single thing and temporal models suitable for one type of data can be quite
unsuitable for other types. This is not to say we consider all non-temporal (sta-
tionary) network data as something best treated by any single network model,
however the problem is far more obvious for temporal networks and the space
of potentially models is both much larger and less explored than for stationary
networks.

We will therefore not attempt to give a very throughout review but only mention
a few examples of important work and give a general overview of the field.
Firstly, for practical reasons, we will explicitly assume temporal network data
only refer to snapshots of a network A1, . . . , AT at discrete times and assume
vertices may have limited time spans or not depending on the situation.

6.3.1 Examples of temporal models

With these preliminary remarks, temporal models for network data are typically
obtained by taking an existing stationary model and adding a temporal effect to
some part of the parametrization. In the Aldous-Hoover inspired notation this
may either be to the latent vertex properties Ui, to the interaction-function W
or to both. There are two notable exceptions to this program, the first being
temporal versions of the exponential random graph model by e.g. Robins and
Pattison [2001], see also Guo et al. [2007] for a ERGM-based approach to infer-
ring rewiring dynamics. The second example is the proposal of Heaukulani and
Ghahramani [2013]. The proposed model share similarity with the LFRM of
Miller et al. [2009] in terms of parametrization, however with the novel proposal
it is the actual realization of the network at time t which affect the network
at time t + 1 and not (only) the underlying latent parametrization at time t.
Whether this choice allows significantly better link prediction requires more ex-
ploration of the model space, however the assumption is no doubt more accurate
in situation where the edges really denote channels of interaction.

Returning to models conceptually closer to temporal extensions of existing sta-
tionary models some of the more notable examples are, for the IRM, the dynamic
extensions using either a discrete hidden Markov model based approach [Ishig-
uro et al., 2010] or Kalman-filters [Xu and Hero III, 2013]. Latent-space based
models are perhaps easiest amendable to a dynamical formalism by, for instance,
applying a Gaussian process to give temporal correlation on the latent embed-
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ding. Approaches roughly falling within this framework include the original
work on latent embedding Hoff et al. [2002] and ideas based on survival analysis
where the problem of inferring the temporal network is considered a regression
problem based on time-dependent network statistics and temporal regression
coefficient [Vu et al., 2011, Perry and Wolfe, 2013]. This approach has been re-
visited several times, see for instance the dynamic latent-space model of [Sarkar
and Moore, 2005] and, by parameterizing the mixed-membership indicator vari-
able Ui for the mixed-membership stochastic block model in eq. (6.12) as a
transformed normal variable, the dynamic mixed membership stochastic block
model [Fu et al., 2009]. See also the Gaussian-process based approach of Du-
rante and Dunson [2014] for a principal approach to dynamic embedding within
a Bayesian framework based on Gaussian processes.

For discrete feature-assignments such as the LFRM a basic problem is dynamic
evolution of feature assignments are quite hard to evolve in a principal manner.
Two approaches bear mentioning, one is dynamic infinite relational latent fea-
ture model (DRIFT) [Foulds et al., 2011] which proposes a dynamical Markov
process on the feature assignments (but keep the interactions fixed). A possibly
more principled approach is to study a probabilistic object corresponding to a
time-evolving (or time-dependent) feature assignment. This approach was taken
by Leskovec [2013] which relied on the distance-dependent IBP [Gershman et al.,
2011].

6.3.1.1 Temporal hierarchies

An obvious idea at this point is to consider a temporal extension of hierarchical
relational models. How to proceed with this program is somewhat non-obvious
in that there to our knowledge do not exist well-explored temporal (or depen-
dent) priors for Gibbs fragmentations. We attempted to overcome this problem
by relying on a construction in which the vertices could be grouped together
across time (implying they did not change role) and the unique states of the ver-
tices obtained in this manner was gathered in one single hierarchy distributed as
a Gibbs fragmentation tree. By virtue of marginal consistency of a Gibbs frag-
mentation tree, one can show this construction induces temporally dependent
fragmentation.

While this procedure has some merits, in particular that the marginal distribu-
tion at each time slice is distributed as a Gibbs fragmentation tree, analytical
simplicity and the ability to share parameters across time (which we nevertheless
did not explore), we do not consider the proposal to be a “true” temporal pro-
cess on hierarchies (in the same sense the distance-dependent IBP of [Gershman
et al., 2011] is a true temporal process on feature assignments) for the reason
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the chain of networks are either temporally uncorrelated or have infinite mem-
ory. Finding a computationally tractable structure without these deficiencies
is to our knowledge still an open problem. In our article Detecting Hierarchi-
cal Structure in Networks [Herlau et al., 2013] we provide a full account of the
THRM from a generative perspective, discuss its properties and evaluates it on
three temporal network data sets.
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Chapter 7

Discussion and Conclusion

During the past chapters I have tried to give a brief account of the ideas the
written work relies upon and relates to. In the discussion, I will give my view
of which challenges I believe are the more interesting and, where applicable, use
this to give a critical treatment of the written work. I have deliberately chosen
to structure the discussion in reverse order of how the topics are laid out in the
main text.

Bayesian methods for networks: Concerning Bayesian methods for net-
works I believe there are two robust observations to be made. The first is
complexity matters. There appears to be distinct gains in performance when
going from the IRM (a partition) to the LFRM (a feature allocation) to the ILA
model (both).

The second is exact inference (i.e. asymptotically exact such as MCMC sam-
plers) of Bayesian models for networks is very computationally intensive and
appears to put upper limits on the system sizes which can plausibly be sam-
pled. For the IRM it was my experience this limit may be as low as 300-600
vertices using the considered methods [Herlau et al., 2014a], and this upper
limit does not seem to be increasing very fast. This suggest one should place
more emphasis on approximate inference methods such as variational methods
for the more advanced network models which offer the better predictive per-
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formance. Variational methods, in particular stochastic variational Bayes, has
been applied extensively to the LDA and non-negative matrix factorization-like
methods [Paisley et al., 2014], however for more advanced models in the con-
text of network data, stochastic variational Bayes has to my knowledge not yet
been widely applied for models more complicated than block-type models. It
should of course be kept in mind there may be good reasons for this, perhaps
the resulting method is not tractable or, alternatively, it simply fails to perform
well.

In my opinion, the space of Bayesian network models of the particular form
suggested by the Aldous-Hoover representation appears fairly well-explored at
this point and it is in this respect important to focus on some limitations in-
herit to this particular representation. I have previously discussed one of these,
namely sparsity. Models derived from the alternative Poisson process represen-
tation [Kallenberg, 2005, chapter 9] I discussed in section 4.3.1.1 avoids this
problem and in my opinion they could represent one of the more significant
contributions made to network modelling in the past years. It is important
to emphasize the existing work on applying this representation to networks by
Caron and Fox [2014] only models vertex degree. Models based on this rep-
resentation but also exploring community structure, feature allocations or the
temporal evolution of networks is to my knowledge an area fully open for explo-
ration and it would seem a safe bet this work will be undertaken in the coming
years.

A second important limitation of an Aldous-Hoover type representation is the
control on structural motifs such as triangles. Some care is required to even
formulate this problem, for instance a network which contain no edges outside a
dense subgraph is organized to contain a maximum number of triangles relative
to the number of edges, however this is quite evidently not what we typically
intend when we consider networks with “many triangles”. Interestingly, the
point-process representation of Caron and Fox [2014] may offer some helpful
guide to constructing sparse networks with an over-representation of triangles.
Let Π be a draw from a Poisson point-process on R3 and assume (for simplicity)
the base measure is the uniform measure. If we interpret each point (xi, yi, zi)
in Π as a triangle, that is, as saying there are edges xiyi and yizi and xizi in
the graph, the underlying infinite graph will quite obviously contain far more
triangles than could be expected from its other properties.

When considering this problem a pointed question is why a graph contains many
triangles. In many cases the answer seems tightly tied to a temporal dynamic,
say, two people with a common friend are likely to be introduced to each other
at a later point. In this case one should perhaps not simply seek a model with an
over-representation of triangles for a single network, but one of plausible social
dynamics which gives rise to triangles such as the latent feature propagation
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model [Heaukulani and Ghahramani, 2013].

One striking feature of network modelling is the method used to obtain the
network can play a more crucial role than the underlying structure. Consider
two methods of registering a large social network of 106 people: one being a
breadth-first search starting from a single vertex and proceeding to obtain 1000
vertices, the other being selecting 1000 people at random and reporting their
subgraph. These datasets will differ in every respect, yet in terms of motivation
of a particular latent structure for network data and subsequent analysis, the
network is commonly assumed as simply being what it is. While this problem
has been the focus of some work [Mislove et al., 2007, Kurant et al., 2010, Ferrara
et al., 2012] the problem is often simply ignored; My own work is certainly not
an exception to this practice.

With respect to hierarchies in relational modelling, one lesson seems to be the
use of a single hierarchy as organizational principle such as in the HRM or
THRM will lead to inferior link prediction compared to e.g. the LFRM or
ILA model. Another issue is, while most network data will exhibit hierarchical
features, any single hierarchy of the vertices will be insufficient. Solutions to
this problem may include the use of several hierarchies on the vertices; how-
ever this proposal would inevitably come at the cost of interpretability. An
additional challenge is that building efficient samplers for hierarchies became
a time-consuming pastime during this thesis, both in terms of implementation
time and subsequently when the samplers were evaluated. Samplers for hi-
erarchies may theoretically have good scaling properties (see for instance the
discussion in Schmidt, Herlau, and Mørup [2013]), however in practice they ap-
pear to be quite difficult to scale to larger networks. We are very tempted to
think this will remain a problem for any model which attempts to infer a sin-
gle hierarchical structure over all elements. Tackling this problem may include
building many smaller hierarchies or, as in the hierarchical community discovery
model [Blundell and Teh, 2013], consider a Bayesian approach build on top of
hierarchies that are not directly sampled.

Sampling For a long time during completion of this thesis I considered sam-
pling a secondary concern. I recall both thinking and saying the advantage of
split-merge sampling over Gibbs sampling was small at best for the IRM. Evi-
dently I now consider myself to have been wrong on both counts. No doubt some
of my confusion on this point was my own fault, however the wider Bayesian
literature, and non-parametric modelling of networks in particular, often treats
sampling in a somewhat strange manner. Most work contain a detailed de-
scription of the sampler, often because the sampling scheme is elaborate and
the proposal contains several ingenious ideas, however it is very often the case
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no results are presented on the convergence of the sampling scheme and no
comments are made if unreported experiments suggested the sampler reached
equilibrium.

At least for blockmodels there are good reasons to think many samplers do not
reach equilibrium as described in Herlau et al. [2014a]. While one could argue a
lack of mixing might not matter much from a pragmatic perspective, one cannot
help but think the mixing properties is an aspect of non-parametric Bayesian
modelling which should play a greater role.

As to my own suggestion in this respect it is in the main a matter of the common-
sense intuition samplers should allow as large a move class as possible and some
engineering. The aspect of the proposal which I consider the most important is
that of using other states to construct proposals. That is, if we have a system
with property x, and we wish to change that property to y (during a proposal
move), having two other systems, one with property x and another with y, will
offer important clues as to what other aspects of the first system needs to be
altered to allow property x to change to y. For discrete systems I consider this
to be an idea well worth exploring for feature allocations or hierarchies.

Non-parametrical methods Most Bayesian models contains parameters cor-
responding to a number of clusters, a degree of a polynomial, a number of fea-
tures or a depth of a tree. If we adopt the qualitative and very broad sense
of the word non-parametric as referring to models where these parameters are
inferred it seems quite self-evident one would have to throw out a great deal
of the justification for the use of probabilities to insist one should not put pri-
ors on these parameters and treat them as other unknown parameters of the
model. I will therefore leave aside this definition and consider three other ways
to envision non-parametrics and its relationship to Bayesian modelling.

Firstly, one can consider non-parametrical methods as certain general classes of
priors for data structure. This is naturally tied into the above description. If one
has a model based on partitions the partition can be thought of as distributed
as a CRP, if one has a model with latent features one can consider an IBP
and if one has a model which makes use of a function one can consider a prior
based on a Gaussian process, a Mondrian process or a jump process based on a
beta process. For a long time I implicitly considered Bayesian non-parametrics
in this fashion and, provided one keeps the statistical properties of the various
processes in mind, it is a fruitful way to “infinitize” various models. A danger of
this view is to miss the greater picture, namely that non-parametrical methods
in the mathematical statistics literature arises from invariances.
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Thus, the second approach to non-parametrics is to think of any model as some-
thing which has to obey a particular invariance related to the data type. For
instance a model of networks should be doubly exchangeable and exchangeabil-
ity is then in and by itself a major selling point of the model. While invariance
often automatically ensures graceful behaviour when data is missing, see the
example of the robot in chapter 4, an assumption of exchangeability is funda-
mentally an assumption on the data-generating process and as such it can be
right or wrong and may serve as a strait-jacket when applied uncritically.

The third way to be influenced by non-parametrical methods is by the obser-
vation the mathematical literature of probability theory provides very general
ways of identifying the underlying structure in a particular problem through
representor theorems, for instance the Aldous-Hoover-type parametrization of
Wij asW (Ui, Uj) and the interpretation of (Ui) andW as random objects. This
identification goes beyond if the resulting model is actually exchangeable –this
was not the case for many of the examples in section 6.2– and in our opin-
ion allows results in the mathematical statistics literature to influence creative
thinking in machine learning in a way that goes beyond the “infinitizing” de-
scribed above. While we can only guess how people are influenced in practice
we would like to draw attention to the work on sparse graphs by Caron [2012]
and the Aldous-Hoover representation by Lloyd et al. [2013].

Updating beliefs, use of probabilities and outlook In my opinion, proba-
bilistic or Bayesian methods are important in machine learning for three reasons.
Firstly, for many problems Bayesian methods offers very good modelling perfor-
mance and even when they do not they tends to be robust. Secondly, Bayesian
methods rest squarely on a mature mathematical field, probability theory and
thirdly, Bayesian methods can be motivated by analyzing what appears to be a
mental phenomenon – beliefs.

From the later perspective it is tempting to consider machine learning as an
attempt to derive a theory of thinking. What, then, can be expected to bring
about progress? Machine learning as a field is still so young that it is very
difficult to single out what will stand back as lasting accomplishments 50 years
from now. To put this in familiar terms, the dataset is too small, too noisy
and too poorly labeled. However the view that machine learning is a theory of
thinking makes the analogy to physics more apt, and physics has the advantage
of 400 years of progress and a well-documented history. If we admit this as
training data, perhaps a few more things can be said.

Reflections on the progress of physics often takes the view progress consists
of two parts. One is an accumulation of empirical facts, the other is smaller
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or larger re-organizations of the theoretical picture in which discrete (and sig-
nificant) changes to the vocabulary and assumptions both re-organize and re-
interpret the empirical facts to fit the new overarching understanding. From the
perspective of different scientific models what constitutes basic terminology dif-
fer to the extent two representatives of different scientific pictures cannot view
each other’s ideas from an objective viewpoint.

This view, especially when not stated as crudely as above, certainly represents
some aspect of the relationship between scientific theories. But undue emphasis
risks obscuring an important aspect of scientific progress namely the conserva-
tive aspect of scientific progress. I will illustrate this with a few examples. In
the late part of the 19th century, there was an obvious contradiction between the
Galilean transformations and Maxwells equations. The Galilean transformations
suggests all inertial frames are equivalent, however in the Maxwell equations a
stationary charge and a non-stationary charge differ in that the stationary charge
has no magnetic field while a moving charge do. To avoid this contradiction one
could consider two approaches. One could do away with Gallilean invariance,
that is, accept some inertial systems are not equivalent with respect to elec-
tromagnetic phenomena, or alternatively, consider Maxwells equations to be an
approximation of a more elaborate theory of wave-phenomena in an ether.

Einstein’s contribution was exactly to recognize one did not have to make new
theoretical innovations along either path. Einstein accepted Maxwell’s equations
sans ether and that Galileos insight, that inertial systems are equivalent, simply
could not be wrong. What he realized was these two only led to a contradiction
in the context of other ideas, most importantly that equivalence of inertial
systems and the Galilean transformation are not the same thing and from this
followed the theory of relativity.

The same pattern can be found in other scientific innovations: If one accepts
general relativity as the theory of gravity and the observation the universe is
isotropic one arrives at a dynamic universe. Newton famously recognized the
central concept of dynamics was acceleration and the suns role in Keplers dy-
namics had to be explained through acceleration. If one accept electromag-
netism is propagated by fields but the world must be quantized one arrive at
quantum-field theories as Dirac famously discovered.

It is easy, indeed, tempting to look at these innovations from the viewpoint what
they changed, but again and again it seems what is more important is which
concepts the inventors insisted could not be subject to change and what other
concepts were independent of these.

If we return to machine learning, clearly no aspect of the previous discussion
contains a formula for success. Understanding what elements of current ideas
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should be taken serious and which should be taken as spurious requires a New-
ton, Einstein or Dirac. It is however in my opinion an interesting observation
that Bayesian methods can be split into a consistency requirement and an in-
variance principle that allow the assignment of beliefs. It should be noted My
own work on making use of this distinction [Herlau et al., 2015] has only led
to modest results. Are there other aspects of Bayesian learning that may be
separated? If we ask what Bayesian learning is according to chapter 2, it is a
semantic of belief on propositions which has the property of truth and falsehood.
If we ask a linguist he will wonder why we do not care about vagueness. If we
ask a philosopher of the Wittgensteinian school he may say our propositions has
the property of truth and falsehood only because we choose to formulated them
in a particular way and if we ask a neuroscientist he might wonder what image
of the mind this suggest as dynamics play no part of the theory.

The most important innovations in science have not been based on radical pos-
tulates but either on specific observations or a conservative and almost pedantic
investigation of existing ideas. Nearly everyone I have spoken to in my field
agrees we need radically new insights to explain intelligence. This may be the
case, but from the vantage point of history it is perhaps more worthwhile to
look at what existing insights are good candidates to remain relevant. It is in
this sense I think the Bayesian view on beliefs has an important future role to
play.



160 Discussion and Conclusion



Bibliography

J. Aczél. Lectures on Functional Equations and Their Applications. Mathematics
in science and engineering. Academic Press, 1966. URL https://books.
google.com/books?id=0vZQAAAAMAAJ.

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed
membership stochastic blockmodels. Journal of Machine Learning Research,
9(1981-2014):3, 2008.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-
works. Reviews of modern physics, 74(1):47, 2002.

Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter
of the world-wide web. Nature, 401(6749):130–131, 1999.

David Aldous. Exchangeability and related topics. École d’Été de Probabilités
de Saint-Flour XIII—1983, pages 1–198, 1985.

David Aldous. Probability distributions on cladograms. In Random discrete
structures, pages 1–18. Springer, 1996.

David J Aldous. Representations for partially exchangeable arrays of random
variables. Journal of Multivariate Analysis, 11(4):581–598, 1981.

David J Aldous. Exchangeability and continuum limits of discrete random struc-
tures. In Proceedings of the International Congress of Mathematicians, vol-
ume 1, pages 141–153, 2010.

Romas Aleliunas. A Summary of a New Normative Theory of Probabilistic
Logic. In Proceedings of the Fourth Annual Conference on Uncertainty in
Artificial Intelligence, UAI ’88, pages 199–206, Amsterdam, The Netherlands,

https://books.google.com/books?id=0vZQAAAAMAAJ
https://books.google.com/books?id=0vZQAAAAMAAJ


162 BIBLIOGRAPHY

The Netherlands, 1990. North-Holland Publishing Co. ISBN 0-444-88650-8.
URL http://dl.acm.org/citation.cfm?id=647231.719560.

SI Amari. Neural learning in structured parameter spaces-natural Riemannian
gradient. Advances in neural information processing systems, pages 127–133,
1997.

Karen S Ambrosen, Tue Herlau, Tim Dyrby, Mikkel N Schmidt, and Morten
Morup. Comparing Structural Brain Connectivity by the Infinite Relational
Model. In Pattern Recognition in Neuroimaging (PRNI), 2013 International
Workshop on, pages 50–53. IEEE, 2013.

Kasper Winther Andersen, Tue Herlau, Morten Mørup, Mikkel N. Schmidt,
Kristoffer H. Madsen, Mark Lyksborg, and Hartwig Siebner. Joint modelling
of structural and functional brain networks. In NIPS workshop on Machine
Learning and Interpretation in Neuroimaging, 2012.

Christophe Andrieu and Christian P Robert. Controlled MCMC for optimal
sampling. Citeseer, 2001.

Christophe Andrieu, Éric Moulines, et al. On the ergodicity properties of some
adaptive MCMC algorithms. The Annals of Applied Probability, 16(3):1462–
1505, 2006.

Takamitsu Araki and Kazushi Ikeda. Adaptive Markov chain Monte Carlo for
auxiliary variable method and its application to parallel tempering. Neural
Networks, 43:33–40, 2013.

Yves Atchadé, Gersende Fort, Eric Moulines, and Pierre Priouret. Adaptive
markov chain monte carlo: theory and methods. Preprint, 2009.

Yves Atchadé, Gersende Fort, et al. Limit theorems for some adaptive MCMC
algorithms with subgeometric kernels. Bernoulli, 16(1):116–154, 2010.

Yves F Atchadé, Jeffrey S Rosenthal, et al. On adaptive markov chain monte
carlo algorithms. Bernoulli, 11(5):815–828, 2005.

Krishna B Athreya, Hani Doss, and Jayaram Sethuraman. A proof of con-
vergence of the Markov chain simulation method. Technical report, DTIC
Document, 1992.

Tim Austin. On exchangeable random variables and the statistics of large graphs
and hypergraphs. Probability Surveys, 5:80–145, 2008. doi: 10.1214/08-PS124.
URL http://dx.doi.org/10.1214/08-PS124.

Yan Bai. An adaptive directional Metropolis-within-Gibbs algorithm. Preprint,
2009.

http://dl.acm.org/citation.cfm?id=647231.719560
http://dx.doi.org/10.1214/08-PS124


BIBLIOGRAPHY 163

Yan Bai, Radu V Craiu, and Antonio F Di Narzo. Divide and conquer: a
mixture-based approach to regional adaptation for MCMC. Journal of Com-
putational and Graphical Statistics, 20(1):63–79, 2011.

LE Ballentine. Interpretations of probability and quantum theory. In Founda-
tions of probability and physics, volume 1, pages 71–84. Quantum Probability
White Noise Analysis, 2001.

Stefan Banach and Alfred Tarski. Sur la décomposition des ensembles de points
en parties respectivement congruentes. Fund. math, 6(1):924, 1924.

Jørgen Bang-Jensen and Gregory Gutin. Theory, algorithms and applications.
Springer Monographs in Mathematics, Springer-Verlag London Ltd., London,
2007.

Albert-László Barabási and Réka Albert. Emergence of Scaling in Random
Networks. Science, 286(5439):509–512, 1999. doi: 10.1126/science.286.5439.
509. URL http://www.sciencemag.org/content/286/5439/509.abstract.

Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding
the cell’s functional organization. Nature Reviews Genetics, 5(2):101–113,
2004.

Mr. Bayes and Mr Price. An Essay towards solving a Problem in the Doctrine
of Chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in
a letter to John Canton, AMFRS. Philosophical Transactions (1683-1775),
pages 370–418, 1763.

J.M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley Series in Probability
and Statistics. Wiley, 2000. ISBN 9780471494645. URL https://books.
google.dk/books?id=IXyLQgAACAAJ.

José Miguel Bernardo. Bayesian Statistics 2: Proceedings of the Second Valencia
International Meeting, September 6/10, 1983, volume 2. Elsevier Science Ltd,
1985.

Jean Bertoin. Homogeneous fragmentation processes. Probability Theory and
Related Fields, 121(3):301–318, 2001.

Jean Bertoin. Random fragmentation and coagulation processes, volume 102.
Cambridge University Press, 2006.

G. Birkhoff and S.M. Lane. A Survey of Modern Algebra. AKP classics. Taylor
& Francis, 1977. ISBN 9781568810683. URL https://books.google.dk/
books?id=FnP7sHxjt6gC.

David Blackwell and James B MacQueen. Ferguson distributions via Pólya urn
schemes. The annals of statistics, pages 353–355, 1973.

http://www.sciencemag.org/content/286/5439/509.abstract
https://books.google.dk/books?id=IXyLQgAACAAJ
https://books.google.dk/books?id=IXyLQgAACAAJ
https://books.google.dk/books?id=FnP7sHxjt6gC
https://books.google.dk/books?id=FnP7sHxjt6gC


164 BIBLIOGRAPHY

David Blei and John Lafferty. Correlated topic models. Advances in neural
information processing systems, 18:147, 2006.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993–1022, 2003.

Charles Blundell and Yee Whye Teh. Bayesian Hierarchical Community Discov-
ery. In Advances in Neural Information Processing Systems, pages 1601–1609,
2013.

C. W Borchardt. Über eine Interpolationsformel für eine Art Symmetrischer
Functionen und über Deren Anwendung. Math. Abh. der Akademie der Wis-
senschaften zu Berlin, pages 1–20, 1860.

P. J. Bowler. Evolution: the history of an idea. History of Sciencie. University
of California Press, 1989. ISBN 978-0-520-06386-0. URL http://books.
google.ie/books?id=e2b5B0po8fwC.

Anders Brix. Generalized gamma measures and shot-noise Cox processes. Ad-
vances in Applied Probability, pages 929–953, 1999.

Stephen Brooks and Andrew Gelman. Some Issues for Monitoring Convergence
of Iterative Simulations. Computing Science and Statistics, pages 30–36, 1998.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of
Markov Chain Monte Carlo. CRC press, 2011.

Brian Buck and Vincent A Macaulay. Maximum entropy in action: a collection
of expository essays. Clarendon Press Oxford, 1991.

Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature Reviews Neuroscience,
10(3):186–198, 2009.

Wray Buntine and Marcus Hutter. A Bayesian view of the Poisson-Dirichlet
process. arXiv preprint arXiv:1007.0296, 2010.

Duncan S Callaway, Mark EJ Newman, Steven H Strogatz, and Duncan J Watts.
Network robustness and fragility: Percolation on random graphs. Physical
review letters, 85(25):5468, 2000.

Penha Maria Cardoso Dias and Abner Shimony. A critique of Jaynes’ maximum
entropy principle. Advances in Applied Mathematics, 2(2):172–211, 1981.

Francois Caron. Bayesian nonparametric models for bipartite graphs. In NIPS-
Neural Information Processing Systems, 2012.

Francois Caron and Emily B Fox. Bayesian nonparametric models of sparse and
exchangeable random graphs. arXiv preprint arXiv:1401.1137, 2014.

http://books.google.ie/books?id=e2b5B0po8fwC
http://books.google.ie/books?id=e2b5B0po8fwC


BIBLIOGRAPHY 165

Simon Carter, Marc Dymetman, and Guillaume Bouchard. Exact sampling and
decoding in high-order hidden Markov models. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 1125–1134. Association for
Computational Linguistics, 2012.

George Casella and Edward I George. Explaining the Gibbs sampler. The
American Statistician, 46(3):167–174, 1992.

Ismaël Castillo. A semiparametric Bernstein–von Mises theorem for Gaussian
process priors. Probability Theory and Related Fields, 152(1-2):53–99, 2012.

Ariel Caticha. Lectures on Probability, Entropy, and Statistical Physics. CoRR,
abs/0808.0012, 2008. URL http://dblp.uni-trier.de/db/journals/
corr/corr0808.html#abs-0808-0012.

Ariel Caticha and Adom Giffin. Updating Probabilities. CoRR,
abs/physics/0608185, 2006. URL http://dblp.uni-trier.de/db/
journals/corr/corr0608.html#abs-physics-0608185.

A Cayley. A theorem on trees. Quart. J. Math, 23:376–378, 1889.

Gilles Celeux, Merrilee Hurn, and Christian P Robert. Computational and
inferential difficulties with mixture posterior distributions. Journal of the
American Statistical Association, 95(451):957–970, 2000.

Ali Taylan Cemgil. Bayesian inference for nonnegative matrix factorisation mod-
els. Computational Intelligence and Neuroscience, 2009, 2009.

David J Chalmers. Facing up to the problem of consciousness. Journal of
consciousness studies, 2(3):200–219, 1995.

KS Chan. A note on the geometric ergodicity of a Markov chain. Advances in
Applied Probability, pages 702–704, 1989.

G. Chartrand, L. Lesniak, and P. Zhang. Graphs & Digraphs, Fifth Edition. A
Chapman & Hall book. Taylor & Francis, 2010. ISBN 9781439826270. URL
http://www.google.dk/books?id=K6-FvXRlKsQC.

Sourav Chatterjee, Persi Diaconis, et al. Estimating and understanding ex-
ponential random graph models. The Annals of Statistics, 41(5):2428–2461,
2013.

Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hierarchical structure
and the prediction of missing links in networks. Nature, 453(7191):98–101,
2008.

http://dblp.uni-trier.de/db/journals/corr/corr0808.html#abs-0808-0012
http://dblp.uni-trier.de/db/journals/corr/corr0808.html#abs-0808-0012
http://dblp.uni-trier.de/db/journals/corr/corr0608.html#abs-physics-0608185
http://dblp.uni-trier.de/db/journals/corr/corr0608.html#abs-physics-0608185
http://www.google.dk/books?id=K6-FvXRlKsQC


166 BIBLIOGRAPHY

Christophe Combet, Christophe Blanchet, Christophe Geourjon, and Gilbert
Deleage. NPS@: network protein sequence analysis. Trends in biochemical
sciences, 25(3):147–150, 2000.

D. Corfield and J. Williamson. Foundations of Bayesianism. Applied Logic
Series. Springer, 2001. ISBN 9781402002236. URL http://books.google.
dk/books?id=74y__aTsckwC.

A.A. Cournot. Exposition de la théorie des chances et des probabilités. L. Ha-
chette, 1843. URL https://books.google.com/books?id=_fk3AAAAMAAJ.

Mary Kathryn Cowles and Bradley P Carlin. Markov chain Monte Carlo conver-
gence diagnostics: a comparative review. Journal of the American Statistical
Association, 91(434):883–904, 1996.

RT Cox. Probability, Frequency and Reasonable Expectation. American Journal
of Physics, 14:1–13, 1946.

R.T. Cox. Algebra of Probable Inference. Algebra of Probable Inference. Johns
Hopkins University Press, 1961. ISBN 9780801869822. URL http://books.
google.dk/books?id=dcNpAUU6ACgC.

Radu V Craiu, Jeffrey Rosenthal, and Chao Yang. Learn from thy neighbor:
Parallel-chain and regional adaptive MCMC. Journal of the American Sta-
tistical Association, 104(488):1454–1466, 2009.

Giulio D’Agostini. Bayesian reasoning versus conventional statistics in high
energy physics. In Maximum Entropy and Bayesian Methods Garching, Ger-
many 1998, pages 157–170. Springer, 1999.

George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural
networks for LVCSR using rectified linear units and dropout. In Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on, pages 8609–8613. IEEE, 2013.

Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier
Dover Publications, 2007.

Pierpaolo De Blasi, Stefano Favaro, Antonio Lijoi, R Mena, I Prunster, and
Matteo Ruggiero. Are Gibbs-type priors the most natural generalization of
the Dirichlet process? 2013.

Pierre De Fermat and Etienne Pascal. 1654.

B. De Finetti. Funzione Caratteristica Di un Fenomeno Aleatorio. 6. Memorie,
pages 251–299. Academia Nazionale del Linceo, 1931.

http://books.google.dk/books?id=74y__aTsckwC
http://books.google.dk/books?id=74y__aTsckwC
https://books.google.com/books?id=_fk3AAAAMAAJ
http://books.google.dk/books?id=dcNpAUU6ACgC
http://books.google.dk/books?id=dcNpAUU6ACgC


BIBLIOGRAPHY 167

B. de Finetti. Theory of probability: a critical introductory treatment. Probabil-
ity and Statistics Series. John Wiley & Sons Australia, Limited, 1974. ISBN
9780471201410. URL https://books.google.dk/books?id=to0uAAAAIAAJ.

Bruno De Finetti. La prévision: ses lois logiques, ses sources subjectives. In
Annales de l’institut Henri Poincaré, volume 7, pages 1–68, 1937.

Pierre Simon de Laplace. Théorie analytique des probabilités - 3ème édition.
Courcier, 1820.

Derek J de Solla Price. Is technology historically independent of science? A
study in statistical historiography. Technology and Culture, pages 553–568,
1965.

Charo I Del Genio, Hyunju Kim, Zoltán Toroczkai, and Kevin E Bassler. Ef-
ficient and exact sampling of simple graphs with given arbitrary degree se-
quence. PloS one, 5(4):e10012, 2010.

Arthur P Dempster. Upper and lower probabilities induced by a multivalued
mapping. The annals of mathematical statistics, pages 325–339, 1967.

Arnaud Doucet. Sequential monte carlo methods. Wiley Online Library, 2001.

JP Dougherty. Explaining statistical mechanics. Studies in History and Philos-
ophy of Science Part A, 24(5):843–866, 1993.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth.
Hybrid monte carlo. Physics letters B, 195(2):216–222, 1987.

Didier Dubois and Henri Prade. Possibility theory. Wiley Online Library, 1988.

Marijtje AJ Duijn, Tom AB Snijders, and Bonne JH Zijlstra. p2: a random
effects model with covariates for directed graphs. Statistica Neerlandica, 58
(2):234–254, 2004.

Maurice J Dupre and Frank J Tipler. The Cox Theorem: Unknowns And
Plausible Value. arXiv preprint math/0611795, 2006.

Daniele Durante and David Dunson. {Bayesian Logistic Gaussian Process Mod-
els for Dynamic Networks}. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, pages 194–201, 2014.

Rick Durrett. Random graph dynamics, volume 20. Cambridge university press,
2007.

Nathan Eagle and Alex Pentland. Reality mining: sensing complex social sys-
tems. Personal and ubiquitous computing, 10(4):255–268, 2006.

https://books.google.dk/books?id=to0uAAAAIAAJ


168 BIBLIOGRAPHY

Nathan Eagle, Alex Sandy Pentland, and David Lazer. Inferring friendship
network structure by using mobile phone data. Proceedings of the National
Academy of Sciences, 106(36):15274–15278, 2009.

JR Ehrman, LD Fosdick, and DC Handscomb. Computation of Order Parame-
ters in an Ising Lattice by the Monte Carlo Method. Journal of Mathematical
Physics, 1:547–558, 1960.

Lloyd T Elliott and Yee Whye Teh. Scalable imputation of genetic data with a
discrete fragmentation-coagulation process. In NIPS, pages 2861–2869, 2012.

R.L. Ellis. On the Foundations of the Theory of Probabilities. John William
Parker, 1843. URL https://books.google.com/books?id=in7IGwAACAAJ.

P. Erdös and A. Rényi. On random graphs I. Publicationes Mathematicae
(Debrecen), 6:290–297, 1959. URL http://www.renyi.hu.

Warren J Ewens. The sampling theory of selectively neutral alleles. Theoretical
population biology, 3(1):87–112, 1972.

Dmitrii Konstantinovich Faddeev. On the concept of entropy of a finite proba-
bilistic scheme. Uspekhi Matematicheskikh Nauk, 11(1):227–231, 1956.

Ruma Falk. When truisms clash: Coping with a counterintuitive problem con-
cerning the notorious two-child family. Thinking &amp; Reasoning, 17(4):
353–366, 2011. doi: 10.1080/13546783.2011.613690. URL http://dx.doi.
org/10.1080/13546783.2011.613690.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In ACM SIGCOMM Computer Com-
munication Review, volume 29, pages 251–262. ACM, 1999.

Thomas S Ferguson. A Bayesian analysis of some nonparametric problems. The
annals of statistics, pages 209–230, 1973.

Thomas S Ferguson. Prior distributions on spaces of probability measures. The
annals of statistics, pages 615–629, 1974.

Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baumgartner.
Web data extraction, applications and techniques: a survey. arXiv preprint
arXiv:1207.0246, 2012.

Stephen E Fienberg. A brief history of statistical models for network analysis
and open challenges. Journal of Computational and Graphical Statistics, 21
(4):825–839, 2012.

Stephen E Fienberg et al. When did Bayesian inference become“ Bayesian”?
Bayesian analysis, 1(1):1–40, 2006.

https://books.google.com/books?id=in7IGwAACAAJ
http://www.renyi.hu
http://dx.doi.org/10.1080/13546783.2011.613690
http://dx.doi.org/10.1080/13546783.2011.613690


BIBLIOGRAPHY 169

T.L. Fine. Theories of probability: an examination of foundations. Academic
Press, 1973. URL https://books.google.dk/books?id=U9lEAAAAIAAJ.

L. D. Fosdick. . Bull. Am. Phys. Soc, 239, 1957.

A Stewart Fotheringham and Morton E O’Kelly. Spatial interaction models:
formulations and applications. Kluwer Academic Dordrecht, 1989.

James R Foulds, Christopher DuBois, Arthur U Asuncion, Carter T Butts, and
Padhraic Smyth. A dynamic relational infinite feature model for longitudinal
social networks. In International Conference on Artificial Intelligence and
Statistics, pages 287–295, 2011.

Ove Frank and David Strauss. Markov graphs. Journal of the american Statis-
tical association, 81(395):832–842, 1986.

Wenjie Fu, Le Song, and Eric P Xing. Dynamic mixed membership blockmodel
for evolving networks. In Proceedings of the 26th annual international con-
ference on machine learning, pages 329–336. ACM, 2009.

M. Gardner. The Scientific American book of mathematical puzzles & diver-
sions. Number v. 1 in The Scientific American Book of Mathematical Puzzles
& Diversions. Simon and Schuster, 1959. URL http://books.google.dk/
books?id=KG5MAQAAIAAJ.

Alan E Gelfand and Sujit K Sahu. On Markov chain Monte Carlo acceleration.
Journal of Computational and Graphical Statistics, 3(3):261–276, 1994.

Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calcu-
lating marginal densities. Journal of the American statistical association, 85
(410):398–409, 1990.

Andrew Gelman and Donald B. Rubin. Inference from Iterative Simulation
Using Multiple Sequences. Statistical Science, 7(4):457–472, 11 1992. doi: 10.
1214/ss/1177011136. URL http://dx.doi.org/10.1214/ss/1177011136.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian
data analysis, volume 2. Taylor & Francis, 2014.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, (6):721–741, 1984.

Samuel J Gershman, Peter I Frazier, and David M Blei. Distance dependent
infinite latent feature models. arXiv preprint arXiv:1110.5454, 2011.

John Geweke et al. Evaluating the accuracy of sampling-based approaches to
the calculation of posterior moments, volume 196. Federal Reserve Bank of
Minneapolis, Research Department, 1991.

https://books.google.dk/books?id=U9lEAAAAIAAJ
http://books.google.dk/books?id=KG5MAQAAIAAJ
http://books.google.dk/books?id=KG5MAQAAIAAJ
http://dx.doi.org/10.1214/ss/1177011136


170 BIBLIOGRAPHY

Subhashis Ghosal. The Dirichlet process, related priors and posterior asymp-
totics. In Bayesian nonparametrics, Camb. Ser. Stat. Probab. Math., pages
35–79. Cambridge Univ. Press, Cambridge, 2010.

Subhashis Ghosal and Aad van der Vaart. Posterior convergence rates of Dirich-
let mixtures at smooth densities. Ann. Statist., 35(2):697–723, 2007. ISSN
0090-5364. doi: 10.1214/009053606000001271. URL http://dx.doi.org/
10.1214/009053606000001271.

W. R. Gilks, N. G. Best, and K. K. C. Tan. Adaptive Rejection Metropolis
Sampling within Gibbs Sampling. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 44(4):pp. 455–472, 1995. ISSN 00359254. URL
http://www.jstor.org/stable/2986138.

Walter R Gilks. Markov chain monte carlo. Wiley Online Library, 2005.

Walter R Gilks, Gareth O Roberts, and Edward I George. Adaptive direction
sampling. The statistician, pages 179–189, 1994.

Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamil-
tonian Monte Carlo methods. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 73(2):123–214, 2011. ISSN 1467-9868. doi:
10.1111/j.1467-9868.2010.00765.x. URL http://dx.doi.org/10.1111/j.
1467-9868.2010.00765.x.

Michelle Girvan and Mark EJ Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences, 99(12):
7821–7826, 2002.

F.K. Glückstad, T. Herlau, M.N. Schmidt, and M. Morup. Unsupervised
Knowledge Structuring: Application of Infinite Relational Models to the
FCA Visualization. In 2013 International Conference on ignal-Image Tech-
nology Internet-Based Systems (SITIS), pages 233–240, Dec 2013a. doi:
10.1109/SITIS.2013.48.

Fumiko Kano Glückstad, Tue Herlau, Mikkel Nørgaard Schmidt, and Morten
Mørup. Analysis of Subjective Conceptualizations Towards Collective Con-
ceptual Modelling. Japanese Society for Artificial Intelligence, 2013b.

Fumiko Kano Glückstad, Tue Herlau, Mikkel Nørgaard Schmidt, Morten Mørup,
Rafal Rzepka, and Kenji Araki. Analysis of Conceptualization Patterns across
Groups of People. In 2013 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), pages 349–354, 2013c.

Fumiko Kano Glückstad, Tue Herlau, Mikkel N Schmidt, and Morten Mørup.
Cross-categorization of legal concepts across boundaries of legal systems: in
consideration of inferential links. Artificial Intelligence and Law, pages 1–48,
2014.

http://dx.doi.org/10.1214/009053606000001271
http://dx.doi.org/10.1214/009053606000001271
http://www.jstor.org/stable/2986138
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x


BIBLIOGRAPHY 171

Alexander Gnedin and Jim Pitman. Exchangeable Gibbs partitions and Stirling
triangles. Journal of Mathematical Sciences, 138(3):5674–5685, 2006.

Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, and Edoardo M Airoldi.
A survey of statistical network models. Foundations and Trends R© in Machine
Learning, 2(2):129–233, 2010.

Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. Understand-
ing individual human mobility patterns. Nature, 453(7196):779–782, 2008.

Peter J Green. Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82(4):711–732, 1995.

M Grendár Jr and M Grendár. Maximum Probability and Maximum Entropy
methods: bayesian interpretation. arXiv preprint physics/0308005, 2003.

Jim E. Griffin and Stephen G. Walker. Posterior Simulation of Normal-
ized Random Measure Mixtures. Journal of Computational and Graphi-
cal Statistics, 20(1):241–259, 2011. doi: 10.1198/jcgs.2010.08176. URL
http://amstat.tandfonline.com/doi/abs/10.1198/jcgs.2010.08176.

TL Griffiths and Z Ghahramani. Infinite latent feature models and the indian
buffet process. 2005.

Fan Guo, Steve Hanneke, Wenjie Fu, and Eric P Xing. Recovering temporally
rewiring networks: A model-based approach. In Proceedings of the 24th in-
ternational conference on Machine learning, pages 321–328. ACM, 2007.

Heikki Haario, Eero Saksman, Johanna Tamminen, et al. An adaptive Metropo-
lis algorithm. Bernoulli, 7(2):223–242, 2001.

Bénédicte Haas, Grégory Miermont, Jim Pitman, Matthias Winkel, et al. Con-
tinuum tree asymptotics of discrete fragmentations and applications to phy-
logenetic models. The Annals of Probability, 36(5):1790–1837, 2008.

Petr Hájek. Metamathematics of fuzzy logic, volume 4. Springer Science &
Business Media, 1998.

Joseph Y Halpern. A counterexample to theorems of Cox and Fine. J. Artif.
Intell. Res.(JAIR), 10:67–85, 1999.

J.M. Hammersley and D.C. Handscomb. Monte Carlo Methods. Methuen’s
monographs on applied probability and statistics. Methuen, 1964. ISBN
9780416523409. URL http://books.google.dk/books?id=Kk4OAAAAQAAJ.

Mark S Handcock. Assessing Degeneracy in Statistical Models of Social Net-
works. 2003.

http://amstat.tandfonline.com/doi/abs/10.1198/jcgs.2010.08176
http://books.google.dk/books?id=Kk4OAAAAQAAJ


172 BIBLIOGRAPHY

G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathemat-
ical Library. Cambridge University Press, 1952. ISBN 9780521358804. URL
http://books.google.dk/books?id=t1RCSP8YKt8C.

Michael Hardy. Scaled Boolean algebras. Advances in Applied Mathemat-
ics, 29(2):243–292, 2002. ISSN 0196-8858. doi: 10.1016/S0196-8858(02)
00011-8. URL http://www.sciencedirect.com/science/article/pii/
S0196885802000118.

J. Harris, J.L. Hirst, and M.J. Mossinghoff. Combinatorics and Graph The-
ory. Springer Undergraduate Texts in Mathematics and Technology. Springer,
2008. ISBN 9780387797106. URL http://books.google.dk/books?id=
CxSoZcNymacC.

W Keith Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, 1970.

Creighton Heaukulani and Zoubin Ghahramani. Dynamic probabilistic models
for latent feature propagation in social networks. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13), pages 275–283,
2013.

David Heckerman. An axiomatic framework for belief updates. In
UAI ’86: Proceedings of the Second Annual Conference on Uncer-
tainty in Artificial Intelligence, University of Pennsylvania, Philadel-
phia, PA, USA, August 8-10, 1986, pages 11–22, 1986. URL
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=
2&article_id=1764&proceeding_id=1002.

Tue Herlau, Morten Mørup, Mikkel N Schmidt, and Lars Kai Hansen. Detecting
hierarchical structure in networks. In Cognitive Information Processing (CIP),
2012 3rd International Workshop on, pages 1–6. IEEE, 2012a.

Tue Herlau, Morten Mørup, Mikkel N Schmidt, and Lars Kai Hansen. Modelling
dense relational data. In Machine Learning for Signal Processing (MLSP),
2012 IEEE International Workshop on, pages 1–6. IEEE, 2012b.

Tue Herlau, Mikkel Schmidt, et al. Modeling temporal evolution and multiscale
structure in networks. In Proceedings of The 30th International Conference
on Machine Learning, pages 960–968, 2013.

Tue Herlau, Morten Mørup, Yee Whye Teh, and Mikkel N. Schmidt. Adaptive
Reconfiguration Moves for Dirichlet Mixtures. page 26, May 2014a. URL
http://arxiv.org/abs/1406.0071.

Tue Herlau, Mikkel N Schmidt, and Morten Mørup. Infinite-degree-corrected
stochastic block model. Physical Review E, 90(3):032819, 2014b.

http://books.google.dk/books?id=t1RCSP8YKt8C
http://www.sciencedirect.com/science/article/pii/S0196885802000118
http://www.sciencedirect.com/science/article/pii/S0196885802000118
http://books.google.dk/books?id=CxSoZcNymacC
http://books.google.dk/books?id=CxSoZcNymacC
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1764&proceeding_id=1002
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1764&proceeding_id=1002
http://arxiv.org/abs/1406.0071


BIBLIOGRAPHY 173

Tue Herlau, Morten Mørup, and Mikkel N. Schmidt. Bayesian Dropout. page 21,
August 2015. URL http://arxiv.org/abs/1508.02905.

Edwin Hewitt and Leonard J Savage. Symmetric measures on Cartesian prod-
ucts. Transactions of the American Mathematical Society, pages 470–501,
1955.

David M Higdon. Auxiliary variable methods for Markov chain Monte Carlo
with applications. Journal of the American Statistical Association, 93(442):
585–595, 1998.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

Nils Lid Hjort. Nonparametric Bayes estimators based on beta processes in
models for life history data. The Annals of Statistics, pages 1259–1294, 1990.

Man-Wai Ho, Lancelot F James, and John W Lau. Coagulation fragmenta-
tion laws induced by general coagulations of two-parameter Poisson-Dirichlet
processes. arXiv preprint math/0601608, 2006.

Qirong Ho, Ankur P Parikh, and Eric P Xing. A multiscale community block-
model for network exploration. Journal of the American Statistical Associa-
tion, 107(499):916–934, 2012.

Peter Hoff. Modeling homophily and stochastic equivalence in symmetric re-
lational data. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T.
Roweis, editors, Advances in Neural Information Processing Systems 20, Pro-
ceedings of the Twenty-First Annual Conference on Neural Information Pro-
cessing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007.
MIT Press, 2007.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches
to social network analysis. Journal of the american Statistical association, 97
(460):1090–1098, 2002.

Jake M Hofman and Chris H Wiggins. Bayesian approach to network modular-
ity. Physical review letters, 100(25):258701, 2008.

Paul W Holland and Samuel Leinhardt. An exponential family of probability
distributions for directed graphs. Journal of the american Statistical associ-
ation, 76(373):33–50, 1981.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137, 1983.

http://arxiv.org/abs/1508.02905


174 BIBLIOGRAPHY

D.N. Hoover. Relations on probability spaces and arrays of random variables,
1979.

Eric Horvitz, David Heckerman, and Curtis Langlotz. A Framework for Compar-
ing Alternative Formalisms for Plausible Reasoning. In AAAI, pages 210–214,
1986.

Mark Huber. Efficient exact sampling from the Ising model using Swendsen-
Wang. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms, pages 921–922. Society for Industrial and Applied Mathematics,
1999.

Katsuhiko Ishiguro, Tomoharu Iwata, Naonori Ueda, and Joshua B Tenenbaum.
Dynamic Infinite Relational Model for Time-varying Relational Data Analy-
sis. In Advances in Neural Information Processing Systems, pages 919–927,
2010.

Hemant Ishwaran and Lancelot F James. Gibbs sampling methods for stick-
breaking priors. Journal of the American Statistical Association, 96(453),
2001.

Sonia Jain and Radford M Neal. A Split-Merge Markov chain Monte Carlo Pro-
cedure for the Dirichlet Process Mixture Model. Journal of Computational and
Graphical Statistics, 13(1):158–182, 2004. doi: 10.1198/1061860043001. URL
http://amstat.tandfonline.com/doi/abs/10.1198/1061860043001.

Lancelot F James. Poisson process partition calculus with applications
to exchangeable models and Bayesian nonparametrics. arXiv preprint
math/0205093, 2002.

Lancelot F James. A simple proof of the almost sure discreteness of a
class of random measures. Statistics & Probability Letters, 65(4):363–368,
2003. ISSN 0167-7152. doi: 10.1016/j.spl.2003.08.005. URL http://www.
sciencedirect.com/science/article/pii/S0167715203002839.

Lancelot F James. Bayesian Poisson process partition calculus with an applica-
tion to Bayesian Lévy moving averages. Annals of statistics, pages 1771–1799,
2005.

Lancelot F James. Poisson Dirichlet (α, θ)-Bridge Equations and Coagulation-
Fragmentation Duality. arXiv preprint arXiv:0908.4436, 2009.

Lancelot F James. Stick-breaking PG (\ alpha,\ zeta)-Generalized Gamma
Processes. arXiv preprint arXiv:1308.6570, 2013.

Lancelot F James, Antonio Lijoi, and Igor Prünster. Posterior analysis for
normalized random measures with independent increments. Scandinavian
Journal of Statistics, 36(1):76–97, 2009.

http://amstat.tandfonline.com/doi/abs/10.1198/1061860043001
http://www.sciencedirect.com/science/article/pii/S0167715203002839
http://www.sciencedirect.com/science/article/pii/S0167715203002839


BIBLIOGRAPHY 175

Alejandro Jara, Emmanuel Lesaffre, Maria De Iorio, Fernando Quintana, et al.
Bayesian semiparametric inference for multivariate doubly-interval-censored
data. The Annals of Applied Statistics, 4(4):2126–2149, 2010.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review,
106(4):620, 1957a.

Edwin T Jaynes. Information theory and statistical mechanics. II. Physical
review, 108(2):171, 1957b.

Edwin T Jaynes. Where do we stand on maximum entropy. The maximum
entropy formalism, pages 15–118, 1978.

Edwin T Jaynes. ET Jaynes: Papers on probability, statistics, and statistical
physics. 1989.

Edwin T Jaynes. Probability theory: the logic of science. Cambridge university
press, 2003.

Harold Jeffreys. An invariant form for the prior probability in estimation prob-
lems. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, 186(1007):453–461, 1946.

Hawoong Jeong, Sean P Mason, A-L Barabási, and Zoltan N Oltvai. Lethality
and centrality in protein networks. Nature, 411(6833):41–42, 2001.

R Johnson. Axiomatic characterization of the directed divergences and their
linear combinations. Information Theory, IEEE Transactions on, 25(6):709–
716, 1979.

RW Johnson and JE Shore. Comment on ‘‘Consistent inference of probabilities
for reproducible experiments’’. Physical review letters, 55(3):336, 1985.

Dieter Jungnickel and Tilla Schade. Graphs, networks and algorithms, volume 5.
Springer, 2005.

Olav Kallenberg. Foundations of modern probability. springer, 2002.

Olav Kallenberg. Probabilistic symmetries and invariance principles, volume 9.
Springer, 2005.

Pl Kannappan. On Shannon’s entropy, directed divergence and inaccuracy.
Probability Theory and Related Fields, 22(2):95–100, 1972.

SN Karbelkar. On the axiomatic approach to the maximum entropy principle
of inference. Pramana, 26(4):301–310, 1986.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community
structure in networks. Physical Review E, 83(1):016107, 2011.



176 BIBLIOGRAPHY

Robert E Kass, Bradley P Carlin, Andrew Gelman, and Radford M Neal.
Markov chain monte carlo in practice: A roundtable discussion. The American
Statistician, 52(2):93–100, 1998.

Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada,
and Naonori Ueda. Learning systems of concepts with an infinite relational
model. In AAAI, volume 3, page 5, 2006.

Aleksandr Iakovlevich Khinchin. Mathematical foundations of information the-
ory, volume 434. Courier Dover Publications, 1957.

J. F. C. Kingman. Completely random measures. Pacific Journal of Mathe-
matics, 21(1):59–78, 1967. URL http://projecteuclid.org/euclid.pjm/
1102992601.

J. F. C. Kingman. Poisson Processes. Oxford University Press, New York, NY,
1993.

JFC Kingman. The representation of partition structures. Journal of the London
Mathematical Society, 2(2):374–380, 1978.

B. J. K. Kleijn and A. W. van der Vaart. Misspecification in infinite-
dimensional Bayesian statistics. Ann. Statist., 34(2):837–877, 2006. ISSN
0090-5364. doi: 10.1214/009053606000000029. URL http://dx.doi.org/
10.1214/009053606000000029.

Kevin H Knuth and John Skilling. Foundations of inference. Axioms, 1(1):
38–73, 2012.

Teuvo Kohonen. Self-organization and associative memory. Self-Organization
and Associative Memory, 100 figs. XV, 312 pages.. Springer-Verlag Berlin
Heidelberg New York. Also Springer Series in Information Sciences, volume
8, 1, 1988.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

Andrey Nikolaevich Kolmogorov. Foundations of probability. 1933.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In NIPS, volume 1, page 4, 2012.

Justin Kruger and David Dunning. Unskilled and unaware of it: how difficul-
ties in recognizing one’s own incompetence lead to inflated self-assessments.
Journal of personality and social psychology, 77(6):1121, 1999.

Maciej Kurant, Athina Markopoulou, and Patrick Thiran. On the bias of bfs
(breadth first search). In Teletraffic Congress (ITC), 2010 22nd International,
pages 1–8. IEEE, 2010.

http://projecteuclid.org/euclid.pjm/1102992601
http://projecteuclid.org/euclid.pjm/1102992601
http://dx.doi.org/10.1214/009053606000000029
http://dx.doi.org/10.1214/009053606000000029


BIBLIOGRAPHY 177

P.S. Laplace and A.I. Dale. Pierre-Simon Laplace Philosophical Essay on Prob-
abilities. Sources in the History of Mathematics and Physical Sciences.
Springer, 1995. ISBN 9780387943497. URL https://books.google.com/
books?id=vDZzuGcM4DUC.

Krzysztof Łatuszyński, Gareth O Roberts, Jeffrey S Rosenthal, et al. Adap-
tive Gibbs samplers and related MCMC methods. The Annals of Applied
Probability, 23(1):66–98, 2013.

William H Lawton and Edward A Sylvestre. Self modeling curve resolution.
Technometrics, 13(3):617–633, 1971.

Wilhelm Lenz. Beitrag zum Verständnis der magnetischen Erscheinungen in
festen Körpern. Physikalische Zeitschrift, 21(613-615):2, 1920.

Jure Leskovec. Nonparametric Multi-group Membership Model for Dynamic
Networks. In Neural Information Processing Systems, 2013.

Faming Liang. A double Metropolis–Hastings sampler for spatial models with
intractable normalizing constants. Journal of Statistical Computation and
Simulation, 80(9):1007–1022, 2010.

Antonio Lijoi and Igor Prünster. Models beyond the Dirichlet process. Bayesian
nonparametrics, 28:80, 2010.

Antonio Lijoi, Ramsés H Mena, and Igor Prünster. Hierarchical mixture mod-
eling with normalized inverse-Gaussian priors. Journal of the American Sta-
tistical Association, 100(472):1278–1291, 2005.

Antonio Lijoi, Ramsés H Mena, and Igor Prünster. Bayesian nonparametric
estimation of the probability of discovering new species. Biometrika, 94(4):
769–786, 2007a.

Antonio Lijoi, Ramsés HMena, and Igor Prünster. Controlling the reinforcement
in Bayesian non-parametric mixture models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 69(4):715–740, 2007b.

Antonio Lijoi, Igor Prunster, and Stephen G Walker. Investigating nonparamet-
ric priors with Gibbs structure. Statistica Sinica, 18(4):1653, 2008.

Jun S Liu. The collapsed Gibbs sampler in Bayesian computations with ap-
plications to a gene regulation problem. Journal of the American Statistical
Association, 89(427):958–966, 1994.

Jun S Liu. Monte Carlo strategies in scientific computing. springer, 2008.

Jun S Liu, Faming Liang, and Wing Hung Wong. The multiple-try method and
local optimization in Metropolis sampling. Journal of the American Statistical
Association, 95(449):121–134, 2000.

https://books.google.com/books?id=vDZzuGcM4DUC
https://books.google.com/books?id=vDZzuGcM4DUC


178 BIBLIOGRAPHY

Paul M Livingston. Philosophical history and the problem of consciousness.
Cambridge University Press, 2004.

JR Lloyd, P Orbanz, Z Ghahramani, and D Roy. Random function priors for
exchangeable arrays with applications to graphs and relational data. Advances
in Neural Information Processing Systems, 2013.

Peter McCullagh, Jim Pitman, Matthias Winkel, et al. Gibbs fragmentation
trees. Bernoulli, 14(4):988–1002, 2008.

Aditya Krishna Menon and Charles Elkan. Predicting labels for dyadic data.
Data Mining and Knowledge Discovery, 21(2):327–343, 2010.

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factor-
ization. In Machine Learning and Knowledge Discovery in Databases, pages
437–452. Springer, 2011.

Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of
the American statistical association, 44(247):335–341, 1949.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Au-
gusta H. Teller, and Edward Teller. Equation of State Calculations by Fast
Computing Machines. The Journal of Chemical Physics, 21(6):1087–1092,
1953. doi: 10.1063/1.1699114. URL http://scitation.aip.org/content/
aip/journal/jcp/21/6/10.1063/1.1699114.

Kurt T Miller, Thomas L Griffiths, and Michael I Jordan. Nonparametric latent
feature models for link prediction. In NIPS, volume 9, pages 1276–1284, 2009.

Kurt Tadayuki Miller. Bayesian nonparametric latent feature models. PhD
thesis, University of California, 2011.

Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and
Bobby Bhattacharjee. Measurement and analysis of online social networks. In
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement,
pages 29–42. ACM, 2007.

Andriy Mnih and Ruslan Salakhutdinov. Probabilistic Matrix Factorization. In
Advances in Neural Information Processing Systems, pages 1257–1264, 2007.

James Moody. The structure of a social science collaboration network: Dis-
ciplinary cohesion from 1963 to 1999. American sociological review, 69(2):
213–238, 2004.

M Morup, Mikkel N Schmidt, and Lars Kai Hansen. Infinite multiple mem-
bership relational modeling for complex networks. In Machine Learning for
Signal Processing (MLSP), 2011 IEEE International Workshop on, pages 1–6.
IEEE, 2011.

http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114
http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114


BIBLIOGRAPHY 179

Morten Mørup and Mikkel N Schmidt. Bayesian community detection. Neural
computation, 24(9):2434–2456, 2012.

D. J. Murdoch and P. J. Green. Exact Sampling from a Continuous State
Space. Scandinavian Journal of Statistics, 25(3):483–502, 1998. ISSN 1467-
9469. doi: 10.1111/1467-9469.00116. URL http://dx.doi.org/10.1111/
1467-9469.00116.

Kevin P. Murphy. Conjugate Bayesian analysis of the Gaussian distribution.
Technical report, UBC, 2007.

Iain Murray, Zoubin Ghahramani, and David MacKay. MCMC for doubly-
intractable distributions. arXiv preprint arXiv:1206.6848, 2012.

Carlos Navarrete, Fernando A Quintana, and Peter Müller. Some issues in
nonparametric Bayesian modeling using species sampling models. Statistical
Modelling, 8(1):3–21, 2008.

Radford M Neal. Probabilistic inference using Markov chain Monte Carlo meth-
ods. 1993.

Radford M Neal. Slice sampling. Annals of statistics, pages 705–741, 2003.

Mark Newman. Networks: an introduction. Oxford University Press, 2010.

Mark EJ Newman. Spread of epidemic disease on networks. Physical review E,
66(1):016128, 2002.

Mark EJ Newman. The structure and function of complex networks. SIAM
review, 45(2):167–256, 2003.

Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs
with arbitrary degree distributions and their applications. Physical review E,
64(2):026118, 2001.

MEJ Newman. Communities, modules and large-scale structure in networks.
Nature Physics, 8(1):25–31, 2012.

Noam Nisan. Algorithmic game theory. Cambridge University Press, 2007.

E Nummelin. General Irreducible Markov Chains and Non-Negative Operators.
Cambridge University Press, Cambridge, 1984.

J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási. Structure and tie strengths
in mobile communication networks. Proceedings of the National Academy of
Sciences, 104(18):7332–7336, 2007.

http://dx.doi.org/10.1111/1467-9469.00116
http://dx.doi.org/10.1111/1467-9469.00116


180 BIBLIOGRAPHY

Lars Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-
Disorder Transition. Phys. Rev., 65:117–149, Feb 1944. doi: 10.1103/
PhysRev.65.117. URL http://link.aps.org/doi/10.1103/PhysRev.65.
117.

Peter Orbanz. Lecture Notes on Bayesian Nonparametrics. Journal of Mathe-
matical Psychology, 56:1–12, 2012.

Peter Orbanz and Daniel M Roy. Bayesian Models of Graphs, Arrays and Other
Exchangeable Random Structures. arXiv preprint arXiv:1312.7857, 2013.

Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values. Envi-
ronmetrics, 5(2):111–126, 1994.

John Paisley, David M. Blei, and Michael I. Jordan. Bayesian Nonnegative
Matrix Factorization with Stochastic Variational Inference. 2014.

K Palla, D Knowles, and Z Ghahramani. An Infinite Latent Attribute Model
for Network Data. In International Conference on Machine Learning, 2012.

Jeff B Paris. The Uncertain Reasoner’s Companion. Tracts in Theoretical Com-
puter Science 39. Cambridge University Press Cambridge, 1994.

Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in
scale-free networks. Physical review letters, 86(14):3200, 2001.

Oliver Penrose. Foundations of statistical mechanics. Reports on Progress in
Physics, 42(12):1937–2006, 1979.

Mihael Perman, Jim Pitman, and Marc Yor. Size-biased sampling of Poisson
point processes and excursions. Probability Theory and Related Fields, 92
(1):21–39, 1992. ISSN 0178-8051. doi: 10.1007/BF01205234. URL http:
//dx.doi.org/10.1007/BF01205234.

Patrick O. Perry and Patrick J. Wolfe. Point process modelling for directed inter-
action networks. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 75(5):821–849, 2013. ISSN 1467-9868. doi: 10.1111/rssb.12013.
URL http://dx.doi.org/10.1111/rssb.12013.

Peter H Peskun. Optimum monte-carlo sampling using markov chains.
Biometrika, 60(3):607–612, 1973.

J. Pitman. Probability. Springer Texts in Statistics. Springer, 1993. ISBN
9780387979748. URL http://books.google.dk/books?id=3ArvAAAAMAAJ.

J. Pitman and J. Picard. Combinatorial Stochastic Processes:. Combinatorial
Stochastic Processes: École D’Été de Probabilités de Saint-Flour XXXII -
2002. Springer, 2006. ISBN 9783540309901. URL http://books.google.
dk/books?id=6qFTR4PZE4AC.

http://link.aps.org/doi/10.1103/PhysRev.65.117
http://link.aps.org/doi/10.1103/PhysRev.65.117
http://dx.doi.org/10.1007/BF01205234
http://dx.doi.org/10.1007/BF01205234
http://dx.doi.org/10.1111/rssb.12013
http://books.google.dk/books?id=3ArvAAAAMAAJ
http://books.google.dk/books?id=6qFTR4PZE4AC
http://books.google.dk/books?id=6qFTR4PZE4AC


BIBLIOGRAPHY 181

Jim Pitman. Exchangeable and partially exchangeable random partitions. Prob-
ability theory and related fields, 102(2):145–158, 1995.

Jim Pitman. Coalescents with multiple collisions. Annals of Probability, pages
1870–1902, 1999.

Jim Pitman. Poisson-Dirichlet and GEM invariant distributions for split-and-
merge transformations of an interval partition. Combinatorics, Probability &
Computing, 11(5):501–514, 2002.

Jim Pitman and Marc Yor. The two-parameter Poisson-Dirichlet distribution
derived from a stable subordinator. The Annals of Probability, pages 855–900,
1997.

Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. CODA: Conver-
gence diagnosis and output analysis for MCMC. R news, 6(1):7–11, 2006.

S.D. Poisson. Recherches sur la probabilité des jugements en matière crim-
inelle et en matière civile: précédées des règles générales du calcul des prob-
abilités. Bachelier, 1837. URL https://books.google.co.uk/books?id=
s3YAAAAAMAAJ.

G Polya. Mathematics and plausible reasoning. I. Induction and analogy in
mathematics. II. Patterns of plausible inference. 1954.

William H Press, Brian P Flannery, Saul A Teukolsky, and William T Vetterling.
Numerical recipes, 1990.

James Gary Propp and David Bruce Wilson. Exact sampling with coupled
Markov chains and applications to statistical mechanics. Random structures
and Algorithms, 9(1-2):223–252, 1996.

Eugenio Regazzini, Antonio Lijoi, and Igor Prünster. Distributional results for
means of normalized random measures with independent increments. Annals
of Statistics, pages 560–585, 2003.

Hans Reichenbach. The theory of probability. An inquiry into the logical and
mathematical foundations of the calculus of probability. 1950.

A. Rényi. Wahrscheinlichkeitsrechnung: Mit einem Anhang über In-
formationstheorie. Hochschulbücher für Mathematik. Deutscher Verlag
der Wissenschaften, 1962. URL http://books.google.dk/books?id=
IA85AAAAIAAJ.

Paul Ressel. De Finetti-type theorems: an analytical approach. The Annals of
Probability, pages 898–922, 1985.

https://books.google.co.uk/books?id=s3YAAAAAMAAJ
https://books.google.co.uk/books?id=s3YAAAAAMAAJ
http://books.google.dk/books?id=IA85AAAAIAAJ
http://books.google.dk/books?id=IA85AAAAIAAJ


182 BIBLIOGRAPHY

D. Revuz. Markov Chains. North-Holland mathematical library. North-Holland,
1975. ISBN 9780720424508. URL http://books.google.dk/books?id=
YGtytgAACAAJ.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

Christian P Robert and George Casella. Monte Carlo statistical methods.
Springer, 1999.

Gareth O Roberts and Jeffrey S Rosenthal. Coupling and ergodicity of adaptive
Markov chain Monte Carlo algorithms. Journal of applied probability, pages
458–475, 2007.

Gareth O Roberts and Jeffrey S Rosenthal. Examples of adaptive MCMC.
Journal of Computational and Graphical Statistics, 18(2):349–367, 2009.

G.O. Roberts and O. Stramer. Langevin Diffusions and Metropolis-Hastings
Algorithms. Methodology And Computing In Applied Probability, 4(4):337–
357, 2002. ISSN 1387-5841. doi: 10.1023/A:1023562417138. URL http:
//dx.doi.org/10.1023/A%3A1023562417138.

W.R. Roberts, I. Bywater, and F. Solmsen. Aristotle: Rhetoric. Modern
library of the world’s best books. Random House, 1954. URL https:
//books.google.com/books?id=az2NnQEACAAJ.

Garry Robins and Philippa Pattison. Random graph models for temporal pro-
cesses in social networks*. Journal of Mathematical Sociology, 25(1):5–41,
2001.

Jeffrey S Rosenthal. Minorization conditions and convergence rates for Markov
chain Monte Carlo. Journal of the American Statistical Association, 90(430):
558–566, 1995a.

Jeffrey S Rosenthal. Rates of convergence for Gibbs sampling for variance com-
ponent models. The Annals of Statistics, pages 740–761, 1995b.

Jeffrey S Rosenthal. A review of asymptotic convergence for general state space
Markov chains. Far East J. Theor. Stat, 5(1):37–50, 2001.

Jeffrey S. Rosenthal. A first look at rigorous probability theory. World
Scientific, Singapore [u.a.], 2. ed edition, 2006. ISBN 978-981-270371-
2. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&
TRM=ppn+529914859&sourceid=fbw_bibsonomy.

Daniel M Roy and Yee W Teh. The Mondrian Process. In Advances in Neural
Information Processing Systems, pages 1377–1384, 2008.

http://books.google.dk/books?id=YGtytgAACAAJ
http://books.google.dk/books?id=YGtytgAACAAJ
http://dx.doi.org/10.1023/A%3A1023562417138
http://dx.doi.org/10.1023/A%3A1023562417138
https://books.google.com/books?id=az2NnQEACAAJ
https://books.google.com/books?id=az2NnQEACAAJ
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+529914859&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+529914859&sourceid=fbw_bibsonomy


BIBLIOGRAPHY 183

Daniel M Roy, Charles Kemp, Vikash K Mansinghka, and Joshua B Tenenbaum.
Learning annotated hierarchies from relational data. Advances in neural in-
formation processing systems, 19:1185, 2007.

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo
method, volume 707. John Wiley & Sons, 2011.

B. Russell. The Principles of Mathematics. Number v. 1 in The Principles
of Mathematics. University Press, 1903. URL https://books.google.com/
books?id=yN9LAAAAMAAJ.

B. Russell. History of Western Philosophy. Routledge classics. Routledge,
1946. ISBN 9780415325059. URL https://books.google.com/books?id=
Ey94E3sOMA0C.

Purnamrita Sarkar and Andrew W Moore. Dynamic social network analysis
using latent space models. ACM SIGKDD Explorations Newsletter, 7(2):31–
40, 2005.

R. Scheaffer and L. Young. Introduction to Probability and Its Applications.
Advanced series. Cengage Learning, 2009. ISBN 9780534386719. URL http:
//books.google.dk/books?id=L95tVBSOgpUC.

M. N. Schmidt, T. Herlau, and M. Mørup. Nonparametric Bayesian models of
hierarchical structure in complex networks. (Unpublished manuscript), sep
2012. URL http://www2.imm.dtu.dk/pubdb/p.php?6522.

Mikkel N Schmidt, Tue Herlau, and Morten Mørup. Nonparametric Bayesian
models of hierarchical structure in complex networks. arXiv preprint
arXiv:1311.1033, 2013.

Mikkel N. Schmidt, Tue Herlau, and Morten Mørup. Probabilistic structural
hierarchical clustering of normal relational data. In Cognitive Information
Processing, , 2014.

Amandine Schreck, Gersende Fort, and Eric Moulines. Adaptive Equi-Energy
Sampler: Convergence and Illustration. ACM Trans. Model. Comput. Simul.,
23(1):5:1–5:27, January 2013. ISSN 1049-3301. doi: 10.1145/2414416.
2414421. URL http://doi.acm.org/10.1145/2414416.2414421.

Ernst Schröder. XV. Vier combinatorische Probleme. Zeitschrift für Mathematik
und Physik, 15:361–376, 1870.

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Technical
report, DTIC Document, 1991.

Glenn Shafer et al. A mathematical theory of evidence, volume 1. Princeton
university press Princeton, 1976.

https://books.google.com/books?id=yN9LAAAAMAAJ
https://books.google.com/books?id=yN9LAAAAMAAJ
https://books.google.com/books?id=Ey94E3sOMA0C
https://books.google.com/books?id=Ey94E3sOMA0C
http://books.google.dk/books?id=L95tVBSOgpUC
http://books.google.dk/books?id=L95tVBSOgpUC
http://www2.imm.dtu.dk/pubdb/p.php?6522
http://doi.acm.org/10.1145/2414416.2414421


184 BIBLIOGRAPHY

C. E. Shannon. A Mathematical Theory of Communication. Bell System Techni-
cal Journal, 27(3):379–423, 1948. ISSN 1538-7305. doi: 10.1002/j.1538-7305.
1948.tb01338.x. URL http://dx.doi.org/10.1002/j.1538-7305.1948.
tb01338.x.

Madhusudana Shashanka, Bhiksha Raj, and Paris Smaragdis. Probabilistic la-
tent variable models as nonnegative factorizations. Computational intelligence
and neuroscience, 2008, 2008.

Abner Shimony. Comment on“ Consistent inference of probabilities for repro-
ducible experiments”. Physical review letters, 55(9):1030, 1985a.

Abner Shimony. The status of the principle of maximum entropy. Synthese, 63
(1):35–53, 1985b.

John E. Shore and Rodney W. Johnson. Axiomatic derivation of the prin-
ciple of maximum entropy and the principle of minimum cross-entropy.
IEEE Transactions on Information Theory, 26(1):26–37, 1980. URL http:
//dblp.uni-trier.de/db/journals/tit/tit26.html#ShoreJ80.

Ajit P Singh and Geoffrey J Gordon. A unified view of matrix factorization
models. In Machine Learning and Knowledge Discovery in Databases, pages
358–373. Springer, 2008.

John Skilling. The axioms of maximum entropy. In Maximum-Entropy and
Bayesian Methods in Science and Engineering, pages 173–187. Springer, 1988.

John Skilling. Classic maximum entropy. In Maximum Entropy and Bayesian
Methods, pages 45–52. Springer, 1989.

Robert L Smith. Efficient Monte Carlo procedures for generating points uni-
formly distributed over bounded regions. Operations Research, 32(6):1296–
1308, 1984.

Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. In ACM SIGCOMM Computer Communication Review, volume 31,
pages 149–160. ACM, 2001.

Marshall H Stone. The theory of representation for Boolean algebras. Transac-
tions of the American Mathematical Society, 40(1):37–111, 1936.

L. Strobel. The Case for Faith. Inspirio/Zondervan Miniature Editions. Running
Press Book Publishers, 2004. ISBN 9780762421039. URL http://books.
google.dk/books?id=czB7PwAACAAJ.

Steven H Strogatz. Exploring complex networks. Nature, 410(6825):268–276,
2001.

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dblp.uni-trier.de/db/journals/tit/tit26.html#ShoreJ80
http://dblp.uni-trier.de/db/journals/tit/tit26.html#ShoreJ80
http://books.google.dk/books?id=czB7PwAACAAJ
http://books.google.dk/books?id=czB7PwAACAAJ


BIBLIOGRAPHY 185

Robert H Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in
Monte Carlo simulations. Physical review letters, 58(2):86–88, 1987.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 817–826. ACM, 2009.

Martin A Tanner and Wing Hung Wong. The calculation of posterior distribu-
tions by data augmentation. Journal of the American statistical Association,
82(398):528–540, 1987.

Terence Tao. An introduction to measure theory, volume 126. American Math-
ematical Soc., 2011.

Yee Whye Teh. A hierarchical Bayesian language model based on Pitman-Yor
processes. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and the 44th annual meeting of the Association for Compu-
tational Linguistics, pages 985–992. Association for Computational Linguis-
tics, 2006.

Yee Whye Teh and Michael I Jordan. Hierarchical Bayesian nonparametric
models with applications. Bayesian Nonparametrics: Principles and Practice,
28:158–207, 2010.

Luke Tierney. Markov chains for exploring posterior distributions. the Annals
of Statistics, pages 1701–1728, 1994.

Y Tikochinsky, NZ Tishby, and Raphael David Levine. Alternative approach to
maximum-entropy inference. Physical Review A, 30(5):2638, 1984a.

Y Tikochinsky, NZ Tishby, and RD Levine. Consistent inference of probabilities
for reproducible experiments. Physical Review Letters, 52(16):1357, 1984b.

Y Tikochinsky, NZ Tishby, and RD Levine. Tikochinsky, Tishby, and Levine
respond. Physical review letters, 55(3):337, 1985.

M. Townsend. Discrete mathematics: applied combinatorics and graph theory.
Benjamin/Cummings Pub. Co., 1987. ISBN 9780805393552. URL http:
//books.google.dk/books?id=w-3uAAAAMAAJ.

M. Tribus. Rational descriptions, decisions, and designs. Pergamon unified
engineering series: engineering design section. Pergamon Press, 1969. URL
http://books.google.dk/books?id=RXuuAAAAIAAJ.

Jos Uffink. Can the maximum entropy principle be explained as a consistency
requirement? Studies in History and Philosophy of Science. Part B. Studies
in History and Philosophy of Modern Physics, 26(3):223–261 (1996), 1995.
ISSN 1355-2198. doi: 10.1016/1355-2198(95)00015-1. URL http://dx.doi.
org/10.1016/1355-2198(95)00015-1.

http://books.google.dk/books?id=w-3uAAAAMAAJ
http://books.google.dk/books?id=w-3uAAAAMAAJ
http://books.google.dk/books?id=RXuuAAAAIAAJ
http://dx.doi.org/10.1016/1355-2198(95)00015-1
http://dx.doi.org/10.1016/1355-2198(95)00015-1


186 BIBLIOGRAPHY

Jos Uffink. The constraint rule of the maximum entropy principle. Studies in
History and Philosophy of Science. Part B. Studies in History and Philoso-
phy of Modern Physics, 27(1):47–79, 1996. ISSN 1355-2198. doi: 10.1016/
1355-2198(95)00022-4. URL http://dx.doi.org/10.1016/1355-2198(95)
00022-4.

J. P. Valleau and D. N. Card. Monte Carlo Estimation of the Free Energy by
Multistage Sampling. The Journal of Chemical Physics, 57(12):5457–5462,
1972. doi: 10.1063/1.1678245. URL http://scitation.aip.org/content/
aip/journal/jcp/57/12/10.1063/1.1678245.

A. W. van der Vaart and J. H. van Zanten. Rates of contraction of posterior
distributions based on Gaussian process priors. Ann. Statist., 36(3):1435–
1463, 2008. ISSN 0090-5364. doi: 10.1214/009053607000000613. URL http:
//dx.doi.org/10.1214/009053607000000613.

David A Van Dyk and Xiao-Li Meng. The art of data augmentation. Journal
of Computational and Graphical Statistics, 10(1), 2001.

Bas C Van Fraassen. A problem for relative information minimizers in proba-
bility kinematics. The British Journal for the Philosophy of Science, 32(4):
375–379, 1981.

Bas C Van Fraassen, RIG Hughes, and Gilbert Harman. A problem for rela-
tive information minimizers, continued. British Journal for the Philosophy of
Science, pages 453–463, 1986.

Kevin S Van Horn. Constructing a logic of plausible inference: a guide to cox’s
theorem. International Journal of Approximate Reasoning, 34(1):3–24, 2003.

J. Venn. The logic of chance: An essay on the foundations and province of the
theory of probability, with especial reference to its application to moral and
social science. Macmillan, 1866. URL https://books.google.com/books?
id=VAVVAAAAMAAJ.

Duy Quang Vu, Arthur U Asuncion, David R Hunter, and Padhraic Smyth.
Continuous-Time Regression Models for Longitudinal Networks. In NIPS,
pages 2492–2500, 2011.

Stephen Walker and Pietro Muliere. Beta-Stacy processes and a generalization
of the Pólya-urn scheme. The Annals of Statistics, pages 1762–1780, 1997.

Sida Wang and Christopher Manning. Fast dropout training. In Proceedings
of the 30th International Conference on Machine Learning (ICML-13), pages
118–126, 2013.

Stanley Wasserman and Carolyn Anderson. Stochastic a posteriori blockmodels:
Construction and assessment. Social Networks, 9(1):1–36, 1987.

http://dx.doi.org/10.1016/1355-2198(95)00022-4
http://dx.doi.org/10.1016/1355-2198(95)00022-4
http://scitation.aip.org/content/aip/journal/jcp/57/12/10.1063/1.1678245
http://scitation.aip.org/content/aip/journal/jcp/57/12/10.1063/1.1678245
http://dx.doi.org/10.1214/009053607000000613
http://dx.doi.org/10.1214/009053607000000613
https://books.google.com/books?id=VAVVAAAAMAAJ
https://books.google.com/books?id=VAVVAAAAMAAJ


BIBLIOGRAPHY 187

Harrison C White, Scott A Boorman, and Ronald L Breiger. Social structure
from multiple networks. I. Blockmodels of roles and positions. American
journal of sociology, pages 730–780, 1976.

W. W. Wood and F. R. Parker. Monte Carlo Equation of State of Molecules
Interacting with the Lennard-Jones Potential. I. A Supercritical Isotherm at
about Twice the Critical Temperature. The Journal of Chemical Physics, 27
(3):720–733, 1957. doi: 10.1063/1.1743822. URL http://scitation.aip.
org/content/aip/journal/jcp/27/3/10.1063/1.1743822.

William K Wootters. Statistical distance and Hilbert space. Physical Review D,
23(2):357, 1981.

Kevin S Xu and Alfred O Hero III. Dynamic stochastic blockmodels: Statistical
models for time-evolving networks. In Social Computing, Behavioral-Cultural
Modeling and Prediction, pages 201–210. Springer, 2013.

Zhao Xu, Volker Tresp, Kai Yu, and Hans-peter Kriegel. Infinite hidden re-
lational models. In In Proceedings of the 22nd International Conference on
Uncertainity in Artificial Intelligence (UAI), 2006.

Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965.

Lotfi A Zadeh. Outline of a new approach to the analysis of complex systems
and decision processes. Systems, Man and Cybernetics, IEEE Transactions
on, (1):28–44, 1973.

Lotfi A Zadeh. The concept of a linguistic variable and its application to ap-
proximate reasoning—I. Information sciences, 8(3):199–249, 1975.

Lotfi A Zadeh. Discussion: Probability theory and fuzzy logic are complemen-
tary rather than competitive. Technometrics, 37(3):271–276, 1995.

Jörg Zimmermann and Armin B Cremers. The quest for uncertainty. Springer,
2011.

http://scitation.aip.org/content/aip/journal/jcp/27/3/10.1063/1.1743822
http://scitation.aip.org/content/aip/journal/jcp/27/3/10.1063/1.1743822

	Summary (English)
	Summary (Danish)
	List of Publications
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Outline
	1.2 Included work

	2 Beliefs
	2.1 Beliefs and probabilities
	2.1.1 Relationship of beliefs
	2.1.2 The product rule
	2.1.3 Relationship between a proposition and its negation
	2.1.4 Solving the functional equation for negation

	2.2 Examples
	2.2.1 Equivalent states of beliefs
	2.2.2 The Tuesday paradox
	2.2.3 Lotteries and Jesus

	2.3 From basic probability theory to probability theory
	2.3.1 A brief history of probability
	2.3.2 The Kolmogorov account of probabilities
	2.3.3 The de Finetti account of probabilities
	2.3.4 The Cox account of probabilities
	2.3.5 Comparing the Kolmogorov and Cox accounts of probability
	2.3.6 Discussion

	2.4 Probabilistic methods in machine learning
	2.4.1 Models
	2.4.2 A simple network model


	3 Assigning Beliefs
	3.1 The maximum entropy principle
	3.1.1 Arriving at beliefs in machine learning

	3.2 Formulating the problem
	3.2.1 Desiderata for a method for updating beliefs

	3.3 Derivation of the maximum entropy principle
	3.3.1 Implications of Locality
	3.3.2 Implications of coordinate invariance
	3.3.3 Subsystem independence
	3.3.4 Selecting the right entropy
	3.3.5 Bayes rule as a special case of ME

	3.4 Application of the MEP to Bayesian Dropout
	3.4.1 Dropout


	4 Symmetries and invariance
	4.1 Exchangeable sequences
	4.1.1 Example: The normal mixture-model
	4.1.2 Convergence

	4.2 Exchangeable Partitions
	4.2.1 The Dirichlet Process
	4.2.2 Beyond the Dirichlet process
	4.2.3 Completely random measures

	4.3 Random Graphs
	4.3.1 The Aldous-Hoover theorem

	4.4 Random Hierarchies
	4.4.1 Exchangeable fragmentations

	4.5 Discussion

	5 Inference
	5.1 The inference problem
	5.2 Monte Carlo methods
	5.3 Markov Chain Monte Carlo
	5.3.1 The balance condition
	5.3.2 Convergence

	5.4 Constructing samplers
	5.4.1 Gibbs sampling
	5.4.2 Metropolis-Hastings

	5.5 Adaptive Markov chain Monte Carlo
	5.6 Remarks on convergence
	5.6.1 Assessing convergence in practice

	5.7 Sampling partitions
	5.7.1 Basic notation
	5.7.2 The infinite relational model
	5.7.3 Operations on partitions
	5.7.4 Split-merge sampling

	5.8 Other methods for sampling partitions
	5.8.1 Adaptive reconfiguration moves


	6 Networks
	6.1 Subjects of network science
	6.2 Bayesian modelling of networks
	6.2.1 Exponential random graph-models
	6.2.2 Block-type models
	6.2.3 Distance and norm-based models
	6.2.4 Latent feature-based models
	6.2.5 Continuous feature-based models
	6.2.6 Random-Function based models
	6.2.7 Random hierarchy-based models

	6.3 Temporal Models
	6.3.1 Examples of temporal models


	7 Discussion and Conclusion
	Bibliography

