278 research outputs found

    Field theoretical analysis of adsorption of polymer chains at surfaces: Critical exponents and Scaling

    Full text link
    The process of adsorption on a planar repulsive, "marginal" and attractive wall of long-flexible polymer chains with excluded volume interactions is investigated. The performed scaling analysis is based on formal analogy between the polymer adsorption problem and the equivalent problem of critical phenomena in the semi-infinite ∣ϕ∣4|\phi|^4 n-vector model (in the limit n→0n\to 0) with a planar boundary. The whole set of surface critical exponents characterizing the process of adsorption of long-flexible polymer chains at the surface is obtained. The polymer linear dimensions parallel and perpendicular to the surface and the corresponding partition functions as well as the behavior of monomer density profiles and the fraction of adsorbed monomers at the surface and in the interior are studied on the basis of renormalization group field theoretical approach directly in d=3 dimensions up to two-loop order for the semi-infinite ∣ϕ∣4|\phi|^4 n-vector model. The obtained field- theoretical results at fixed dimensions d=3 are in good agreement with recent Monte Carlo calculations. Besides, we have performed the scaling analysis of center-adsorbed star polymer chains with ff arms of the same length and we have obtained the set of critical exponents for such system at fixed d=3 dimensions up to two-loop order.Comment: 22 pages, 12 figures, 4 table

    Dynamiek en robuustheid van multifunctionele landbouw : rapport onderzoeksfase 2: empirisch onderzoek onder 120 multifunctionele landbouwbedrijven

    Get PDF
    In deze rapportage de uitkomsten van de kwantitatieve en kwalitatieve analyse van het verzamelde praktijkmateriaal op de volgende niveaus; De multifunctionele activiteit (zorg, educatie, toerisme etc.), het multifunctionele landbouwbedrijf en de multifunctionele regio

    Detecting Determinism in High Dimensional Chaotic Systems

    Full text link
    A method based upon the statistical evaluation of the differentiability of the measure along the trajectory is used to identify in high dimensional systems. The results show that the method is suitable for discriminating stochastic from deterministic systems even if the dimension of the latter is as high as 13. The method is shown to succeed in identifying determinism in electro-encephalogram signals simulated by means of a high dimensional system.Comment: 8 pages (RevTeX 3 style), 5 EPS figures, submitted to Phys. Rev. E (25 apr 2001

    Polymers grafted to porous membranes

    Full text link
    We study a single flexible chain molecule grafted to a membrane which has pores of size slightly larger than the monomer size. On both sides of the membrane there is the same solvent. When this solvent is good, i.e. when the polymer is described by a self avoiding walk, it can fairly easily penetrate the membrane, so that the average number of membrane crossings tends, for chain length N→∞N\to\infty, to a positive constant. The average numbers of monomers on either side of the membrane diverges in this limit, although their ratio becomes infinite. For a poor solvent, in contrast, the entire polymer is located, for large NN, on one side of the membrane. For good and for theta solvents (ideal polymers) we find scaling laws, whose exponents can in the latter case be easily understood from the behaviour of random walks.Comment: 4 pages, 6 figure

    Discriminating dynamical from additive noise in the Van der Pol oscillator

    Full text link
    We address the distinction between dynamical and additive noise in time series analysis by making a joint evaluation of both the statistical continuity of the series and the statistical differentiability of the reconstructed measure. Low levels of the latter and high levels of the former indicate the presence of dynamical noise only, while low values of the two are observed as soon as additive noise contaminates the signal. The method is presented through the example of the Van der Pol oscillator, but is expected to be of general validity for continuous-time systems.Comment: 12 pages (Elsevier LaTeX class), 4 EPS figures, submitted to Physica D (4 july 2001

    Effects of degenerate orbitals on the Hubbard model

    Full text link
    Stability of a metallic state in the two-orbital Hubbard model at half-filling is investigated. We clarify how spin and orbital fluctuations are enhanced to stabilize the formation of quasi-particles by combining dynamical mean field theory with the quantum Monte Carlo simulations. These analyses shed some light on the reason why the metallic phase is particularly stable when the intra- and inter-band Coulomb interactions are nearly equal.Comment: 3 pages, To appear in JPSJ Vol. 72, No. 5 200

    Fractal fluctuations in quantum integrable scattering

    Get PDF
    We theoretically and numerically demonstrate that completely integrable scattering processes may exhibit fractal transmission fluctuations, due to typical spectral properties of integrable systems. Similar properties also occur with scattering processes in the presence of strong dynamical localization, thus explaining recent numerical observations of fractality in the latter class of systems.Comment: revtex, 4 pages, 3 eps figure

    Quantum Fractal Fluctuations

    Full text link
    We numerically analyse quantum survival probability fluctuations in an open, classically chaotic system. In a quasi-classical regime, and in the presence of classical mixed phase space, such fluctuations are believed to exhibit a fractal pattern, on the grounds of semiclassical arguments. In contrast, we work in a classical regime of complete chaoticity, and in a deep quantum regime of strong localization. We provide evidence that fluctuations are still fractal, due to the slow, purely quantum algebraic decay in time produced by dynamical localization. Such findings considerably enlarge the scope of the existing theory.Comment: revtex, 4 pages, 5 figure

    Emergent Nodal Excitations due to the Coexistence of Superconductivity and Antiferromagnetism: Cases with and without Inversion Symmetry

    Full text link
    We argue the emergence of nodal excitations due to the coupling with static antiferromagnetic order in fully-gapped superconducting states in both cases with and without inversion symmetry. This line node structure is not accompanied with the sign change of the superconducting gap, in contrast to usual unconventional Cooper pairs with higher angular momenta. In the case without inversion symmetry, the stability of the nodal excitations crucially depends on the direction of the antiferromagnetic staggered magnetic moment. A possible realization of this phenomenon in CePt3_3Si is discussed.Comment: 4 pages, 7 figure

    Thermodynamic and Transport Properties of CeMg2Cu9 under Pressure

    Full text link
    We report the transport and thermodynamic properties under hydrostatic pressure in the antiferromagnetic Kondo compound CeMg2Cu9 with a two-dimensional arrangement of Ce atoms. Magnetic specific heat Cmag(T) shows a Schottky-type anomaly around 30 K originating from the crystal electric field (CEF) splitting of the 4f state with the first excited level at \Delta_{1}/kB = 58 K and the second excited level at \Delta_{2}/kB = 136 K from the ground state. Electric resistivity shows a two-peaks structure due to the Kondo effect on each CEF level around T_{1}^{max} = 3 K and T_{2}^{max} = 40 K. These peaks merge around 1.9 GPa with compression. With increasing pressure, Neel temperature TN initially increases and then change to decrease. TN finally disappears at the quantum critical point Pc = 2.4 GPa.Comment: 10 pages, 6 figure
    • …
    corecore