11 research outputs found

    Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    Get PDF
    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud

    Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    Get PDF
    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element

    Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    Get PDF
    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side

    Field Guide to Big Bone Lick, Kentucky: Birthplace of American Vertebrate Paleontology

    Get PDF
    Big Bone Lick is the birthplace of vertebrate paleontology in the Western Hemisphere and has a long and celebrated history in the exploration of the American colonial frontier and of the early United States. Notable European scientists of the 18th century such as Buffon, Cuvier, and Hunter discussed the fossils found there. Prominent Americans of the time, such as Boone, Washington, Franklin, and Jefferson are also part of the site’s history. It is the type locality for several extinct late Pleistocene megafaunal mammals, most notably the iconic American Mastodon, who were attracted to the area by salt licks dictated by the local geology. The valley of Big Bone Creek was unglaciated during the Wisconsinan advance and numerous saline springs well up through fractured bedrock of the Cincinnati Arch, providing essential minerals for the physiology of mammalian herbivores. The fossil remains at Big Bone Lick are an attritional assemblage, apparently including those that are the result of Native American predation. Archaeological remains from all local Native American cultural periods have also been found at the lick. The site is perhaps most notable in the history of science for its role in the development of comparative morphology and the establishment of the concept of extinction. This special publication reflects research and scholarship produced in conjunction with the April 2022 joint North-Central and Southeastern section meeting of the Geological Society of America. As the authors are not Kentucky Geological Survey staff, the work described herein is not a product of KGS scholarship or explicitly reflective of KGS views. Additionally, cited historical documents included in this publication may include biased language or views that misrepresent indigenous cultures.https://uknowledge.uky.edu/kgs_sp/1000/thumbnail.jp

    Disparities in Screening Mammography: Current Status, Interventions, and Implications

    No full text
    OBJECTIVE: This paper describes trends in screening mammography utilization over the past decade and assesses the remaining disparities in mammography use among medically underserved women. We also describe the barriers to mammography and report effective interventions to enhance utilization. DESIGN: We reviewed medline and other databases as well as relevant bibliographies. MAIN RESULTS: The United States has dramatically improved its use of screening mammography over the past decade, with increased rates observed in every demographic group. Disparities in screening mammography are decreasing among medically underserved populations but still persist among racial/ethnic minorities and low-income women. Additionally, uninsured women and those with no usual care have the lowest rates of reported mammogram use. However, despite apparent increases in mammogram utilization, there is growing evidence that limitations in the national survey databases lead to overestimations of mammogram use, particularly among low-income racial and ethnic minorities. CONCLUSIONS: The United States may be farther from its national goals of screening mammography, particularly among underserved women, than current data suggests. We should continue to support those interventions that increase mammography use among the medically underserved by addressing the barriers such as cost, language and acculturation limitations, deficits in knowledge and cultural beliefs, literacy and health system barriers such as insurance and having a source regular of medical care. Addressing disparities in the diagnostic and cancer treatment process should also be a priority in order to affect significant change in health outcomes among the underserved

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
    corecore