149 research outputs found

    Metachronic malignant transformation of small bowel and rectal endometriosis in the same patient

    Get PDF
    BACKGROUND: Malignant transformation of intestinal endometriosis is a rare event with an unknown rate of incidence. Metachronous progression of endometriosis to adenocarcinoma from two distant intestinal foci happening in the same patient has not been previously reported. CASE PRESENTATION: We describe a case of metachronic transformation of ileal and rectal endometriosis into an adenocarcinoma occurring in a 45-year-old female without macroscopic pelvic involvement of her endometriosis. First, a right colectomy was performed due to intestinal obstruction by an ileal mass. Pathological examination revealed an ileal endometrioid adenocarcinoma and contiguous microscopic endometriotic foci. Twenty months later, a rectal mass was discovered. An endoscopic biopsy revealed an adenocarcinoma. En bloc anterior rectum resection, hysterectomy and bilateral salpingectomy were performed. A second endometrioid adenocarcinoma arising from a focus of endometriosis within the wall of the rectum was diagnosed. CONCLUSION: Intestinal endometriosis should be considered a premalignant condition in premenopausal women

    Casting a Wide Net: HIV Drug Resistance Monitoring in Pre-Exposure Prophylaxis Seroconverters in the Global Evaluation of Microbicide Sensitivity Project

    Get PDF
    Background: Evidence of HIV drug resistance (HIVDR) in individuals using oral pre-exposure prophylaxis (PrEP) who acquire HIV is limited to clinical trials and case studies. More data are needed to understand the risk of HIVDR with oral PrEP during PrEP rollout. Mechanisms to collect these data vary, and are dependent on cost, scale of PrEP distribution, and in-country infrastructure for the identification, collection, and testing of samples from PrEP seroconverters. / Methods: The Global Evaluation of Microbicide Sensitivity (GEMS) project, in collaboration with country stakeholders, initiated HIVDR monitoring among new HIV seroconverters with prior PrEP use in Eswatini, Kenya, South Africa, and Zimbabwe. Standalone protocols were developed to assess HIVDR among a national sample of PrEP users. In addition, HIVDR testing was incorporated into existing demonstration projects for key populations. / Lessons learned: Countries are supportive of conducting a timelimited evaluation of HIVDR during the early stages of PrEP rollout. As PrEP rollout expands, the need for long-term HIVDR monitoring with PrEP will need to be balanced with maintaining national HIV drug resistance surveillance for pretreatment and acquired drug resistance. Laboratory capacity is a common obstacle to setting up a monitoring system. / Conclusions: Establishing HIV resistance monitoring within PrEP programs is feasible. Approaches to drug resistance monitoring may evolve as the PrEP programs mature and expand. The methods and implementation support offered by GEMS assisted countries in developing methods to monitor for drug resistance that best fit their PrEP program needs and resources

    Integrin Ξ²1 is required for the invasive behaviour but not proliferation of squamous cell carcinoma cells in vivo

    Get PDF
    Integrin Ξ²1 is both overexpressed and in an β€˜active' conformation in vulval squamous cell carcinomas (VSCCs) compared to matched normal skin. To investigate the significance of integrin Ξ²1 deregulation we stably knocked-down integrin Ξ²1 expression in the VSCC cell line A431. In vitro analysis revealed that integrin Ξ²1 is required for cell adhesion, cell spreading and invasion. However, integrin Ξ²1 is not required for cell growth or activation of FAK and ERK signalling in vitro or in vivo. Strikingly, while control tumours were able to invade the dermis, integrin Ξ²1 knockdown tumours were significantly more encapsulated and less invasive

    A Complex Cell Division Machinery Was Present in the Last Common Ancestor of Eukaryotes

    Get PDF
    Background: The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure) or analogous (have distinct evolutionary origins). Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. Methodology/Principal Findings: Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95%) are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins) were already present in the last common ancestor of all eukaryotes (LECA) and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. Conclusions/Significance: Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a comple

    Enantioselective Protein-Sterol Interactions Mediate Regulation of Both Prokaryotic and Eukaryotic Inward Rectifier K+ Channels by Cholesterol

    Get PDF
    Cholesterol is the major sterol component of all mammalian cell plasma membranes and plays a critical role in cell function and growth. Previous studies have shown that cholesterol inhibits inward rectifier K+ (Kir) channels, but have not distinguished whether this is due directly to protein-sterol interactions or indirectly to changes in the physical properties of the lipid bilayer. Using purified bacterial and eukaryotic Kir channels reconstituted into liposomes of controlled lipid composition, we demonstrate by 86Rb+ influx assays that bacterial Kir channels (KirBac1.1 and KirBac3.1) and human Kir2.1 are all inhibited by cholesterol, most likely by locking the channels into prolonged closed states, whereas the enantiomer, ent-cholesterol, does not inhibit these channels. These data indicate that cholesterol regulates Kir channels through direct protein-sterol interactions likely taking advantage of an evolutionarily conserved binding pocket

    Coherent oscillations in word-use data from 1700 to 2008

    Get PDF
    In written language, the choice of specific words is constrained by both grammatical requirements and the specific semantic context of the message to be transmitted. To a significant degree, the semantic context is in turn affected by a broad cultural and historical environment, which also influences matters of style and manners. Over time, those environmental factors leave an imprint in the statistics of language use, with some words becoming more common and other words being preferred less. Here we characterize the patterns of language use over time based on word statistics extracted from more than 4.5 million books written over a period of 308 years. We find evidence of novel systematic oscillatory patterns in word use with a consistent period narrowly distributed around 14 years. The specific phase relationships between different words show structure at two independent levels: first, there is a weak global phase modulation that is primarily linked to overall shifts in the vocabulary across time; and second, a stronger component dependent on well defined semantic relationships between words. In particular, complex network analysis reveals that semantically related words show strong phase coherence. Ultimately, these previously unknown patterns in the statistics of language may be a consequence of changes in the cultural framework that influences the thematic focus of writers

    An Osmotic Model of the Growing Pollen Tube

    Get PDF
    Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip

    Evolution of scaling emergence in large-scale spatial epidemic spreading

    Get PDF
    Background: Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which is still hardly been clarified. Methodology/Principal Findings: In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States(U.S.) domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance: The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.Comment: 24pages, 7figures, accepted by PLoS ON

    Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition

    Get PDF
    A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1Ξ², and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-ΞΊB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals
    • …
    corecore