789 research outputs found
The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire
Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the
need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between
sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa
Mechanical loss of a hydroxide catalysis bond between sapphire substrates and its effect on the sensitivity of future gravitational wave detectors
Hydroxide catalysis bonds are low mechanical loss joints which are used in the fused silica mirror suspensions of current room temperature interferometric gravitational wave detectors, one of the techniques which was essential to allow the recent detection of gravitational radiation by LIGO. More sensitive detectors may require cryogenic techniques with sapphire as a candidate mirror and suspension material, and thus hydroxide catalysis bonds are under consideration for jointing sapphire. This paper presents the first measurements of the mechanical loss of such a bond created between sapphire substrates and measured down to cryogenic temperatures. The mechanical loss is found to be 0.03±0.01 at room temperature, decreasing to (3±1)×10−4 at 20 K. The resulting thermal noise of the bonds on several possible mirror suspensions is presented
Potential mechanical loss mechanisms in bulk materials for future gravitational wave detectors
Low mechanical loss materials are needed to further decrease thermal noise in
upcoming gravitational wave detectors. We present an analysis of the
contribution of Akhieser and thermoelastic damping on the experimental results
of resonant mechanical loss measurements. The combination of both processes
allows the fit of the experimental data of quartz in the low temperature region
(10 K to 25 K). A fully anisotropic numerical calculation over a wide
temperature range (10 K to 300 K) reveals, that thermoelastic damping is not a
dominant noise source in bulk silicon samples. The anisotropic numerical
calculation is sucessfully applied to the estimate of thermoelastic noise of an
advanced LIGO sized silicon test mass.Comment: 7 pages, 3 figures, submitted to Journal of Physics: Conference
Series (AMALDI8
Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding
Hydroxide-catalysis bonding is a precision technique used for jointing components in opto-mechanical systems and has been implemented in the construction of quasi-monolithic silica suspensions in gravitational wave detectors. Future detectors are likely to operate at cryogenic temperatures which will lead to a change in test mass and suspension material. One candidate material is mono-crystalline sapphire. Here results are presented showing the influence of various bonding solutions on the strength of the hydroxide-catalysis bonds formed between sapphire samples, measured both at room temperature and at 77 K, and it is demonstrated that sodium silicate solution is the most promising in terms of strength, producing bonds with a mean strength of 63 MPa. In addition the results show that the strengths of bonds were undiminished when tested at cryogenic temperatures
Silicon mirror suspensions for gravitational wave detectors
One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions
Effect of heat treatment and aging on the mechanical loss and strength of hydroxide catalysis bonds between fused silica samples
Hydroxide catalysis bonds are used in the aLIGO gravitational wave detectors and are an essential technology within the mirror suspensions which allowed for detector sensitivities to be reached that enabled the first direct detections of gravitational waves. Methods aimed at further improving hydroxide catalysis bonds for future upgrades to these detectors, in order to increase detection rates and the number of detectable sources, are explored. Also, the effect on the bonds of an aLIGO suspension construction procedure involving heat, the fibre welding process, is investigated. Here we show that thermal treatments can be beneficial to improving some of the bond properties important to the mirror suspensions in interferometric gravitational wave detectors. It was found that heat treating bonds at 150\,^\circC increases bond strength by a factor of approximately 1.5 and a combination of bond ageing and heat treatment of the optics at 150\,\circC reduces the mechanical loss of a bond from 0.10 to 0.05. It is also shown that current construction procedures do not reduce bond strength
Indium joints for cryogenic gravitational wave detectors
A viable technique for the preparation of highly thermal conductive joints between sapphire components in gravitational wave detectors is presented. The mechanical loss of such a joint was determined to be as low as 2 × 10−3 at 20 K and 2 × 10−2 at 300 K. The thermal noise performance of a typical joint is compared to the requirements of the Japanese gravitational wave detector, KAGRA. It is shown that using such an indium joint in the suspension system allows it to operate with low thermal noise. Additionally, results on the maximum amount of heat which can be extracted via indium joints are presented. It is found that sapphire parts, joined by means of indium, are able to remove the residual heat load in the mirrors of KAGRA
A Cryogenic Silicon Interferometer for Gravitational-wave Detection
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor
Scientific Objectives of Einstein Telescope
The advanced interferometer network will herald a new era in observational
astronomy. There is a very strong science case to go beyond the advanced
detector network and build detectors that operate in a frequency range from 1
Hz-10 kHz, with sensitivity a factor ten better in amplitude. Such detectors
will be able to probe a range of topics in nuclear physics, astronomy,
cosmology and fundamental physics, providing insights into many unsolved
problems in these areas.Comment: 18 pages, 4 figures, Plenary talk given at Amaldi Meeting, July 201
- …