45 research outputs found
Recommended from our members
Early Life History and Fisheries Oceanography: New Questions in a Changing World
In the past 100 years since the birth of fisheries oceanography, research on the early life history of fishes, particularly the larval stage, has been extensive, and much progress has been made in identifying the mechanisms by which factors such as feeding success, predation, or dispersal can influence larval survival. However, in recent years, the study of fish early life history has undergone a major and, arguably, necessary shift, resulting in a growing body of research aimed at understanding the consequences of climate change and other anthropogenically induced stressors. Here, we review these efforts, focusing on the ways in which fish early life stages are directly and indirectly affected by increasing temperature; increasing CO₂ concentrations, and ocean acidification; spatial, temporal, and magnitude changes in secondary production and spawning; and the synergistic effects of fishing and climate change. We highlight how these and other factors affect not only larval survivorship, but also the dispersal of planktonic eggs and larvae, and thus the connectivity and replenishment of fish subpopulations. While much of this work is in its infancy and many consequences are speculative or entirely unknown, new modeling approaches are proving to be insightful by predicting how early life stage survival may change in the future and how such changes will impact economically and ecologically important fish populations
Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend
Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian–Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian–Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian–Emperor bend, 53–52 and 48–47 million years ago. We conclude that the Hawaiian–Emperor bend was formed by plate–mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins
Galapagos-OIB signature in southern Central America: mantle refertilization by arc-hot spot interaction
[1] Although most Central American magmas have a typical arc geochemical signature, magmas in southern Central America (central Costa Rica and Panama) have isotopic and trace element compositions with an ocean island basalt (OIB) affinity, similar to the Galapagos-OIB lavas (e.g., Ba/La 10, 206Pb/204Pb > 18.8). Our new data for Costa Rica suggest that this signature, unusual for a convergent margin, has a relatively recent origin (Late Miocene ∼6 Ma). We also show that there was a transition from typical arc magmas (analogous to the modern Nicaraguan volcanic front) to OIB-like magmas similar to the Galapagos hot spot. The geographic distribution of the Galapagos signature in recent lavas from southern Central America is present landward from the subduction of the Galapagos hot spot tracks (the Seamount Province and the Cocos/Coiba Ridge) at the Middle American Trench. The higher Pb isotopic ratios, relatively lower Sr and Nd isotopic ratios, and enriched incompatible-element signature of central Costa Rican magmas can be explained by arc–hot spot interaction. The isotopic ratios of central Costa Rican lavas require the subducting Seamount Province (Northern Galapagos Domain) component, whereas the isotopic ratios of the adakites and alkaline basalts from southern Costa Rica and Panama are in the geochemical range of the subducting Cocos/Coiba Ridge (Central Galapagos Domain). Geological and geochemical evidence collectively indicate that the relatively recent Galapagos-OIB signature in southern Central America represents a geochemical signal from subducting Galapagos hot spot tracks, which started to collide with the margin ∼8 Ma ago. The Galapagos hot spot contribution decreases systematically along the volcanic front from central Costa Rica to NW Nicaragua
Biogenic gas nanostructures as ultrasonic molecular reporters
Ultrasound is among the most widely used non-invasive imaging modalities in biomedicine, but plays a surprisingly small role in molecular imaging due to a lack of suitable molecular reporters on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein-shelled compartments with typical widths of 45–250 nm and lengths of 100–600 nm that exclude water and are permeable to gas. We show that gas vesicles produce stable ultrasound contrast that is readily detected in vitro and in vivo, that their genetically encoded physical properties enable multiple modes of imaging, and that contrast enhancement through aggregation permits their use as molecular biosensors