327 research outputs found

    Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial.

    Get PDF
    Metal absorbable scaffolds constitute a conceptually attractive alternative to polymeric scaffolds. Promising 6-month outcomes of a second-generation drug-eluting absorbable metal scaffold (DREAMS 2G), consisting of an absorbable magnesium scaffold backbone, have been reported. We assessed the 12-month safety and performance of this novel device. The prospective, international, multi-centre, first-in-man BIOSOLVE-II trial enrolled 123 patients with up to two de novo lesions with a reference diameter between 2.2 and 3.7 mm. All patients were scheduled for angiographic follow-up at 6 months, and-if subjects consented-at 12 months. Dual antiplatelet therapy was recommended for 6 months. Quantitative coronary angiography (QCA) parameters remained stable from 6 to 12 months [paired data of 42 patients: in-segment late lumen loss 0.20 ± 0.21 mm vs. 0.25 ± 0.22 mm, P = 0.117, Δ 0.05 ± 0.21 mm (95% CI: -0.01;0.12); in-scaffold late lumen loss 0.37 ± 0.25 mm vs. 0.39 ± 0.27 mm, P = 0.446, Δ 0.03 ± 0.22 (95% CI: -0.04;0.10), respectively]. Intravascular ultrasound and optical coherence tomography findings corroborated the QCA results. Target lesion failure occurred in four patients (3.4%), consisting of one death of unknown cause, one target-vessel myocardial infarction, and two clinically driven target lesion revascularization. No additional event occurred beyond the 6-month follow-up. During the entire follow-up of 12 months, none of the patients experienced a definite or probable scaffold thrombosis. The novel drug-eluting metal absorbable scaffold DREAMS 2G showed a continuous favourable safety profile up to 12 months and stable angiographic parameters between 6 and 12 months. NCT01960504

    A randomized placebo-controlled study on the effect of nifedipine on coronary endothelial function and plaque formation in patients with coronary artery disease: the ENCORE II study†

    Get PDF
    Aims Endothelial dysfunction and plaque formation are features of atherosclerosis. Inhibition of L-type calcium channels or HMG-CoA pathway improves endothelial function and reduces plaque size. Thus, we investigated in stable coronary artery disease (CAD) the effects of a calcium antagonist on coronary endothelial function and plaque size. Methods and results In 454 patients undergoing PCI, acetylcholine (10−6 to 10−4 M) was infused in a coronary segment without significant CAD. Changes in coronary diameter were measured and an intravascular ultrasound examination (IVUS) was performed. On top of statin therapy, patients were randomized in a double-blind fashion to placebo or nifedipine GITS 30-60 mg/day and followed for 18-24 months. Blood pressure was lower on nifedipine than on placebo by 5.8/2.1 mmHg (P < 0.001) as was total and LDL cholesterol (4.8 mg/dL; P = 0.495), while HDL was higher (3.6 mg/dL; P = 0.026). In the most constricting segment, nifedipine reduced vasoconstriction to acetylcholine (14.0% vs. placebo 7.7%; P < 0.0088). The percentage change in plaque volume with nifedipine and placebo, respectively, was 1.0 and 1.9%, ns. Conclusion The ENCORE II trial demonstrates in a multi-centre setting that calcium channel blockade with nifedipine for up to 2 years improves coronary endothelial function on top of statin treatment, but did not show an effect of nifedipine on plaque volum

    Impact of renal function on clinical outcomes after PCI in ACS and stable CAD patients treated with ticagrelor: a prespecified analysis of the GLOBAL LEADERS randomized clinical trial

    Get PDF
    Background: Impaired renal function (IRF) is associated with increased risks of both ischemic and bleeding events. Ticagrelor has been shown to provide greater absolute reduction in ischemic risk following acute coronary syndrome (ACS) in those with versus without IRF. Methods: A pre-specified sub-analysis of the randomized GLOBAL LEADERS trial (n = 15,991) comparing the experimental strategy of 23-month ticagrelor monotherapy (after 1-month ticagrelor and aspirin dual anti-platelet therapy [DAPT]) with 12-month DAPT followed by 12-month aspirin after percutaneous coronary intervention (PCI) in ACS and stable coronary artery disease (CAD) patients stratified according to IRF (glomerular filtration rate < 60 ml/min/1.73 m2). Results: At 2 years, patients with IRF (n = 2171) had a higher rate of the primary endpoint (all-cause mortality or centrally adjudicated, new Q-wave myocardial infarction [MI](hazard ratio [HR] 1.64, 95% confidence interval [CI] 1.35–1.98, padj = 0.001), all-cause death, site-reported MI, all revascularization and BARC 3 or 5 type bleeding, compared with patients without IRF. Among patients with IRF, there were similar rates of the primary endpoint (HR 0.82, 95% CI 0.61–1.11, p = 0.192, pint = 0.680) and BARC 3 or 5 type bleeding (HR 1.10, 95% CI 0.71–1.71, p = 0.656, pint = 0.506) in the experimental versus the reference group. No significant interactions were seen between IRF and treatment effect for any of the secondary outcome variables. Among ACS patients with IRF, there were no between-group differences in the rates of the primary endpoint or BARC 3 or 5 type bleeding; however, the rates of the patient-oriented composite endpoint (POCE) of all-cause death, any stroke, MI, or revascularization (pint = 0.028) and net adverse clinical events (POCE and BARC 3 or 5 type bleeding) (pint = 0.045), were lower in the experimental versus the reference group. No treatment effects were found in stable CAD patients categorized according to presence of IRF. Conclusions: IRF negatively impacted long-term prognosis after PCI. There were no differential treatment effects found with regard to all-cause death or new Q-wave MI after PCI in patients with IRF treated with ticagrelor monotherapy. Clinical trial regis

    Modifying effect of dual antiplatelet therapy on incidence of stent thrombosis according to implanted drug-eluting stent type

    Get PDF
    Aim To investigate the putative modifying effect of dual antiplatelet therapy (DAPT) use on the incidence of stent thrombosis at 3 years in patients randomized to Endeavor zotarolimus-eluting stent (E-ZES) or Cypher sirolimus-eluting stent (C-SES). Methods and results Of 8709 patients in PROTECT, 4357 were randomized to E-ZES and 4352 to C-SES. Aspirin was to be given indefinitely, and clopidogrel/ticlopidine for ≥3 months or up to 12 months after implantation. Main outcome measures were definite or probable stent thrombosis at 3 years. Multivariable Cox regression analysis was applied, with stent type, DAPT, and their interaction as the main outcome determinants. Dual antiplatelet therapy adherence remained the same in the E-ZES and C-SES groups (79.6% at 1 year, 32.8% at 2 years, and 21.6% at 3 years). We observed a statistically significant (P = 0.0052) heterogeneity in treatment effect of stent type in relation to DAPT. In the absence of DAPT, stent thrombosis was lower with E-ZES vs. C-SES (adjusted hazard ratio 0.38, 95% confidence interval 0.19, 0.75; P = 0.0056). In the presence of DAPT, no difference was found (1.18; 0.79, 1.77; P = 0.43). Conclusion A strong interaction was observed between drug-eluting stent type and DAPT use, most likely prompted by the vascular healing response induced by the implanted DES system. These results suggest that the incidence of stent thrombosis in DES trials should not be evaluated independently of DAPT use, and the optimal duration of DAPT will likely depend upon stent type (Clinicaltrials.gov number NCT00476957

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Response to letter regarding article, "percutaneous left-ventricular support with the impella-2.5-assist device in acute cardiogenic shock results of the impella-EUROSHOCKRegistry"

    Get PDF
    Comment on Letter by Maini regarding article, "percutaneous left-ventricular support with the impella-2.5-assist device in acute cardiogenic shock: results of the impella-EUROSHOCK-registry". [Circ Heart Fail. 2013] Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. [Circ Heart Fail. 2013
    corecore