54 research outputs found

    Non-statistical intermolecular energy transfer from vibrationally excited benzene in a mixed nitrogen-benzene bath.

    Get PDF
    A chemical dynamics simulation was performed to model experiments [N. A. West et al., J. Chem. Phys. 145, 014308 (2016)] in which benzene molecules are vibrationally excited to 148.1 kcal/mol within a N2-benzene bath. A significant fraction of the benzene molecules are excited, resulting in heating of the bath, which is accurately represented by the simulation. The interesting finding from the simulations is the non-statistical collisional energy transfer from the vibrationally excited benzene C6H6 * molecules to the bath. The simulations find that at ∼10-7 s and 1 atm pressure there are four different final temperatures for C6H6 * and the bath. N2 vibration is not excited and remains at the original bath temperature of 300 K. Rotation and translation degrees of freedom of both N2 and C6H6 in the bath are excited to a final temperature of ∼340 K. Energy transfer from the excited C6H6 * molecules is more efficient to vibration of the C6H6 bath than its rotation and translation degrees of freedom, and the final vibrational temperature of the C6H6 bath is ∼453 K, if the average energy of each C6H6 vibration mode is assumed to be RT. There is no vibrational equilibration between C6H6 * and the C6H6 bath molecules. When the simulations are terminated, the vibrational temperatures of the C6H6 * and C6H6 bath molecules are ∼537 K and ∼453 K, respectively. An important question is the time scale for complete energy equilibration of the C6H6 * and N2 and C6H6 bath system. At 1 atm and 300 K, the experimental V-T (vibration-translation) relaxation time for N2 is ∼10-4 s. The simulation time was too short for equilibrium to be attained, and the time for complete equilibration of C6H6 * vibration with translation, rotation, and vibration of the bath was not determined

    Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Get PDF
    BACKGROUND: Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. METHODS: The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. RESULTS: Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. CONCLUSION: This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth reduction was dependent upon the molecular signatures of the cell lines. Since RRR-γ-tocopherol is effective at inhibition of cell proliferation at both physiological and pharmacological concentrations dietary RRR-γ-tocopherol may be chemopreventive, while pharmacological concentrations of RRR-γ-tocopherol may aid chemotherapy without toxic effects to normal cells demonstrated by most chemotherapeutic agents

    Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    Get PDF
    Dengue virus causes ∼50–100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture

    Bent out of shape

    No full text

    Imaging dynamic fingerprints of competing E2 and S(N)2 reactions

    Get PDF
    The competition between bimolecular nucleophilic substitution and base-induced elimination is of fundamental importance for the synthesis of pure samples in organic chemistry. Many factors that influence this competition have been identified over the years, but the underlying atomistic dynamics have remained difficult to observe. We present product velocity distributions for a series of reactive collisions of the type X- + RY with X and Y denoting the halogen atoms fluorine, chlorine and iodine. By increasing the size of the residue R from methyl to tert-butyl in several steps, we find that the dynamics drastically change from backward to dominant forward scattering of the leaving ion relative to the reactant RY velocity. This characteristic fingerprint is also confirmed by direct dynamics simulations for ethyl as residue and attributed to the dynamics of elimination reactions. This work opens the door to a detailed atomistic understanding of transformation reactions in even larger systems.The competition between chemical reactions critically affects our natural environment and the synthesis of new materials. Here, the authors present an approach to directly image distinct fingerprints of essential organic reactions and monitor their competition as a function of steric substitution

    Comparison of intermolecular energy transfer from vibrationally excited benzene in mixed nitrogen–benzene baths at 140 K and 300 K

    No full text
    Gas phase intermolecular energy transfer (IET) is a fundamental component of accurately explaining the behavior of gas phase systems in which the internal energy of particular modes of molecules is greatly out of equilibrium. In this work, chemical dynamics simulations of mixed benzene/N2 baths with one highly vibrationally excited benzene molecule (Bz*) are compared to experimental results at 140 K. Two mixed bath models are considered. In one, the bath consists of 190 N2 and 10 Bz, whereas in the other bath, 396 N2 and 4 Bz are utilized. The results are compared to results from 300 K simulations and experiments, revealing that Bz*–Bz vibration–vibration IET efficiency increased at low temperatures consistent with longer lived “chattering” collisions at lower temperatures. In the simulations, at the Bz* excitation energy of 150 kcal/mol, the averaged energy transferred per collision, ⟨ΔEc⟩, for Bz*–Bz collisions is found to be ∼2.4 times larger in 140 K than in 300 K bath, whereas this value is ∼1.3 times lower for Bz*–N2 collisions. The overall ⟨ΔEc⟩, for all collisions, is found to be almost two times larger at 140 K compared to the one obtained from the 300 K bath. Such an enhancement of IET efficiency at 140 K is qualitatively consistent with the experimental observation. However, the possible reasons for not attaining a quantitative agreement are discussed. These results imply that the bath temperature and molecular composition as well as the magnitude of vibrational energy of a highly vibrationally excited molecule can shift the overall timescale of rethermalization
    corecore