450 research outputs found

    Using Super-Imposition by Translation And Rotation (SITAR) to relate pubertal growth to bone health in later life:the Medical Research Council (MRC) National Survey of Health and Development

    Get PDF
    BACKGROUND: To explore associations between pubertal growth and later bone health in a cohort with infrequent measurements, using another cohort with more frequent measurements to support the modelling, data from the Medical Research Council (MRC) National Survey of Health and Development (2-26 years, 4901/30 004 subjects/measurements) and the Avon Longitudinal Study of Parents And Children (ALSPAC) (5-20 years) (10 896/74 120) were related to National Survey of Health and Development (NSHD) bone health outcomes at 60-64 years. METHODS: NSHD data were analysed using Super-Imposition by Translation And Rotation (SITAR) growth curve analysis, either alone or jointly with ALSPAC data. Improved estimation of pubertal growth parameters of size, tempo and velocity was assessed by changes in model fit and correlations with contemporary measures of pubertal timing. Bone outcomes of radius [trabecular volumetric bone mineral density (vBMD) and diaphysis cross-sectional area (CSA)] were regressed on the SITAR parameters, adjusted for current body size. RESULTS: The NSHD SITAR parameters were better estimated in conjunction with ALSPAC, i.e. more strongly correlated with pubertal timing. Trabecular vBMD was associated with early height tempo, whereas diaphysis CSA was related to weight size, early tempo and slow velocity, the bone outcomes being around 15% higher for the better vs worse growth pattern. CONCLUSIONS: By pooling NSHD and ALSPAC data, SITAR more accurately summarized pubertal growth and weight gain in NSHD, and in turn demonstrated notable associations between pubertal timing and later bone outcomes. These associations give insight into the importance of the pubertal period for future skeletal health and osteoporosis risk

    Life course body mass index and risk of knee osteoarthritis at the age of 53 years: evidence from the 1946 British birth cohort study

    Get PDF
    Introduction: The authors examined how body mass index (BMI) across life is linked to the risk of midlife knee osteoarthritis (OA), testing whether prolonged exposure to high BMI or high BMI at a particular period has the greatest influence on the risk of knee OA. Methods: A population-based British birth cohort of 3035 men and women underwent clinical examination for knee OA at age 53 years.Heights and weights were measured 10 times from 2 to 53 years. Analyses were stratified by gender and adjusted for occupation and activity levels. Results: The prevalence of knee OA was higher in women than in men (12.9% (n=194) vs 7.4% (n=108)). In men, the association between BMI and later knee OA was evident at 20 years (p=0.038) and remained until 53 years (OR per z-score 1.38 (95% CI 1.11 to 1.71)). In women, there was evidence for an association at 15 years (p=0.003); at 53 years, the OR was 1.89 (95% CI 1.59 to 2.24) per z-score increase in BMI. Changes in BMI from childhood in women and from adolescence in men were also positively associated with knee OA. A structured modelling approach to disentange the way in which BMI is linked to knee OA suggested that prolonged exposure to high BMI throughout adulthood carried the highest risk and that there was no additional risk conferred from adolescence once adult BMI had been accounted for. Conclusion: This study suggests that the risk of knee OA accumulates from exposure to a high BMI through adulthood. <br/

    Motor development in infancy and spine shape in early old age: findings from a British birth cohort study

    Get PDF
    Spine shape changes dramatically in early life, influenced by attainment of developmental milestones such as independent walking. Whether these associations persist across life is unknown. Therefore, we investigated associations between developmental milestones and spine shape, as determined using statistical shape models (SSMs) of lumbar spine from DXA scans in 1327 individuals (688 female) at 60‐64y in the MRC National Survey of Health and Development. Lumbar lordosis angle (L4 inferior endplate to T12 superior endplate) was measured using the two‐line Cobb method. In analyses adjusted for sex, height, lean and fat mass, socioeconomic position and birthweight, later walking age was associated with greater lordosis described by SSM1 (regression coefficient 0.023, 95%CI 0.000‐0.047, p=0.05) and direct angle measurement. Modest associations between walking age and less variation in anterior‐posterior vertebral size caudally (SSM6) were also observed (0.021, 95%CI ‐0.002‐0.044, p=0.07). Sex interactions showed that later walking was associated with larger relative vertebral anterior‐posterior dimensions in men (SSM3; ‐0.043, 95%CI ‐0.075‐0.01, p=0.01) but not women (0.018, 95%CI ‐0.0007‐0.043, p=0.17). Similar associations were observed between age at independent standing and SSMs but there was little evidence of association between sitting age and spine shape. Unadjusted associations between walking age and SSMs 1 and 6 remained similar after adjustment for potential confounders and mediators. This suggests that these associations may be explained by altered mechanical loading of the spine during childhood growth, although other factors could contribute. Early life motor development, particularly walking, may have a lasting effect on features of spine morphology with clinical significance

    Age at onset of walking in infancy is associated with hip shape in early old age

    Get PDF
    Bones' shapes and structures adapt to the muscle and reaction forces they experience during everyday movements. Onset of independent walking, at approximately 12 months, represents the first postnatal exposure of the lower limbs to the large forces associated with bipedal movements, and, accordingly, earlier walking is associated with greater bone strength. However, associations between early life loading and joint shape have not been explored. We therefore examined associations between walking age and hip shape at age 60-64y in 1423 individuals (740 women) from the MRC National Survey of Health and Development, a nationally-representative British birth cohort. Walking age in months was obtained from maternal interview at age 2y. Ten modes of variation in hip shape (HM1-HM10), described by statistical shape models, were ascertained from dual-energy X-ray absorptiometry (DXA) images. In sex-adjusted analyses, earlier walking age was associated with higher HM1 and HM7 scores; these associations were maintained after further adjustment for height, body composition and socioeconomic position. Earlier walking was also associated with lower HM2 scores in women only, and lower HM4 scores in men only. Taken together, this suggests that earlier walkers have proportionately larger (HM4) and flatter (HM1,4) femoral heads, wider (HM1,4,7) and flatter (HM1, 7) femoral necks, smaller neck-shaft angle (HM1,4), anteversion (HM2,7) and development of osteophytes (HM1). These results suggest that age at onset of walking in infancy is associated with variations in hip shape in older age. Early walkers have a larger femoral head and neck and smaller neck-shaft angle; these features are associated with reduced hip fracture risk, but also represent an osteoarthritic-like phenotype. Unlike results of previous studies of walking age and bone mass, associations in this study were not affected by adjustment for lean mass suggesting that associations may relate directly to skeletal loading in early life when joint shape changes rapidly. This article is protected by copyright. All rights reserved.</p

    Life course variations in the associations between FTO and MC4R gene variants and body size

    Get PDF
    The timing of associations between common genetic variants for weight or body mass index (BMI) across the life course may provide insights into the aetiology of obesity. We genotyped variants in FTO (rs9939609) and near MC4R (rs17782313) in 1240 men and 1239 women born in 1946 and participating in the MRC National Survey of Health and Development. Birth weight was recorded and height and weight were measured or self-reported repeatedly at 11 time-points between ages 2 and 53 years. Hierarchical mixed models were used to test whether genetic associations with weight or BMI standard deviation scores (SDS) changed with age during childhood and adolescence (2–20 years) or adulthood (20–53 years). The association between FTO rs9939609 and BMI SDS strengthened during childhood and adolescence (rate of change: 0.007 SDS/A-allele/year; 95% CI: 0.003–0.010, P < 0.001), reached a peak strength at age 20 years (0.13 SDS/A-allele, 0.08–0.19), and then weakened during adulthood (−0.003 SDS/A-allele/year, −0.005 to −0.001, P = 0.001). MC4R rs17782313 showed stronger associations with weight than BMI; its association with weight strengthened during childhood and adolescence (0.005 SDS/C-allele/year; 0.001–0.008, P = 0.006), peaked at age 20 years (0.13 SDS/C-allele, 0.07–0.18), and weakened during adulthood (−0.002 SDS/C-allele/year, −0.004 to 0.000, P = 0.05). In conclusion, genetic variants in FTO and MC4R showed similar biphasic changes in their associations with BMI and weight, respectively, strengthening during childhood up to age 20 years and then weakening with increasing adult age. Studies of the aetiology of obesity spanning different age groups may identify age-specific determinants of weight gain

    Duration of obesity exposure between ages 10 and 40 years and its relationship with cardiometabolic disease risk factors: A cohort study.

    Get PDF
    BACKGROUND: Individuals with obesity do not represent a homogeneous group in terms of cardiometabolic risk. Using 3 nationally representative British birth cohorts, we investigated whether the duration of obesity was related to heterogeneity in cardiometabolic risk. METHODS AND FINDINGS: We used harmonised body mass index (BMI) and cardiometabolic disease risk factor data from 20,746 participants (49.1% male and 97.2% white British) enrolled in 3 British birth cohort studies: the 1946 National Survey of Health and Development (NSHD), the 1958 National Child Development Study (NCDS), and the 1970 British Cohort Study (BCS70). Within each cohort, individual life course BMI trajectories were created between 10 and 40 years of age, and from these, age of obesity onset, duration spent obese (range 0 to 30 years), and cumulative obesity severity were derived. Obesity duration was examined in relation to a number of cardiometabolic disease risk factors collected in mid-adulthood: systolic (SBP) and diastolic blood pressure (DBP), high-density-lipoprotein cholesterol (HDL-C), and glycated haemoglobin (HbA1c). A greater obesity duration was associated with worse values for all cardiometabolic disease risk factors. The strongest association with obesity duration was for HbA1c: HbA1c levels in those with obesity for <5 years were relatively higher by 5% (95% CI: 4, 6), compared with never obese, increasing to 20% (95% CI: 17, 23) higher in those with obesity for 20 to 30 years. When adjustment was made for obesity severity, the association with obesity duration was largely attenuated for SBP, DBP, and HDL-C. For HbA1c, however, the association with obesity duration persisted, independent of obesity severity. Due to pooling of 3 cohorts and thus the availability of only a limited number harmonised variables across cohorts, our models included adjustment for only a small number of potential confounding variables, meaning there is a possibility of residual confounding. CONCLUSIONS: Given that the obesity epidemic is characterised by a much earlier onset of obesity and consequently a greater lifetime exposure, our findings suggest that health policy recommendations aimed at preventing early obesity onset, and therefore reducing lifetime exposure, may help reduce the risk of diabetes, independently of obesity severity. However, to test the robustness of our observed associations, triangulation of evidence from different epidemiological approaches (e.g., mendelian randomization and negative control studies) should be obtained

    Life course longitudinal growth and risk of knee osteoarthritis at age 53 years: evidence from the 1946 British birth cohort study

    Get PDF
    ObjectiveTo examine the relationship between height gain across childhood and adolescence with knee osteoarthritis in the MRC National Survey of Health and Development (NSHD).Materials and methodsData are from 3035 male and female participants of the NSHD. Height was measured at ages 2, 4, 6, 7, 11 and 15 years, and self-reported at ages 20 years. Associations between (i) height at each age (ii) height gain during specific life periods (iii) Super-Imposition by Translation And Rotation (SITAR) growth curve variables of height size, tempo and velocity, and knee osteoarthritis at 53 years were tested.ResultsIn sex-adjusted models, estimated associations between taller height and decreased odds of knee osteoarthritis at age 53 years were small at all ages - the largest associations were an OR of knee osteoarthritis of 0.9 per 5cm increase in height at age 4, (95% CI 0.7-1.1) and an OR of 0.9 per 5cm increase in height, (95% CI 0.8-1.0) at age 6. No associations were found between height gain during specific life periods or the SITAR growth curve variables and odds of knee osteoarthritis.ConclusionsThere was limited evidence to suggest that taller height in childhood is associated with decreased odds of knee osteoarthritis at age 53 years in this cohort. This work enhances our understanding of osteoarthritis predisposition and the contribution of life course height to this

    Cognitive and kidney function: results from a British birth cohort reaching retirement age.

    Get PDF
    BACKGROUND: Previous studies have found associations between cognitive function and chronic kidney disease. We aimed to explore possible explanations for this association in the Medical Research Council National Survey of Health and Development, a prospective birth cohort representative of the general British population. METHODS: Cognitive function at age 60-64 years was quantified using five measures (verbal memory, letter search speed and accuracy, simple and choice reaction times) and glomerular filtration rate (eGFR) at the same age was estimated using cystatin C. The cross-sectional association between cognitive function and eGFR was adjusted for background confounding factors (socioeconomic position, educational attainment), prior cognition, and potential explanations for any remaining association (smoking, diabetes, hypertension, inflammation, obesity). RESULTS: Data on all the analysis variables were available for 1306-1320 study members (depending on cognitive measure). Verbal memory and simple and choice reaction times were strongly associated with eGFR. For example, the lowest quartile of verbal memory corresponded to a 4.1 (95% confidence interval 2.0, 6.2) ml/min/1.73 m(2) lower eGFR relative to the highest quartile. Some of this association was explained by confounding due to socioeconomic factors, but very little of it by prior cognition. Smoking, diabetes, hypertension, inflammation and obesity explained some but not all of the remaining association. CONCLUSIONS: These analyses support the notion of a shared pathophysiology of impaired cognitive and kidney function at older age, which precedes clinical disease. The implications of these findings for clinical care and research are important and under-recognised, though further confirmatory studies are required

    A structured approach to hypotheses involving continuous exposures over the life course

    Get PDF
    © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association. Background: Epidemiologists are often interested in examining different hypotheses for how exposures measured repeatedly over the life course relate to later-life outcomes. A structured approach for selecting the hypotheses most supported by theory and observed data has been developed for binary exposures. The aim of this paper is to extend this to include continuous exposures and allow for confounding and missing data. Methods: We studied two examples, the association between: (i) maternal weight during pregnancy and birthweight; and (ii) stressful family events throughout childhood and depression in adolescence. In each example we considered several plausible hypotheses including accumulation, critical periods, sensitive periods, change and effect modification. We used least angle regression to select the hypothesis that explained the most variation in the outcome, demonstrating appropriate methods for adjusting for confounders and dealing with missing data. Results: The structured approach identified a combination of sensitive periods: pre-pregnancy weight, and gestational weight gain 0-20 weeks and 20-40 weeks, as the best explanation for variation in birthweight after adjusting for maternal height. A sensitive period hypothesis best explained variation in adolescent depression, with the association strengthening with the proximity of stressful family events. For each example, these models have theoretical support at least as strong as any competing hypothesis. Conclusions: We have extended the structured approach to incorporate continuous exposures, confounding and missing data. This approach can be used in either an exploratory or a confirmatory setting. The interpretation, plausibility and consistency with causal assumptions should all be considered when proposing and choosing life course hypotheses
    corecore