18 research outputs found
MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients.
BackgroundUpregulation of the matrix metalloproteinases MMP-2 and MMP-9 in various cancers has been associated with worse survival of the patients.MethodsWe assessed MMP-2 and MMP-9 levels in normal colorectal mucosa from colorectal cancer patients in relation to the course of the disease.ResultsA high protein expression of MMP-2 as well as MMP-9 in normal mucosa was found to be correlated with worse 5-year survival. The combination of both parameters was an even stronger prognostic factor. These protein levels were found not to be related to the corresponding single nucleotide polymorphisms of MMP-2 (-1306C>T) and MMP-9 (-1562C>T). Multivariate analyses indicated that the MMP-2 and MMP-9 levels in normal mucosa are prognostic for survival, independent of TNM classification.ConclusionMMP-2 and MMP-9 levels in normal mucosa are indicative of the course of disease in colorectal cancer patients
Predicting procedure duration of colorectal endoscopic submucosal dissection at Western endoscopy centers
Background and study aims Overcoming logistical obstacles for the implementation of colorectal endoscopic submucosal dissection (ESD) requires accurate prediction of procedure times. We aimed to evaluate existing and new prediction models for ESD duration.Patients and methods Records of all consecutive patients who underwent single, non-hybrid colorectal ESDs before 2020 at three Dutch centers were reviewed. The performance of an Eastern prediction model [GIE 2021;94(1):133–144] was assessed in the Dutch cohort. A prediction model for procedure duration was built using multivariable linear regression. The model’s performance was validated using internal validation by bootstrap resampling, internal-external cross-validation and external validation in an independent Swedish ESD cohort.Results A total of 435 colorectal ESDs were analyzed (92% en bloc resections, mean duration 139 minutes, mean tumor size 39 mm). The performance of current unstandardized time scheduling practice was suboptimal (explained variance: R2=27%). We successfully validated the Eastern prediction model for colorectal ESD duration <60 minutes (c-statistic 0.70, 95% CI 0.62–0.77), but this model was limited due to dichotomization of the outcome and a relatively low frequency (14%) of ESDs completed <60 minutes in the Dutch centers. The model was more useful with a dichotomization cut-off of 120 minutes (c-statistic: 0.75; 88% and 17% of “easy” and “very difficult” ESDs completed <120 minutes, respectively). To predict ESD duration as continuous outcome, we developed and validated the six-variable cESD-TIME formula (https://cesdtimeformula.shinyapps.io/calculator/; optimism-corrected R2=61%; R2=66% after recalibration of the slope).Conclusions We provided two useful tools for predicting colorectal ESD duration at Western centers. Further improvements and validations are encouraged with potential local adaptation to optimize time planning
Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma
BACKGROUND: Leptin (LEP) has been consistently associated with angiogenesis and tumor growth. Leptin exerts its physiological action through its specific receptor (LEPR). We have investigated whether genetic variations in LEP and LEPR have implications for susceptibility to and prognosis in breast carcinoma. METHODS: We used the polymerase chain reaction and restriction enzyme digestion to characterize the variation of the LEP and LEPR genes in 308 unrelated Tunisian patients with breast carcinoma and 222 healthy control subjects. Associations of the clinicopathologic parameters and these genetic markers with the rates of the breast carcinoma-specific overall survival (OVS) and the disease free survival (DFS) were assessed using univariate and multivariate analyses. RESULTS: A significantly increased risk of breast carcinoma was associated with heterozygous LEP (-2548) GA (OR = 1.45; P = 0.04) and homozygous LEP (-2548) AA (OR = 3.17; P = 0.001) variants. A highly significant association was found between the heterozygous LEPR 223QR genotype (OR = 1.68; P = 0.007) or homozygous LEPR 223RR genotype (OR = 2.26; P = 0.001) and breast carcinoma. Moreover, the presence of the LEP (-2548) A allele showed a significant association with decreased disease-free survival in breast carcinoma patients, and the presence of the LEPR 223R allele showed a significant association with decreased overall survival. CONCLUSION: Our results indicated that the polymorphisms in LEP and LEPR genes are associated with increased breast cancer risk as well as disease progress, supporting our hypothesis for leptin involvement in cancer pathogenesis
Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells
Despite recent additions to the armory of chemotherapeutic agents for colorectal cancer (CRC) treatment, the results of chemotherapy remain unsatisfactory. 5-Fluorouracil (5-FU) still represents the cornerstone of treatment and resistance to its actions is a major obstacle to successful chemotherapy. Therefore, new active agents in CRC and agents that increase the chemosensitivity of cancer cells to 5-FU are still urgently required. Violacein, a pigment isolated from Chromobacterium violaceum in the Amazon river, has a diverse spectrum of biological activities, and represents a novel cytotoxic drug with known antileukemic properties. To assess the suitability of violacein as a chemotherapeutic agent in CRC its cytotoxic effects were evaluated both as a single agent and in combination with 5-FU. Its underlying mechanisms of action were further investigated by studying its effects on the cell cycle, apoptosis and cell survival pathways [phosphatidylinositol-3-kinase/Akt, p44/42 mitogen activated protein kinase and nuclear factor kappa B (NF-kappa B)] in colon cancer cell lines. Violacein inhibits the growth of all four colon cancer cell lines tested. It induces apoptosis, and potentiates the cytotoxic effect of 5-FU in a poorly differentiated microsatellite unstable cell line (HCT116). Violacein causes cell cycle block at G(1), upregulates p53, p27 and p21 levels and decreases the expression of cyclin D1. Violacein leads to dephosphorylation of retinoblastoma protein and activation of caspases and a pancaspase inhibitor abrogates its biological activity. Our data provide evidence that violacein acts through the inhibition of Akt phosphorylation with subsequent activation of the apoptotic pathway and downregulation of NF-kappa B signaling. This leads to the increase in chemosensitivity to 5-FU in HCT116 colon cancer cells. Taken together, our findings suggest that violacein will be active in the treatment of colorectal tumors and offers new prospects for overcoming 5-FU resistance
Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells
Despite recent additions to the armory of chemotherapeutic agents for colorectal cancer (CRC) treatment, the results of chemotherapy remain unsatisfactory. 5-Fluorouracil (5-FU) still represents the cornerstone of treatment and resistance to its actions is a major obstacle to successful chemotherapy. Therefore, new active agents in CRC and agents that increase the chemosensitivity of cancer cells to 5-FU are still urgently required. Violacein, a pigment isolated from Chromobacterium violaceum in the Amazon river, has a diverse spectrum of biological activities, and represents a novel cytotoxic drug with known antileukemic properties. To assess the suitability of violacein as a chemotherapeutic agent in CRC its cytotoxic effects were evaluated both as a single agent and in combination with 5-FU. Its underlying mechanisms of action were further investigated by studying its effects on the cell cycle, apoptosis and cell survival pathways [phosphatidylinositol-3-kinase/Akt, p44/42 mitogen activated protein kinase and nuclear factor kappa B (NF-kappa B)] in colon cancer cell lines. Violacein inhibits the growth of all four colon cancer cell lines tested. It induces apoptosis, and potentiates the cytotoxic effect of 5-FU in a poorly differentiated microsatellite unstable cell line (HCT116). Violacein causes cell cycle block at G(1), upregulates p53, p27 and p21 levels and decreases the expression of cyclin D1. Violacein leads to dephosphorylation of retinoblastoma protein and activation of caspases and a pancaspase inhibitor abrogates its biological activity. Our data provide evidence that violacein acts through the inhibition of Akt phosphorylation with subsequent activation of the apoptotic pathway and downregulation of NF-kappa B signaling. This leads to the increase in chemosensitivity to 5-FU in HCT116 colon cancer cells. Taken together, our findings suggest that violacein will be active in the treatment of colorectal tumors and offers new prospects for overcoming 5-FU resistance.27350851
Recommended from our members
MMP-2 and MMP-9 in normal mucosa are independently associated with outcome of colorectal cancer patients.
BackgroundUpregulation of the matrix metalloproteinases MMP-2 and MMP-9 in various cancers has been associated with worse survival of the patients.MethodsWe assessed MMP-2 and MMP-9 levels in normal colorectal mucosa from colorectal cancer patients in relation to the course of the disease.ResultsA high protein expression of MMP-2 as well as MMP-9 in normal mucosa was found to be correlated with worse 5-year survival. The combination of both parameters was an even stronger prognostic factor. These protein levels were found not to be related to the corresponding single nucleotide polymorphisms of MMP-2 (-1306C>T) and MMP-9 (-1562C>T). Multivariate analyses indicated that the MMP-2 and MMP-9 levels in normal mucosa are prognostic for survival, independent of TNM classification.ConclusionMMP-2 and MMP-9 levels in normal mucosa are indicative of the course of disease in colorectal cancer patients
The Optimal Imaging Window for Dysplastic Colorectal Polyp Detection Using c-Met-Targeted Fluorescence Molecular Endoscopy
Fluorescence molecular endoscopy (FME) is an emerging technique that has the potential to improve the 22% colorectal polyp detection miss-rate. We determined the optimal dose-to-imaging interval and safety of FME using EMI-137, a c-Met-targeted fluorescent peptide, in a population at high risk for colorectal cancer. Methods: We performed in vivo FME and quantification of fluorescence by multidiameter single-fiber reflectance/single-fiber fluorescence spectroscopy in 15 patients with a dysplastic colorectal adenoma. EMI-137 was intravenously administered (0.13 mg/kg) at a 1-, 2- or 3-h dose-to-imaging interval (n = 3 patients per cohort). Two cohorts were expanded to 6 patients on the basis of target-to-background ratios. Fluorescence was correlated to histopathology and c-Met expression. EMI-137 binding specificity was assessed by fluorescence microscopy and in vitro experiments. Results: FME using EMI-137 appeared to be safe and well tolerated. All dose-to-imaging intervals showed significantly higher fluorescence in the colorectal lesions than in surrounding tissue, with a target-to-background ratio of 1.53, 1.66, and 1.74 for the 1-, 2-, and 3-h cohorts, respectively, and a mean intrinsic fluorescence of 0.035 vs. 0.023 mm(-1) (P < 0.0003), 0.034 vs. 0.021 mm(-1) (P < 0.0001), and 0.033 vs. 0.019 mm(-1) (P < 0.0001), respectively. Fluorescence correlated with histopathology on a macroscopic and microscopic level, with significant c-Met overexpression in dysplastic mucosa. In vitro, a dose-dependent specific binding was confirmed. Conclusion: FME using EMI-137 appeared to be safe and feasible within a 1- to 3-h dose-to-imaging interval. No clinically significant differences were observed among the cohorts, although a 1-h dose-to-imaging interval was preferred from a clinical perspective. Future studies will investigate EMI-137 for improved colorectal polyp detection during screening colonoscopies.Cellular mechanisms in basic and clinical gastroenterology and hepatolog