956 research outputs found

    G-Protein coupled receptor signalling in pluripotent stem cell-derived cardiovascular cells: Implications for disease modelling

    Get PDF
    Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies

    Does angiotensin-1 converting enzyme genotype influence motor or cognitive development after pre-term birth?

    Get PDF
    BACKGROUND: Raised activity of the renin-angiotensin system (RAS) may both amplify inflammatory and free radical responses and decrease tissue metabolic efficiency and thus enhance cerebral injury in the preterm infant. The angiotensin-converting enzyme (ACE) DD genotype is associated with raised ACE and RAS activity as well as potentially adverse stimuli such as inflammation. The DD genotype has been associated with neurological impairments in the elderly, and thus may be also associated with poorer motor or cognitive development amongst children born preterm prematurely. METHODS: The association of DD genotype with developmental progress amongst 176 Caucasian children born at less than 33 weeks gestation (median birthweight 1475 g, range 645–2480 g; gestation 30 weeks, range 22–32; 108 male) was examined at 2 and 5 1/2 years of age. Measured neuro-cognitive outcomes were cranial ultrasound abnormalities, cerebral palsy, disability, Griffiths Developmental Quotient [DQ] at 2 yrs, and General Cognitive Ability [British Ability Scales-11] and motor performance [ABC Movement], both performed at 5 1/2 yrs. All outcomes were correlated with ACE genotype. RESULTS: The DD genotype was not associated with lower developmental quotients even after accounting for important social variables. CONCLUSION: These data do not support either a role for ACE in the development of cognitive or motor function in surviving infants born preterm or inhibition of ACE as a neuroprotective therapy

    High speed sCMOS-based oblique plane microscopy applied to the study of calcium dynamics in cardiac myocytes

    Get PDF
    blique plane microscopy (OPM) is a form of light sheet microscopy that uses a single high numerical aperture microscope objective for both fluorescence excitation and collection. In this paper, measurements of the relative collection efficiency of OPM are presented. An OPM system incorporating two sCMOS cameras is then introduced that enables single isolated cardiac myocytes to be studied continuously for 22 seconds in two dimensions at 667 frames per second with 960 × 200 pixels and for 30 seconds with 960 × 200 × 20 voxels at 25 volumes per second. In both cases OPM is able to record in two spectral channels, enabling intracellular calcium to be studied via the probe Fluo-4 AM simultaneously with the sarcolemma and transverse tubule network via the membrane dye Cellmask Orange. The OPM system was then applied to determine the spatial origin of spontaneous calcium waves for the first time and to measure the cell transverse tubule structure at their point of origin. Further results are presented to demonstrate that the OPM system can also be used to study calcium spark parameters depending on their relationship to the transverse tubule structure

    Decadal Trends In Age Structure And Recruitment Patterns Of Ocean Quahogs Arctica Islandica From The Mid-Atlantic Bight In Relation To Water Temperature

    Get PDF
    Occan quahogs (Arctica islandica) are long-lived bivalves. Distributionl patterns and biology of ocean quahogs ill the Mid-Atlantic Bight (MAB) off the cast coast of North America are directly related to bottom water temperatures. We examined long term recruitment patterns for ocean quahogs across temporal (decadal) and spatial (latitudinal. bathymetric) scales Using a spatially defined (Long Island Sound to Chesapeake Bay mouth) population encompassing a broad size (age) range of animals that had not yet recruited to the commercial fishery [(SL)], An age-at-length relationship for quahogs less than 80 mm SL is described using a power function. Quahog age did not vary significantly with depth or region, nor were any interaction terms between age and length with depth or region significant. An age-length key was developed for ocean quahogs to generate age frequencies for each station. Principal components analysis (PCA) oil the resulting age-frequency distributions standardized per low enabled construction of characteristic age-frequency distributions for similar stations identified by the PCA factor scores. These characteristic age-frequency distributions identified quahog cohorts with modal ages corresponding to recruitment during the 1948-1950. 1954-1959 1972-1980 and 1978-1983 time periods. Observed recruitment patterns in MA B ocean quahogs are strongly related to bottom water temperature patterns. Years it) Which the number of months with water temperatures averaging 6 degrees C to 10 degrees C exceeds the number of months with water temperatures less than 6 degrees C by at least two months are also years that contriute Strongly to the modal year classes in the population age-frequency distributions. In general. years with above average bottom water temperatures during January, February. and March lend to produce year classes that are distinct in the age-frequency distributions front the MAB (quahog populations. The observed time series of quahog recruitment Operates at a different time scale than stock surveys and most estimates of fishery dynamics. The 50-60-y lag between quahog recruitment to the benthos and recruitment to the fishery presents challenges for fishery forecasting in that changes in adult biomass and subsequent effects oil stock-recruit relationships will only become evident oil this this scale

    A glycoconjugate of Haemophilus influenzae Type b capsular polysaccharide with tetanus toxoid protein: hydrodynamic properties mainly influenced by the carbohydrate

    Get PDF
    Three important physical properties which may affect the performance of glycoconjugate vaccines against serious disease are molar mass (molecular weight), heterogeneity (polydispersity), and conformational flexibility in solution. The dilute solution behaviour of native and activated capsular polyribosylribitol (PRP) polysaccharides extracted from Haemophilus influenzae type b (Hib), and the corresponding glycoconjugate made by conjugating this with the tetanus toxoid (TT) protein have been characterized and compared using a combination of sedimentation equilibrium and sedimentation velocity in the analytical ultracentrifuge with viscometry. The weight average molar mass of the activated material was considerably reduced (Mw ~ 0.24 × 106 g.mol−1) compared to the native (Mw ~ 1.2 × 106 g.mol−1). Conjugation with the TT protein yielded large polydisperse structures (of Mw ~ 7.4 × 106 g.mol−1), but which retained the high degree of flexibility of the native and activated polysaccharide, with frictional ratio, intrinsic viscosity, sedimentation conformation zoning behaviour and persistence length all commensurate with highly flexible coil behaviour and unlike the previously characterised tetanus toxoid protein (slightly extended and hydrodynamically compact structure with an aspect ratio of ~3). This non-protein like behaviour clearly indicates that it is the carbohydrate component which mainly influences the physical behaviour of the glycoconjugate in solution

    Drug-based mobilisation of mesenchymal stem/stromal cells improves cardiac function post myocardial infarction

    Get PDF
    There is an unmet need for treatments that prevent the progressive cardiac dysfunction following myocardial infarction. Mesenchymal stem/stromal cells (MSCs) are under investigation for cardiac repair; however, culture expansion prior to transplantation is hindering their homing and reparative abilities. Pharmacological mobilisation could be an alternative to MSC transplantation. Here, we report that endogenous MSCs mobilise into the circulation at day 5 post myocardial infarction in male Lewis rats. This mobilisation can be significantly increased by using a combination of the FDA-approved drugs mirabegron (β3-adrenoceptor agonist) and AMD3100 (CXCR4 antagonist). Blinded cardiac magnetic resonance imaging analysis showed the treated group to have increased left ventricular ejection fraction and decreased end systolic volume at 5 weeks post myocardial infarction. The mobilised group had a significant decrease in plasma IL-6 and TNF-α levels, a decrease in interstitial fibrosis, and an increase in the border zone blood vessel density. Conditioned medium from blood-derived MSCs supported angiogenesis in vitro, as shown by tube formation and wound healing assays. Our data suggest a novel pharmacological strategy that enhances myocardial infarction-induced MSC mobilisation and improves cardiac function after myocardial infarction

    Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO

    Get PDF
    The last three decades has seen some important advances in our ability to represent the conformation of proteins in solution on the basis of hydrodynamic measurements. Advances in theoretical modeling capabilities have been matched by commensurate advances in the precision of hydrodynamic measurements. We consider the advances in whole-body (simple ellipsoid-based) modeling—still useful for providing an overall idea of molecular shape, particularly for those systems where only a limited amount of data is available—and outline the ELLIPS suite of algorithms which facilitates the use of this approach. We then focus on bead modeling strategies, particularly the surface or shell–bead approaches and the HYDRO suite of algorithms. We demonstrate how these are providing great insights into complex issues such as the conformation of immunoglobulins and other multi-domain complexes

    Assessing sedimentation equilibrium profiles in analytical ultracentrifugation experiments on macromolecules: from simple average molecular weight analysis to molecular weight distribution and interaction analysis

    Get PDF
    Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium in the analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is particularly powerful when used in conjunction with its sister technique, namely sedimentation velocity analysis. We describe key approaches now available and their application to the characterisation of antibodies polysaccharides and glycoconjugates. We indicate how major complications such as thermodynamic non-ideality can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor DonWinzor over several decades of research

    Aspects of the analytical ultracentrifuge determination of the molar mass distribution of polysaccharides

    Get PDF
    Molar mass or ‘molecular weight’ is one of the most fundamental parameters describing a macromolecule. Because of their polydisperse nature, polysaccharides are usually described by distributions of molar mass. SEC-MALS (size exclusion chromatography coupled to multi-angle light scattering) is often a convenient method of choice, but there are many instances where it is unsuitable. Modern AUC (analytical ultracentrifuge) methods provide a valuable alternative – now easier to use than before – and, after briefly reviewing some older procedures, we highlight two recently published and complementary methods, namely, the ‘Extended Fujita’ approach for the analysis of sedimentation velocity data and SEDFIT-MSTAR for the analysis of sedimentation equilibrium data. Nonideality needs to be considered and can be dealt with in a standard way. These methods can also indicate if associative phenomena are present, which can then be quantified using more complex AUC algorithms
    • …
    corecore