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Abstract 

 

Oblique plane microscopy (OPM) is a form of light sheet microscopy that uses a single high 

numerical aperture microscope objective for both fluorescence excitation and collection. In 

this paper, measurements of the relative collection efficiency of OPM are presented. An OPM 

system incorporating two sCMOS cameras is then introduced that enables single isolated 

cardiac myocytes to be studied continuously for 22 seconds in two dimensions at 667 frames 

per second with 960x200 pixels and for 30 seconds with 960x200x20 voxels at 25 volumes 

per second. In both cases OPM is able to record in two spectral channels, enabling 

intracellular calcium to be studied via the probe Fluo-4 AM simultaneously with the 

sarcolemma and transverse tubule network via the membrane dye Cellmask Orange. The 

OPM system was then applied to determine the spatial origin of spontaneous calcium waves 

for the first time and to measure the cell transverse tubule structure at their point of origin. 

Further results are presented to demonstrate that the OPM system can also be used to study 

calcium spark parameters depending on their relationship to the transverse tubule structure. 

 

Short title: Sikkel et al. OPM applied to the study of [Ca
2+

] dynamics in cardiac myocytes 
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1. Introduction 

 

Calcium (Ca
2+

)
 
dynamics within cardiac myocytes include Ca

2+ 
sparks, spontaneous Ca

2+ 

waves and stimulated global Ca
2+ 

transients. Ca
2+

 sparks, which are the elemental building 

blocks of larger events such as transients and waves, are both spatially and temporally 

confined [1–3].  Ca
2+

 waves propagate through the cell and result in depolarisations (so-

called "delayed after-depolarisations") that may, in turn, trigger arrhythmias within the heart. 

Therefore, studying the elementary release events and the formation of waves is essential to 

understanding the aetiology of malignant cardiac arrhythmias such as ventricular tachycardia 

and ventricular fibrillation, which are responsible for approximately 50% of deaths in patients 

with heart failure (HF) [4,5]. Cardiac myocytes contain invaginations of the cell membrane 

known as transverse tubules (t-tubules) that are essential for the normal process of Ca
2+

-

induced Ca
2+

 release. We and others have previously reported that the organization of t-

tubule networks becomes significantly deranged in HF in both failing human hearts and 

animal models, in part due to a reduction in t-tubule density (detubulation) [6–10]. Whether 

these structural changes and enhanced arrhythmogenesis via an increase in Ca
2+

 waves are 

linked is difficult to elucidate using current microscopy techniques. 

Confocal microscopy provides optically sectioned imaging of the specimen and is usually 

required in order to reliably detect Ca
2+

 sparks [1] in isolated single cardiac myocytes. 

However, since a high temporal resolution is also required this imaging is usually performed 

in line-scanning mode whereby a single line of the cell is raster scanned to build up a 1-

dimensional (1-D) image over time (x-t). This typically allows the line to be scanned every 

1-2 ms. Although this technique is useful, Ca
2+

 waves are relatively rare events and therefore 

in order to ascertain their origin, high speed 3-D fluorescence microscopy is required. In 
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addition the limited spatial information results in skewed measurements of spark morphology 

[11].  

Currently, the fastest optically sectioning 2-D microscopy techniques for sub-cellular 

imaging include multi-beam confocal microscopes [12] and slit-scanning confocal 

microscopes [13,14]. Slit-scanning confocal microscopy has been used to investigate spark 

properties in time-lapse 2-D imaging (x-y-t) at up to 670 fps with 51230 pixels [13]. 

Recently, this approach has been combined with rapid axial scanning to achieve time-lapse 

imaging of trios of image planes, where three 51231 pixel images separated by 1 micron in 

the vertical direction were acquired within 5.6  ms [15]. 

Another approach to high speed 2-D and 3-D sub-cellular imaging of isolated single cells is 

oblique plane microscopy (OPM). OPM is a light sheet microscopy technique that uses the 

same high NA microscope objective to provide both the fluorescence illumination and 

detection [16],[17].  OPM can therefore be implemented on a standard inverted fluorescence 

microscope and is compatible with a range of conventional sample mounting techniques 

including coverslip and microscope slide, multi-well plates or superfusion system. A 

comparison of OPM to other light sheet microscopy techniques can be found in the 

introduction sections of references [16,17] and the following review articles [18,19]. 

In order to usefully apply OPM to the study of Ca
2+

 dynamics in live cells, a system 

employing multiple excitation laser lines and two high-speed scientific complementary 

metal–oxide–semiconductor (sCMOS) cameras was developed and applied to imaging 

cardiac myocytes in two spectral channels simultaneously with a pixel/voxel rate of ~10
8
 s

-1
. 

This system was then used to achieve video-rate time-lapse 3-D imaging of spontaneous Ca
2+

 

waves and enabled their spatial origins in 3-D to be determined and correlated with local t-

tubule structure. In this initial study on a small number of cells, the results show that in heart 
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failure the majority of spontaneous Ca
2+

 waves originate from regions of the cell where the 

periodic modulation in fluorescence intensity due to the t-tubule structure, which we refer to 

as t-tubule organization, is high. High-speed 2-D OPM was then used to study regional 

differences in spark characteristics within cells and the results were analysed using 

hierarchical statistics. This study therefore exemplifies the use of high-speed 2-D and 3-D 

OPM to acquire structural and functional information from single cardiac myocytes. 

2. Methods 

2.1 Animal Model 

The rat post myocardial infarction HF model was generated as described previously [7]. All 

studies were carried out with the approval of the local Imperial College ethical review board 

and the Home Office, UK, under project licenses 70/6568 and 70/7399. Animal surgical 

procedures and perioperative management were carried out in accordance with the United 

Kingdom Home Office Guide on the Operation of the Animals (Scientific Procedures) Act 

1986, which conforms to the Guide for the Care and Use of Laboratory Animals published by 

the U.S. National Institutes of Health under assurance number A5634-01. Animals were 

anaesthetised using 5% isoflurane, which was reduced to 1.5% once they were intubated and 

ventilated. Pre-operative medication that was administered consisted of: 0.015-0.03mg 

buprenorphine (0.05-0.1mg/kg), 1.25-1.5mg enrofloxacin (5mg/kg), and 2.5 ml 0.9% saline 

subcutaneously. Post-operative pain management consisted of repeated buprenorphine 

administration as required. M-mode echocardiography was performed for phenotyping using 

a Vevo 770 system to assess left ventricular dimensions and blood flow via pulsed wave 

Doppler measurements of the pulmonary artery. 

To validate this model, phenotypic parameters were compared for 6 AMC and 8 HF hearts. A 

statistically significant increase in heart weight:body weight ratio (p = 0.0011) and reduced 
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ejection fraction (p < 0.0001) were present in HF animals. Left ventricular internal diameter 

in diastole was significantly increased in HF (p = 0.0001) and maximal velocity of blood in 

the pulmonary artery was significantly reduced (p = 0.003). Together these measurements 

revealed the presence of cardiac dilatation and global contractile dysfunction which are 

expected in HF. Spontaneous Ca
2+

 wave frequency was assessed in isolated cardiomyocytes 

in cells loaded with Fura-2AM as described previously [20] in n=76 AMC cells from 10 

animals and 79 HF cells from 10 animals. A statistically significant increase in spontaneous 

Ca
2+

 wave frequency was seen in cells from HF rats compared with cells from (AMC 

0.029±0.003; HF 0.016±0.003 waves.s
-1

; p = 0.023). This difference in wave frequency was 

not due to prevailing diastolic cytoplasmic [Ca
2+

] as measured by Fura-2 ratio, which was 

similar in AMC and HF (p = 0.98). 

2.2 Sample preparation for OPM imaging 

Cells were first incubated with 15 μM Fluo-4 AM and 0.16% pluronic acid for 25 mins at 

room temperature. Cellmask Orange at a concentration of 5 µg.ml
-1

 was then added to this 

solution for 5 mins with the temperature increased to 37°C. The suspension of myocytes was 

mixed using a rotary mixer and protected from light during the incubation period. Cells were 

then washed twice and resuspended in a low Ca
2+

 form of normal tyrode (NT) as above. 

Cells were attached to coverslips using mouse laminin (Sigma-Aldrich) and superfused with 

Normal Tyrode (NT) containing (in mM): NaCl (140), KCl (6), glucose (10), HEPES (10), 

MgCl2 (1), CaCl2 (2), pH adjusted to 7.4 with NaOH. Cells were field stimulated via 

platinum electrodes at 1.5 threshold voltage. Cells were field stimulated prior to imaging for 

at least 2 mins at 1 Hz.  
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2.3 OPM system 

The OPM system was based around an inverted microscope (Olympus IX71) that allowed 

imaging of isolated cardiomyocytes in a low volume gravity driven superfusion chamber 

(Warner RC-24N) providing rapid solution flow at 37°C [20]. OPM uses a single high 

numerical aperture microscope objective (O1 in Figure 1) to both deliver a tilted sheet of 

excitation light to the sample and collect the resulting fluorescence emission. It consists of 

three separate microscopes placed in series. The first microscope (O1 and TL[tube lens]1 in 

Figure 1) is the conventional inverted microscope frame and the second (O2 and TL2) is used 

to produce an intermediate image of the specimen (FP2 in Figure 1) where the lateral and 

axial magnifications are equal. A third microscope (O3 and TL3) images a tilted plane within 

the intermediate image onto sCMOS cameras. The plane of observation of the third 

microscope is aligned to overlap the excitation sheet within the sample. The angle between 

the optical axes of O2 and O3 (the OPM angle) was set at 35°. 
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Figure 1. Experimental configuration for the OPM system illustrated with a fluorescent 

sphere (blue) placed in the sample plane. The region in the sphere where fluorescence is 

excited is shown in green. The image of the sphere is illustrated at the image planes in the 

optical system. See text for further detail. M – mirror; DC – dichroic beamsplitter; AOTF – 

acousto-optic tunable filter; SMF – single mode optical fibre; L – spherical lens; C – 

cylindrical lens; FP – front focal plane; BFP – back focal plane; O – microscope objective; 

TL – microscope tube lens; EM – emission filter. 

 

The system used in the current study includes continuous wave laser sources operating at 

457 nm (Twist-25, Cobolt AB), 488 nm (Sapphire 488 LP, Coherent), 514 nm (Fandango-25, 

Cobolt AB) and 561 nm (Jive-25, Cobolt AB). These sources were combined using dichroic 

beamspliters, and their amplitude was controlled using an acousto-optic tunable filter 

(AOTFnC-400.650, AA Optoelectronics). The light was then coupled into a single mode 

optical fibre. The light emitted from the fibre was collimated by lens L1 in Figure 1 (10 
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microscope objective, Olympus), focused in the vertical direction by cylindrical lens C1 (f = 

50 mm) onto the back focal plane of lens L2 (achromatic doublet, f = 25 mm), which 

produced a light sheet at O2 that was tilted at an angle of 35 with respect to the front focal 

plane of O2 (FP2). An image relay consisting of two microscopes placed back to back formed 

by microscope objective O2 (50/0.95 NA, Olympus), tube lenses TL2 (f = 162 mm 

consisting of an f = 150 mm achromatic doublet and an f = -500 mm aplanatic meniscus 

separated by 97 mm) and TL1 (f = 180 mm, Olympus) and microscope objective O1 (60/1.2 

NA water immersion, Olympus) was used to image the light sheet into the sample. The 

resulting fluorescence from the sample was then relayed back to FP2 by the same optics. 

Finally, a plane (coplanar with the illumination light sheet) was imaged by the microscope 

formed by O3 (40/0.6 NA, Nikon) and tube lenses TL3a & TL3b (achromatic doublets, f = 

100 mm) onto two scientific CMOS cameras (sCMOS, PCO.edge, PCO GmbH). The 

effective pixel size at the sample was 0.24 μm. A dichroic beamspliter DC4 (T585LP, 

Chroma) was used to split the fluorescence into two separate spectral detection channels that 

were further defined by emission filters EMa  & EMb (ET630/75M & ET525/50 

respectively). The effective axial position of the light sheet and tilted observation plane in the 

sample was determined by the axial position of O2, which was controlled using a piezo-

electric objective actuator (Physik Instrumente, Germany, part number P-721.CLQ with 

controller E-501.00 using amplifier E-505.00 and sensor control module E-509.C1A). 

Custom-written software running in LabVIEW was used to provide synchronized control of 

the AOTF, piezo-electric objective actuator and camera acquisition. 

The critical alignment steps are that the pupil of O1 should be accurately imaged onto the 

pupil of O2 and that the total magnification provided by microscope 1 (O1 and TL1) and 

microscope 2 (O2 and TL2) should be equal in the lateral and axial directions, see [21]. The 

lateral magnification of microscope 2 can be adjusted by controlling the separation of the 
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achromatic doublet and meniscus lenses forming TL2 [17]. In addition, as the fluorescence 

image is brought to an intermediate focus between O2 and O3, it is important that the whole 

setup is mounted on a vibration isolated optical table, as any lateral vibration of the position 

of O2 or O3 causes the final image to vibrate also. As with any optical imaging system, it is 

corrected to work for a specific sample refractive index and any variation in the sample 

refractive index from the design value will result in aberrations. 

Fluo-4 and CMO were excited using wavelengths of 488 nm and 561 nm respectively. The 

corresponding excitation powers at the back aperture of O1 were ~280 μW for each 

wavelength. This power was distributed over an illumination sheet covering the full width of 

the field of view of the system (limited to 400 m by O2), which is larger than the field 

imaged by the sCMOS camera of 234  49 m.  

Each 2-D acquisition consisted of 15,000 frames of 960200 pixels on each sCMOS camera. 

The camera integration time was set at 1.46 ms and the time between frames was 1.5 ms, 

resulting in an image acquisition rate of 667 frames per second for a total duration of 22.5 s. 

The two image stacks representing the different channels were acquired simultaneously and 

then co-registered using correction parameters determined from an image of a USAF 1951 

test chart (Edmund Optics, Barrington, USA). 

3-D data acquisition consisted of 750 volumes of 96020020 voxels on each sCMOS 

camera. The camera integration and time between frames was the same as for 2-D imaging. 

During this acquisition, the position of the piezo-electric actuator was used to axially translate 

O2. The actuator was driven with an asymmetric saw-tooth motion profile with a 30 ms time 

period where the commanded axial position increased and then a 10 ms time period to allow 

fly-back of the piezo-electric actuator to its initial position ready for the next volume. The 

amplitude of the commanded motion range depended on the size of the cell being imaged and 
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the maximum axial scan range of O2 was 77 μm. The actual position of O2 was recorded by 

a capacitive position sensor, see example in supporting information figure S1, and this 

information was used for volume transformation during image processing. Overall, this 

resulted in an acquisition rate of 25 volumes per second. Co-registration of the image data 

from the two detection channels was performed in the same way as for 2-D data. 

In order to demonstrate the temporal stability of the OPM system during time-lapse 3-D 

imaging, we imaged a volume of fluorescent beads (TetraSpeck™ Microspheres, 0.2 µm, 

fluorescent blue/green/orange/dark red, ref.  T-7280) mounted in agarose. The acquisition 

was performed at 25 volumes per second for a duration of 30 s over an axial scan range of O2 

of 77 μm with the same parameters as described above. We then took three orthogonal 2-D 

slices through this 4-D data set passing through the central position of a single isolated 

fluorescent bead, see supporting information figure S2. By taking the centre-of-mass of these 

plots as a function of time we found that the standard deviation of the measured bead centre 

of mass was 15 nm and 13 nm in the plane of the light sheet and 23 nm perpendicular to the 

plane of the light sheet, which are all well below the optical resolution of the system. The 

plots in supporting information figure S2 show no evidence of unwanted higher frequency 

mechanical resonances of the microscope objective or piezo actuator. 

2.4 Time-lapse 3-D data analysis 

Co-registered 3D datasets were transformed using custom written software in MATLAB 

utilizing the tformarray function to resample the data using linear interpolation from a stack 

of points lying on oblique planes to a conventional Cartesian x-y-z coordinate set where z is 

along the optical axis. Calls to this function were implemented in parallel to reduce the time 

required for data processing. 
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The time-lapse volumetric Fluo-4 data was then viewed manually and the coordinates of the 

origin of each spontaneous Ca
2+

 wave was recorded. 

A commonly used method of detecting t-tubule structure is binarisation of t-tubule images 

using the method proposed by Otsu [22], which works on maximising the separation of the 

pixel values in the two segmented regions. This approach did not work well for our data, 

which we attribute to the bright sarcolemmal staining compared to t-tubules. We therefore 

pursued a Fourier domain filtering technique that takes advantage of the periodic nature of 

transverse tubules. Our approach was applied uniformly to all images with no user input other 

than to identify the location of the peak in Fourier space due to transverse tubules. 

For each wave origin, the sarcolemma visualised in the CMO channel was manually selected, 

see Figure 2a, for each z-plane of the volume, thus producing a region of interest (ROI) 

defining the extent of the interior of the cell in 3-D. The z-plane corresponding to the centre 

of the cell was then found and the region of the image inside the ROI was Fourier 

transformed and the centre of the high spatial frequency peak arising from the periodic t-

tubule structure was selected manually (ut, vt) (Figure 2b). A one-sided high pass filter 

centred on this peak (ut, vt) using a Gaussian window with a full width at half maximum of 

0.35 m
-1

 (Figure 2c) was then applied to the Fourier transform of the image region inside the 

ROI for each z-plane in the stack. The one-sided filtered data was then inverse Fourier 

transformed and the absolute value of the resulting complex image was taken, yielding the t-

tubule modulation map T (Figure 2e). A two-sided high-pass spatial frequency filter (Figure 

2d) of the CMO image with Gaussian windows centred at (ut, vt) and (-ut, -vt) in spatial 

frequency space was also generated to use in later steps (see below). 
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Figure 2. Identification of t-tubule locations within cardiomyocytes. (a) CMO image of a 

single isolated MI cardiac myocyte. Red shows the fluorescence intensity of CMO and white 

shows the sarcolemmal region of interest (ROI). (b) Fourier transform of image shown in A. 

Red cross indicates position of manually located high spatial frequency corresponding to t-

tubule structure. (c) and (d) one- and two-sided Gaussian spatial-frequency filters 

respectively. (e) calculated map of normalised t-tubule modulation MN. (f) Binary map of 

calculated t-tubule locations. Scale bars in (a), (e) & (f) represent 10 m. Scale bars in (b), 

(c) & (d) represent a spatial frequency of 0.25 μm
-1

. 
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So that nuclei were not incorrectly defined as a detubulated cytosolic region, each cell was 

manually assessed for the presence of a nucleus within the section imaged. The nucleus was 

identified by its characteristic ellipsoid shape and the presence of a prolonged Ca
2+

 transient 

during evoked contractions as well as their location corresponding spatially to the nucleus 

identified on the transmission image of each cell. These regions were excluded from further 

analysis. 

2.5 Time-lapse 2-D data analysis 

Sparks were automatically assessed using custom written software in MATLAB to assess 

spark morphology in 2-D, see supporting information S3 for full details. Our spark detection 

algorithm uses the threshold based algorithm of Cheng et al. [23] and Song et al. [24] but is 

extended to the analysis of 2-D time-lapse (x-y-t) datasets as demonstrated previously [25].  

In order to assess the t-tubule organisation at the spatial location of every spark, we averaged 

the 1000 frames of the CMO channel data and used this image to calculate the t-tubule 

organisation map T as described above. The normalised t-tubule organization TN was then 

calculated by dividing T by the average fluorescence intensity of the sarcolemma, <Imembrane>. 

<Imembrane> is a measure of how effectively a given cell has been labelled by the CMO and 

was found by growing the centre line of the sarcolemma (Figure 2a, ROI)  by 3 pixels in both 

directions (resulting in a sarcolemma mask that is  6 pixels/1.4 m wide) and the mean 

fluorescence intensity from the resulting region was calculated. 

In order to generate a binary mask of t-tubule locations, the normalised t-tubule modulation 

image TN (Figure 2e) was thresholded. Regions with MN > 0.015 were defined to be tubulated 

and the same threshold was applied to all cells imaged. The t-tubule map was generated by 

applying the two-sided high-pass spatial frequency filter (Figure 2d) to the CMO image and 

taking the real value of the result. This filtered image was masked by the t-tubule locations 
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and binarised using a threshold of zero. The resulting mask has a mark-space ratio of 1:1 and 

the t-tubule regions were eroded using MATLAB’s imerode function by 0.49 m (2 pixels). 

This process results in an image where a binary t-tubule mask is produced for regions where 

the peak-to-trough value of the t-tubules is more than 6% of the mean value of the membrane 

intensity (Figure 2f). The same data as shown in figure 2f is shown in supporting information 

S4 where the image has been adjusted to show that the detected t-tubules lie along the top of 

the features in the original CMO image. 

The calculated centre of mass for each identified spark allowed both the organization of t-

tubules in its vicinity (normalized modulation) and its distance to the nearest t-tubule to be 

determined. Within tubulated regions the centre of mass of each spark was compared to the 

location of the nearest t-tubule. Epitubular sparks were defined as on the t-tubule (within a 

margin of error of 1 pixel or approx. 0.25 m either side), paratubular sparks were those from 

a region populated with t-tubules but more than 0.25 µm from the nearest t-tubule. 

2.6 Statistical modelling and significance testing 

Statistical analysis was performed using IBM SPSS statistics. Simple parametric statistics 

(Student’s t-tests) were carried out for biometric and echocardiographic data. Spark data was 

hierarchical in nature (e.g. multiple cells from a single isolation, multiple sparks from within 

a single cell), thus linear mixed models are the most appropriate means of analysis [26]. Such 

models take into account the relationships between events which occur within a subject. Part 

of the assessment of hierarchical models includes estimates of covariance parameters which 

give an assessment of whether this intra-subject clustering is significant. For spark data that 

was not significantly clustered within subjects in the hierarchy and where the distribution was 

not Gaussian (i.e. wave frequency), standard tests such as a Mann-Whitney U test was used 

for comparison. 
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Subcellular spark frequency was normalised to area and time, giving final units of 

sparks/100 μm
2
/s. The logarithmic transformations of morphological characteristics were 

used to produce more normally distributed data. These are referred to as LogAmp, LogArea 

and LogFDHM for the logarithm of spark amplitude, area and full duration at half maximum 

(FDHM) respectively. Spark frequency and morphological characteristics were the dependent 

variables in the statistical models. Initial independent variables in each model included 

regional t-tubule morphology, the presence or absence of HF and the interaction between the 

two coded as fixed effects. Each model used was assessed for validity by ensuring predicted 

values closely corresponded to those observed. Residuals were assessed for normality and 

symmetry. A random intercept was included. Type III tests of fixed effects were used to 

decide whether variables were significant (p values pertaining to significance of a parameter 

refer to this) and non-significant independent variables were removed from the model 

stepwise. P-values quoted for significant effects are from the simplified model following 

removal of non-significant terms. 

3. Results 

3.1 OPM resolution and optical efficiency 

The lateral spatial resolution of the optical system was determined by imaging 100 nm 

fluorescent beads (TetraSpeck™ Microspheres, 0.1 µm, fluorescent blue/green/orange/dark 

red, ref.  T-7279) embedded in agarose gel approximately 1 mm thick on a coverslip. The 

3-D volume was acquired by scanning the piezo-electric actuator controlling O2 (see Figure 

1) over a range of 100 μm and 100 evenly spaced images were recorded. 17 individual beads 

were identified in the raw image data and the PSF full-width at half maximum (FWHM) in 

the plane of illumination, the FWHM perpendicular to the plane of illumination and the axial 

position, was determined for each one. The PSF FWHM in the plane of illumination was 
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found to be below 0.5 μm over an axial refocusing range of 65 μm. As the angular acceptance 

of O1 (NA = 1.2, n = 1.33) is 64°, this means that the OPM collection half-angle can be 

estimated to be 64 - 35 = 29°, corresponding to a collection NA of 0.64, see figure 2 of 

reference [17], and gives a predicted point spread function FWHM of 0.42 μm in reasonable 

agreement with the measured value. 

The illumination sheet FWHM was measured using a thin fluorescent sheet to be 3.8 μm for 

both 488 nm and 561 nm excitation and the sheet remained below a width of 3.8 2 , i.e. 

the confocal parameter, over a range of 100 μm along the illumination sheet propagation 

direction. The total radiant exposure to the sample in the direction of the light sheet 

illumination was therefore estimated to be 4.110
6
 J.m

-2
 during 2-D time-lapse imaging and 

2.110
5
 J.m

-2
 during 3-D time-lapse imaging. 

The FWHM of the PSF in the direction perpendicular to the illumination plane was measured 

to be below 2.3 μm over an axial refocusing range of 100 μm. Theoretically, this is 

determined by the product of the excitation sheet profile and the axial profile of the collection 

PSF [27]. The axial collection PSF FWHM can be estimated using 1.77n/NA
2
 =  3.0 μm 

which, if approximated as a Gaussian and combined with the measured illumination sheet 

thickness, yields a predicted value of 2.4 μm again in reasonable agreement with the 

measured value. 

The collection efficiency of the OPM system is reduced compared to direct detection of the 

fluorescence signal in focal plane FPi (see Figure 1) due to two factors. First, only a part of 

the pupil of O1 is utilised as the pupil aperture of O3 blocks some rays and this geometric 

transmission factor tgeom can be calculated by the overlap of two cones on the surface of a unit 

sphere, see Figure 3a, where the two cones describe the collection cones of O1 and O3. The 

collection cone of O2 is larger than O1 and so does not limit the geometrical collection 
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efficiency. For an OPM angle of 35°, tgeom is calculated to be 0.54. The second factor toptics is 

the transmission of the additional optical elements in the detection beam path after FPi. This 

is dominated by the transmission of O2 and O3. The manufacturers’ stated transmission for 

both O2 and O3 is 90% at 520 nm. Including the total transmission of the AR coated tube 

lenses TL2 and TL3 as 98% (total of 6 surfaces each at ~99.7%) gives an estimated value of 

toptics as 0.8. 

 

Figure 3. Measurement of the relative collection efficiency of OPM. a) The red cone 

illustrates the collection solid angle of objective 1 (see Figure 1) on the surface of the unit 

sphere. The blue cone shows the corresponding collection cone of objective 3 projected onto 

the same coordinate system. The overlap on the surface of the unit sphere between the two 

cones is shown in yellow. b) Plot of measured relative OPM collection efficiency as a 

function of OPM angle together with a fit to the theoretically predicted curve. 

 

The collection efficiency of the OPM system relative to focal plane FPi (see Figure 1) was 

measured as a function of the angle between the optical axes of O2 and O3 (the OPM angle) 

by imaging single 100 nm fluorescent beads placed in the centre of the focal plane of O1. A 

camera (Andor Luca S) was placed first at FPi and then in the position ‘Camera A’ with 

dichroic DC4 removed. Multiple images were acquired between the two locations to ensure 
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that no photobleaching was occurring. The same fluorescence emission filter and camera was 

used for both measurements. The experimental results are presented in Figure 3b together 

with a fit to the theoretical model with toptics as the only free parameter. The value of toptics 

returned was 0.37, which is lower than the value estimated above. A potential explanation for 

this discrepancy could be due to the manufacturers’ reported transmission efficiencies of 

microscope objectives O2 and O3 being for the case of a uniformly illuminated pupil rather 

than the case of an isotropically emitting fluorescent object as measured here: isotropic 

fluorescence emission causes more energy to be concentrated at the edges of the pupil where 

ray incident angles are higher and anti-reflection coatings are likely to exhibit reduced 

performance. The overall relative OPM collection efficiency for an OPM angle of 35° was 

measured to be 21±1%. 

3.2 Study of spontaneous Ca
2+

 wave origins from time-lapse 3-D OPM imaging 

16 cells from 4 AMC animals and 18 cells from 5 HF animals were studied in 3-D to assess 

sites of spontaneous Ca
2+

 wave origin. One cell exhibiting almost continuous generation of 

Ca
2+

 waves was excluded from the study. Table 1 shows the number of spontaneous Ca
2+

 

waves recorded. For cells in which at least one wave occurred, the median number of waves 

per cell was 3.5. 

Figure 4 and supporting movie S5 show montages of a Ca
2+

 wave recorded by time-lapse  

3-D OPM imaging. Supporting figure S6 shows conventional ΔF/F0 traces for two regions of 

interest within the cell. The spatial origin of the wave can be seen clearly and was located 

manually in 3-D. We employed a Fourier analysis approach to measure the periodic 

modulation of CMO fluorescence intensity due to the t-tubule structure (see Methods) for 

every voxel within the cell, which we refer to as the t-tubule organization. What this assesses, 

similar to other measures of t-tubule organization defined in previous literature [8], is 

conformance with a striated staining pattern with tubules running in a transverse direction. As 
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we had determined the position of the origin of the wave in 3-D, we were therefore able to 

then lookup the t-tubule organization at that point. 

 

Figure 4. Montages showing time-lapse 3-D OPM data of a single spontaneous calcium 

wave. a) Fluo-4 and b) CMO montages showing images spaced 2.2 μm apart axially (left to 

right across montage) and every other acquired volume in time (top to bottom), i.e. rows are 

80 ms apart. Scale bar 80 μm. (c-d) Close-up of the z-plane containing the spontaneous 

calcium wave origin. Here, every acquired time-point is shown, i.e. images are 40 ms apart. 

Scale bar 13 μm. 

 

Figure 5a shows an example histogram of the t-tubule organization values for all voxels 

within one cell (same cell as shown in Figure 4), together with the t-tubule organization 

values obtained at each of three spontaneous Ca
2+

 wave origins observed within the interior 

of that cell. For comparison, a histogram of the organization values detected for regions 

outside the cell, i.e. those organization values generated by noise alone, is also shown (black 

A B C Dz = 0 μm z = 34 μm

t = 0 s

t = 0.88 s

z = 19 μm

t = 0.24 s

t = 0.44 s
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curve).  The black curve provides a lower limit for the ability of the system to detect low t-

tubule organization. 

 

Figure 5. T-tubule organization in relation to wave origin. (a) Blue curve shows a histogram 

of calculated t-tubule organization for all voxels in the interior of cell (same as shown in 

Figure 2). Black dashed curve shows a histogram of calculated organization for all voxels 

outside the cell. Red lines indicate the t-tubule organization values obtained at the origin of 

each spontaneous Ca
2+

 wave observed for this cell. (b) T-tubule organization values for each 

spontaneous Ca
2+

 wave origin for each cell (blue dots). For comparison, the median t-tubule 

organization from all voxels are also shown for that cell (green bar) and the 95
th

 percentile 

of the noise for that cell (red bar). 

 

Figure 5b shows the t-tubule organization values measured at the origin of each wave for 

each cell and provides the median t-tubule organization and the 95
th

 percentile of the 

organization due to noise alone for each cell as comparison. In HF 12 out of 14 wave origins 

occur at locations with t-tubule organizations greater than the median t-tubule organization 

for that cell. 

If a voxel within a cell is chosen at random, there is a 50% probability of it having a higher t-

tubule organization than the median t-tubule organization for that cell. Therefore, using the 

binomial distribution, the probability of observing by chance 12 or more wave origins with t-
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tubule organizations greater than the median t-tubule organization for that cell is p = 0.0065, 

indicating that our observation is statistically significant. 

3.3 Spark data from time-lapse 2-D OPM imaging 

Figure 6 illustrates how OPM can be used to image calcium sparks in 2-D at 667 frames per 

second. Figures 6b&c show the extent of information available from this form of imaging 

compared to standard confocal linescan data – an x-t linescan dataset is available at each y co-

ordinate of the cell. Figure 6d shows the conventional ΔF/F0 trace for the pixel corresponding 

to the vertical dashed grey line in figure 6(c). 
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Figure 6. Time-lapse 2-D spark imaging with OPM. (a) OPM image of a single isolated MI 

cardiac myocyte acquired at time t = 600 ms from the start of image acquisition. Green and 

red show the fluorescence intensity of Fluo4 and CMO respectively. Scale bar 10 m. x-t 

slices acquired simultaneously through the Fluo4 dataset are shown along the lines at (b) 

y = 26 m and (c) y = 30 m. White horizontal lines on line-scan show 600 ms timepoint 

corresponding to 2D image. Automatically detected sparks are shown bounded in blue. (d) 

shows the conventional (F(t)-F0)/F0 = ΔF/F0 trace for the pixel corresponding to the vertical 

dashed grey line in figure 6(c). Here F0 the fluorescence intensity measured at t = 0 for this 

pixel. 
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In total, 1271 sparks were assessed from 5 myocytes from 3 AMC rats and 3239 from 7 

myocytes from 3 HF rats. Spark frequency and morphology was assessed within the different 

regions of each cell which we define as tubulated (Tn > 0.015) and detubulated (Tn <= 0.015). 

We divided the tubulated region into epitubular (within 0.25 μm of a t-tubule) and 

paratubular (between t-tubules – further than 0.25 μm). 

There were 2 analyses with respect to spark frequency: first, spark frequency was compared 

between detubulated and tubulated regions; and second, frequency was compared within the 

tubulated region between epitubular and paratubular sub-regions. Spark frequency was 

significantly greater in tubulated compared with detubulated regions (p=0.01, Figure 7a). 

Within the tubulated region there was a significantly higher spark frequency in epitubular 

regions compared with paratubular regions (p<0.0001, Figure 7b). This preferential 

occurrence of sparks at t-tubules within tubulated regions is illustrated by a map of spark 

occurrence within a single myocyte in Figure 7c. 
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Figure 7. Spark frequency varies according to cell region. (a) There is a significant increase 

in spark frequency in tubulated regions compared to detubulated regions. (b) Epitubular 

regions have significantly higher spark frequency than paratubular regions. (c) Map of t-

tubule locations (green) and their correspondence to spark location (white dots) during a 1.5 

s period in a single HF cell. Scale bar 10m. Sparks are localized on top of, or very close to 

t-tubules with few sparks in paratubular or detubulated regions. Error bars show the 

standard error. 

 

Spark morphology was then investigated with respect to subcellular region. LogArea was 

significantly greater in sparks in tubulated regions compared with those in detubulated 

regions (p=0.007). Within tubulated regions, paratubular sparks had significantly greater area 

than epitubular sparks (p<0.001). LogFDHM was no different in tubulated regions compared 
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with detubulated regions (p=0.926). However, within tubulated regions, paratubular sparks 

had significantly greater duration than epitubular sparks (p<0.001). 

Using the hierarchical models we assessed if the regional differences depended on whether 

the cell was from an AMC or HF rat by assessing “interaction” between region and HF. For 

none of the above measures did this interaction term suggest a difference in relationship 

between subcellular location and spark frequency/morphology depending on whether the cell 

was from a HF or AMC rat.  

In the limited number of cells studied, the results suggest that in both AMC and HF cells, 

sparks are more frequent within tubulated regions and in particular in epitubular regions 

rather than paratubular. In addition spark area is larger in tubulated regions (particularly in 

paratubular regions) and spark duration is also greater in paratubular regions. Overall these 

results demonstrate that OPM can be used to measure spark parameters within isolated 

cardiomyocytes and, importantly, to correlate these parameters with spark spatial location 

with respect to the t-tubule structure. 

4. Discussion 

4.1 Imaging methodology 

We have demonstrated that OPM allows imaging of single isolated cardiac myocytes with 

high temporal resolution in both 2-D and 3-D. We have previously demonstrated the potential 

of OPM to image sparks in isolated cardiomyocytes [17], but significant advances to the 

system including multiple excitation wavelengths, high resolution and high speed sCMOS 

cameras and addition of a superfusion system have enabled us to use the system to study the 

3-D origin of spontaneous calcium waves in the context of the t-tubule network for first time. 
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Although CMO has a track record of t-tubule staining comparable to that of DI-8-ANEPPS 

[28], we found that its combination with Fluo-4 Ca
2+

 imaging is particularly useful since the 

overlap of the excitation spectrum of CMO with Fluo-4 is less than that of DI-8-ANNEPS 

with Fluo-4. This allows the relative signal levels in the Fluo-4 and CMO channels to be 

controlled independently of staining level by varying the relative powers of the excitation 

beams for the two probes. In addition to the combination of dyes, we have also used a method 

based on 2-D Fourier-domain filtering for assessment of t-tubule organization through the 

calculation of our t-tubule organization parameter. 

4.2 OPM of calcium waves in HF 

We used a rat HF model that we have previously shown to exhibit enhanced spontaneous SR 

Ca
2+

 release [29] as well as deranged t-tubule structure [7]. We wished to explore if the 

altered t-tubule organization of these cardiomyocytes influenced where waves originate by 

locating their origin in 3-D using CMO to stain the t-tubule network. To our knowledge this 

is the first example of 3-D localization of wave origin within a cardiomyocyte. The 

simultaneous time-lapse volumetric imaging of both t-tubules and Ca
2+

 allowed us to show in 

the small number of cells studied (n = 5) that in HF waves occur more frequently in regions 

of organized t-tubule structure than in regions with disorganized t-tubules.  

It is conceivable that frequent sparks in the epitubular zones might lead to a particularly high 

Ca
2+

 in the dyadic space that could result in Ca
2+

 induced Ca
2+

 release (CICR) in adjacent 

RyR2 clusters and thus initiate the fire-diffuse-fire process thought to be responsible for wave 

propagation [30]. The longer, larger sparks in the paratubular zones of well-organized regions 

of t-tubules might also produce large rises in dyadic Ca
2+

 and could influence a larger number 

of surrounding RyR2 clusters to cause internal CICR. Further data is required to confirm or 

reject this finding and, if confirmed, to determine the mechanisms involved. 
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4.3 OPM of calcium sparks 

Using the same microscope in 2-D mode allows greater temporal resolution and allows us to 

accurately characterise faster, smaller Ca
2+

 release events (sparks), whilst still considering 

their position relative to t-tubules.  

Previous studies have assessed spontaneous Ca
2+

 spark characteristics in relation to t-tubule 

structure. Song et al. provided the first exploration of the possibility that subcellular 

heterogeneity of t-tubules might result in differences in spontaneous SR Ca
2+

 release in their 

publications identifying “orphaned RyRs” which were not in the vicinity of t-tubules and 

therefore local dihydropyridine receptors (DHPRs) in HF models [31],[10]. They 

hypothesized that regions of SR containing orphaned RyRs would become Ca
2+

 overloaded 

and more prone to spontaneous Ca
2+

 sparks. Louch et al. provided experimental data by 

simultaneously imaging t-tubules and spontaneous Ca
2+

 sparks in control and post-MI mice 

using confocal line-scanning [32]. They found that the vast majority (>90%) of sparks, 

occurred at sites of t-tubules (i.e. equivalent to our epitubular region). They also found that 

repeating sparks (i.e. those occurring at the same location as an earlier spark) had similar 

morphologies as the earlier spark, compared with pairs of sparks from different randomly 

selected locations, suggesting a structural basis for differences in spark morphology. 

Furthermore in the post-MI mice there was a population of sparks with increased FDHM 

(slow sparks). Biesmans et al. also assessed how detubulation might affect spontaneous 

sparks, using a pig model of ischaemic cardiomyopathy [33]. Uncoupled regions (remote 

from t-tubules) exhibited reduced spark frequency but prolonged spark duration.  

Our data also show a significant increase in spark frequency (by a factor of 1.4 – figure 7a) in 

tubulated regions compared with detubulated regions. Within regions classified as tubulated, 

sparks were more frequent in epitubular regions compared with paratubular regions (Figure 

7b). There were also significant differences in spark morphology for different regions. Spark 
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area was greater in tubulated compared with detubulated regions. Within regions classified as 

tubulated, paratubular sparks had a greater area and duration compared with the epitubular 

sparks. These results could potentially explain why, within an individual cardiomyocyte, Ca
2+

 

waves originate from regions in which t-tubules are most prominent, since such regions 

produce the most frequent, largest and longest Ca
2+

 sparks. With respect to spark morphology 

data, our findings cannot be compared directly with previous work because sparks were 

assessed in 2-D versus 1-D in previous work and because OPM provides a poorer spatial 

resolution than confocal microscopy. Nonetheless, all of the results presented in this paper 

are direct comparisons of spark dimensions between regions within cells and are therefore 

valid comparisons irrespective of the spatial resolution provided by OPM. In addition, our 

classification of spark location was more detailed than in previous work including a 

paratubular category as well as epitubular and detubulated regions. 

5. Conclusions 

We have presented a measurement of the collection efficiency of OPM relative to direct 

detection of the fluorescence signal in a conventional microscope and shown it to be 21% for 

an OPM angle of 35° in our setup. In exchange for this lower detection efficiency, OPM has 

the advantages associated with all light-sheet microscopy techniques that only the focal plane 

being imaged is illuminated, i.e. there is no out-of-plane photobleaching or phototoxicity and 

that no image processing or moving parts are required to obtain an optically sectioned image 

enabling optically sectioned images to be acquired directly at the frame rate of the imaging 

camera employed. 

Through the novel use of OPM we have been able for the first time to localize the origin of 

Ca
2+

 waves in 3-D. We have dual-stained the cells so that the origin is contextualized within 

the t-tubule structure of the myocyte. We have found in an initial study of a small number of 
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HF cells (n = 5) that the greater frequency of waves in HF myocytes originates not from the 

abnormal detubulated regions but from regions of preserved t-tubule organization. Sparks 

were also found to be more frequent in regions of high t-tubule organization, particularly in 

the epitubular zone. The morphology of sparks also varies according to region with larger and 

more prolonged sparks in paratubular zones. Further studies are required to confirm these 

results in a larger population of cells. 

Supporting Information 

S1 Figure. Example plot showing commanded piezo actuator position and actual actuator 

position recorded by the capacitive position sensor during time-lapse 3-D image acquisition. 

S2 Figure. OPM system stability measured from a time-lapse 3-D volume (dimensions 

x,y,z,t) of a single 200 nm fluorescent bead. The acquisition was performed at 25 volumes per 

second over an axial scan range of O2 of 77 μm with the same acquisition parameters as the 

time-lapse 3-D imaging of the cardiac myocytes. From the resulting 4-D data set we took 2-D 

plots through the centre of the bead to illustrate the stability of the system during image 

acquisition. a) x,t, b) y,t, c) z,t plots through the centre of the bead. Here x and y are 

orthogonal and in the plane of the illumination sheet with x parallel to the light sheet 

illumination direction. z is perpendicular to the illumination sheet. 

S3 Text. Details of spark detection algorithm 

S4 Figure. Illustration of the t-tubule localisation algorithm showing the alignment of the t-

tubules in the original CMO image relative to the t-tubules detected by the t-tubule detection 

algorithm. a) CMO image (red) and b) same image overlayed with the output of the t-tubule 

detection algorithm (green) eroded to enable the original tubulation to be seen underneath. 
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The brightness and contrast of both channels have been adjusted to enable them to be 

compared more easily. Scale bar 10 μm. 

S5 Movie. Video of time-lapse 3-D OPM data of spontaneous calcium wave origin. Montage 

shows images spaced 2.2 μm apart axially (left to right across montage) with Fluo-4 shown in 

green and CMO in red. Volumes were acquired 40 ms apart. Scale bar 80 μm. 

S6 Figure. Line profiles of the fluorescence intensity in the Fluo4 channel as a function of 

time for two 55 pixel regions of the cell indicated in the inset. Data shown is the same as 

that in figure 4 and from the plane z = 21 μm. Values are plotted as (F(t)-F0)/F0 = ΔF/F0 

where F0 is the fluorescence intensity measured for each region at the start of each trace. We 

note that the second ROI at the bottom of the image is situated in a region of the cell 

experiencing motion due to the contraction of the cell, as can be seen in supporting 

information movie S5. Scale bar 10 μm. 
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Figure Captions 

 

Figure 1. Experimental configuration for the OPM system illustrated with a fluorescent 

sphere (blue) placed in the sample plane. The region in the sphere where fluorescence is 

excited is shown in green. The image of the sphere is illustrated at the image planes in the 

optical system. See text for further detail. M – mirror; DC – dichroic beamsplitter; AOTF – 

acousto-optic tunable filter; SMF – single mode optical fibre; L – spherical lens; C – 

cylindrical lens; FP – front focal plane; BFP – back focal plane; O – microscope objective; 

TL – microscope tube lens; EM – emission filter. 

Figure 2. Identification of t-tubule locations within cardiomyocytes. (a) CMO image of a 

single isolated MI cardiac myocyte. Red shows the fluorescence intensity of CMO and white 

shows the sarcolemmal region of interest (ROI). (b) Fourier transform of image shown in A. 

Red cross indicates position of manually located high spatial frequency corresponding to t-

tubule structure. (c) and (d) one- and two-sided Gaussian spatial-frequency filters 

respectively. (e) calculated map of normalised t-tubule modulation MN. (f) Binary map of 

calculated t-tubule locations. Scale bars in (a), (e) & (f) represent 10 m. Scale bars in (b), (c) 

& (d) represent a spatial frequency of 0.25 μm
-1

. 

Figure 3. Measurement of the relative collection efficiency of OPM. a) The red cone 

illustrates the collection solid angle of objective 1 (see Figure 1) on the surface of the unit 

sphere. The blue cone shows the corresponding collection cone of objective 3 projected onto 

the same coordinate system. The overlap on the surface of the unit sphere between the two 

cones is shown in yellow. b) Plot of measured relative OPM collection efficiency as a 

function of OPM angle together with a fit to the theoretically predicted curve. 

Figure 4. Montages showing time-lapse 3-D OPM data of a single spontaneous calcium 

wave. a) Fluo-4 and b) CMO montages showing images spaced 2.2 μm apart axially (left to 

right across montage) and every other acquired volume in time (top to bottom), i.e. rows are 

80 ms apart. Scale bar 80 μm. (c-d) Close-up of the z-plane containing the spontaneous 

calcium wave origin. Here, every acquired time-point is shown, i.e. images are 40 ms apart. 

Scale bar 13 μm. 

Figure 5. T-tubule organization in relation to wave origin. (a) Blue curve shows a histogram 

of calculated t-tubule organization for all voxels in the interior of cell (same as shown in 

Figure 2). Black dashed curve shows a histogram of calculated organization for all voxels 

outside the cell. Red lines indicate the t-tubule organization values obtained at the origin of 

each spontaneous Ca
2+

 wave observed for this cell. (b) T-tubule organization values for each 

spontaneous Ca
2+

 wave origin for each cell (blue dots). For comparison, the median t-tubule 

organization from all voxels are also shown for that cell (green bar) and the 95
th

 percentile of 

the noise for that cell (red bar). 
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Figure 6. Time-lapse 2-D spark imaging with OPM. (a) OPM image of a single isolated MI 

cardiac myocyte acquired at time t = 600 ms from the start of image acquisition. Green and 

red show the fluorescence intensity of Fluo4 and CMO respectively. Scale bar 10 m. x-t 

slices acquired simultaneously through the Fluo4 dataset are shown along the lines at (b) 

y = 26 m and (c) y = 30 m. White horizontal lines on line-scan show 600 ms timepoint 

corresponding to 2D image. Automatically detected sparks are shown bounded in blue. (d) 

shows the conventional (F(t)-F0)/F0 = ΔF/F0 trace for the pixel corresponding to the vertical 

dashed grey line in figure 6(c). Here F0 the fluorescence intensity measured at t = 0 for this 

pixel. 

Figure 7. Spark frequency varies according to cell region. (a) There is a significant increase 

in spark frequency in tubulated regions compared to detubulated regions. (b) Epitubular 

regions have significantly higher spark frequency than paratubular regions. (c) Map of t-

tubule locations (green) and their correspondence to spark location (white dots) during a 1.5 s 

period in a single HF cell. Scale bar 10m. Sparks are localized on top of, or very close to t-

tubules with few sparks in paratubular or detubulated regions. Error bars show the standard 

error. 

Tables 

 

Table 1. Summary of the number of cells used for time-lapse 3-D imaging of 

spontaneous calcium waves. 

 No. of 

animals 

No. of 

cells 

No. of 

cells 

with 

waves 

Total 

no. of 

waves 

No. of waves with 

origin not 

overlapping 

sarcolemma 

AMC 4 16 1 1 1 

HF 5 18 5 19 14 

Total 9 34 6 20 15 

 

 

  



36 
 

Graphical Abstract: 

 

Oblique plane microscopy (OPM) enables high speed 2-D and 3-D fluorescence microscopy 

on a standard inverted microscope frame. In this paper OPM has been used to determine the 

spatial origin in 3-D of spontaneous calcium waves (green) in isolated cardiac myocytes for 

the first time and also enables the point of origin to be correlated with the cell transverse 

tubule structure (red). 

 

 

 

t = 0.24 s t = 0.44 s


