3,984 research outputs found
Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators
Let B=A+K where A is a bounded selfadjoint operator and K is an element of
the von Neumann-Schatten ideal S_p with p>1. Let {\lambda_n} denote an
enumeration of the discrete spectrum of B. We show that \sum_n
\dist(\lambda_n, \sigma(A))^p is bounded from above by a constant multiple of
|K|_p^p. We also derive a unitary analog of this estimate and apply it to
obtain new estimates on zero-sets of Cauchy transforms.Comment: Differences to previous version: Extended Introduction, new Section
5, additional references. To appear in Int. Eq. Op. Theor
Global Optimization by Energy Landscape Paving
We introduce a novel heuristic global optimization method, energy landscape
paving (ELP), which combines core ideas from energy surface deformation and
tabu search. In appropriate limits, ELP reduces to existing techniques. The
approach is very general and flexible and is illustrated here on two protein
folding problems. For these examples, the technique gives faster convergence to
the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002
Mott transitions with partially filled correlated orbitals
We investigate the metal-insulator Mott transition in a generalized version of the periodic Anderson model, in which a band of itinerant non-interacting electrons is hybridrized with a narrow and strongly correlated band. Using the dynamical mean-field theory, we show that the precondition for the Mott transition is that the total filling of the two bands takes an odd integer value. Unlike the conventional portrait of the Mott transition, this condition corresponds to a non-integer filling of the correlated band. For an integer constant occupation of the correlated orbitals the system remains a correlated metal at arbitrary large interaction strength. We picture the transition at a non-integer filling of the correlated orbital as the Mott localization of the singlet states between itinerant and strongly interacting electrons, having occupation of one per lattice site. We show that the Mott transition is of the first order and we characterize the nature of the resulting insulating state with respect to relevant physical parameters, such as the charge-transfer energy
Non-Fermi liquid behavior with and without quantum criticality in Ce(1-x)Yb(x)CoIn(5)
One of the greatest challenges to Landau's Fermi liquid theory - the standard
theory of metals - is presented by complex materials with strong electronic
correlations. In these materials, non-Fermi liquid transport and thermodynamic
properties are often explained by the presence of a continuous quantum phase
transition which happens at a quantum critical point (QCP). A QCP can be
revealed by applying pressure, magnetic field, or changing the chemical
composition. In the heavy-fermion compound CeCoIn, the QCP is assumed to
play a decisive role in defining the microscopic structure of both normal and
superconducting states. However, the question of whether QCP must be present in
the material's phase diagram to induce non-Fermi liquid behavior and trigger
superconductivity remains open. Here we show that the full suppression of the
field-induced QCP in CeCoIn by doping with Yb has surprisingly little
impact on both unconventional superconductivity and non-Fermi liquid behavior.
This implies that the non-Fermi liquid metallic behavior could be a new state
of matter in its own right rather then a consequence of the underlying quantum
phase transition.Comment: 7 pages, 5 figure
Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations
We investigate the solvent-accessible area method by means of Metropolis
simulations of the brain peptide Met-Enkephalin at 300. For the energy
function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The
simulations are compared with one another, with simulations with a distance
dependent electrostatic permittivity , and with vacuum
simulations (). Parallel tempering and the biased Metropolis
techniques RM are employed and their performance is evaluated. The measured
observables include energy and dihedral probability densities (pds), integrated
autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be
unsuitable for these simulations. For all other systems selected configurations
are minimized in search of the global energy minima, which are found for the
vacuum and the system, but for none of the ASP models. Other
observables show a remarkable dependence on the ASPs. In particular, we find
three ASP sets for which the autocorrelations at 300K are considerably
smaller than for vacuum simulations.Comment: 10 pages and 8 figure
Determining the crystal-field ground state in rare earth Heavy Fermion materials using soft-x-ray absorption spectroscopy
We infer that soft-x-ray absorption spectroscopy is a versatile method for
the determination of the crystal-field ground state symmetry of rare earth
Heavy Fermion systems, complementing neutron scattering. Using realistic and
universal parameters, we provide a theoretical mapping between the polarization
dependence of Ce spectra and the charge distribution of the Ce
states. The experimental resolution can be orders of magnitude larger than the
crystal field splitting itself. To demonstrate the experimental
feasibility of the method, we investigated CePdSi, thereby settling an
existing disagreement about its crystal-field ground state
Long Range Order at Low Temperature in Dipolar Spin Ice
Recently it has been suggested that long range magnetic dipolar interactions
are responsible for spin ice behavior in the Ising pyrochlore magnets and . We report here numerical
results on the low temperature properties of the dipolar spin ice model,
obtained via a new loop algorithm which greatly improves the dynamics at low
temperature. We recover the previously reported missing entropy in this model,
and find a first order transition to a long range ordered phase with zero total
magnetization at very low temperature. We discuss the relevance of these
results to and .Comment: New version of the manuscript. Now contains 3 POSTSCRIPT figures as
opposed to 2 figures. Manuscript contains a more detailed discussion of the
(i) nature of long-range ordered ground state, (ii) finite-size scaling
results of the 1st order transition into the ground state. Order of authors
has been changed. Resubmitted to Physical Review Letters Contact:
[email protected]
The propargyl rearrangement to functionalised allyl-boron and borocation compounds
A diverse range of Lewis acidic alkyl, vinyl and aryl boranes and borenium compounds that are capable of new carbon–carbon bond formation through selective migratory group transfer have been synthesised. Utilising a series of heteroleptic boranes [PhB(C6F5)2 (1), PhCH2CH2B(C6F5)2 (2), and E-B(C6F5)2(C6F5)C=C(I)R (R=Ph 3 a, nBu 3 b)] and borenium cations [phenylquinolatoborenium cation ([QOBPh][AlCl4], 4)], it has been shown that these boron-based compounds are capable of producing novel allyl- boron and boronium compounds through complex rearrangement reactions with various propargyl esters and carbamates. These reactions yield highly functionalised, synthetically useful boron substituted organic compounds with substantial molecular complexity in a one-pot reaction
Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer
The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (T(UM)) using 13-parameter FACS single cell index sorting. TCRαβ sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and T(UM) occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8(+) T cells. Expanded TIL clones identified by paired TCRαβ sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRβ repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1(-) TIM-3(-). To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue
- …