3,984 research outputs found

    Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators

    Full text link
    Let B=A+K where A is a bounded selfadjoint operator and K is an element of the von Neumann-Schatten ideal S_p with p>1. Let {\lambda_n} denote an enumeration of the discrete spectrum of B. We show that \sum_n \dist(\lambda_n, \sigma(A))^p is bounded from above by a constant multiple of |K|_p^p. We also derive a unitary analog of this estimate and apply it to obtain new estimates on zero-sets of Cauchy transforms.Comment: Differences to previous version: Extended Introduction, new Section 5, additional references. To appear in Int. Eq. Op. Theor

    Global Optimization by Energy Landscape Paving

    Get PDF
    We introduce a novel heuristic global optimization method, energy landscape paving (ELP), which combines core ideas from energy surface deformation and tabu search. In appropriate limits, ELP reduces to existing techniques. The approach is very general and flexible and is illustrated here on two protein folding problems. For these examples, the technique gives faster convergence to the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002

    Mott transitions with partially filled correlated orbitals

    Get PDF
    We investigate the metal-insulator Mott transition in a generalized version of the periodic Anderson model, in which a band of itinerant non-interacting electrons is hybridrized with a narrow and strongly correlated band. Using the dynamical mean-field theory, we show that the precondition for the Mott transition is that the total filling of the two bands takes an odd integer value. Unlike the conventional portrait of the Mott transition, this condition corresponds to a non-integer filling of the correlated band. For an integer constant occupation of the correlated orbitals the system remains a correlated metal at arbitrary large interaction strength. We picture the transition at a non-integer filling of the correlated orbital as the Mott localization of the singlet states between itinerant and strongly interacting electrons, having occupation of one per lattice site. We show that the Mott transition is of the first order and we characterize the nature of the resulting insulating state with respect to relevant physical parameters, such as the charge-transfer energy

    Non-Fermi liquid behavior with and without quantum criticality in Ce(1-x)Yb(x)CoIn(5)

    Full text link
    One of the greatest challenges to Landau's Fermi liquid theory - the standard theory of metals - is presented by complex materials with strong electronic correlations. In these materials, non-Fermi liquid transport and thermodynamic properties are often explained by the presence of a continuous quantum phase transition which happens at a quantum critical point (QCP). A QCP can be revealed by applying pressure, magnetic field, or changing the chemical composition. In the heavy-fermion compound CeCoIn5_5, the QCP is assumed to play a decisive role in defining the microscopic structure of both normal and superconducting states. However, the question of whether QCP must be present in the material's phase diagram to induce non-Fermi liquid behavior and trigger superconductivity remains open. Here we show that the full suppression of the field-induced QCP in CeCoIn5_5 by doping with Yb has surprisingly little impact on both unconventional superconductivity and non-Fermi liquid behavior. This implies that the non-Fermi liquid metallic behavior could be a new state of matter in its own right rather then a consequence of the underlying quantum phase transition.Comment: 7 pages, 5 figure

    Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations

    Get PDF
    We investigate the solvent-accessible area method by means of Metropolis simulations of the brain peptide Met-Enkephalin at 300K K. For the energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The simulations are compared with one another, with simulations with a distance dependent electrostatic permittivity ϵ(r)\epsilon (r), and with vacuum simulations (ϵ=2\epsilon =2). Parallel tempering and the biased Metropolis techniques RM1_1 are employed and their performance is evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other systems selected configurations are minimized in search of the global energy minima, which are found for the vacuum and the ϵ(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, we find three ASP sets for which the autocorrelations at 300 K are considerably smaller than for vacuum simulations.Comment: 10 pages and 8 figure

    Determining the crystal-field ground state in rare earth Heavy Fermion materials using soft-x-ray absorption spectroscopy

    Full text link
    We infer that soft-x-ray absorption spectroscopy is a versatile method for the determination of the crystal-field ground state symmetry of rare earth Heavy Fermion systems, complementing neutron scattering. Using realistic and universal parameters, we provide a theoretical mapping between the polarization dependence of Ce M4,5M_{4,5} spectra and the charge distribution of the Ce 4f4f states. The experimental resolution can be orders of magnitude larger than the 4f4f crystal field splitting itself. To demonstrate the experimental feasibility of the method, we investigated CePd2_2Si2_2, thereby settling an existing disagreement about its crystal-field ground state

    Long Range Order at Low Temperature in Dipolar Spin Ice

    Full text link
    Recently it has been suggested that long range magnetic dipolar interactions are responsible for spin ice behavior in the Ising pyrochlore magnets Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} and Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}}. We report here numerical results on the low temperature properties of the dipolar spin ice model, obtained via a new loop algorithm which greatly improves the dynamics at low temperature. We recover the previously reported missing entropy in this model, and find a first order transition to a long range ordered phase with zero total magnetization at very low temperature. We discuss the relevance of these results to Dy2Ti2O7{\rm Dy_{2}Ti_{2}O_{7}} and Ho2Ti2O7{\rm Ho_{2}Ti_{2}O_{7}}.Comment: New version of the manuscript. Now contains 3 POSTSCRIPT figures as opposed to 2 figures. Manuscript contains a more detailed discussion of the (i) nature of long-range ordered ground state, (ii) finite-size scaling results of the 1st order transition into the ground state. Order of authors has been changed. Resubmitted to Physical Review Letters Contact: [email protected]

    The propargyl rearrangement to functionalised allyl-boron and borocation compounds

    Get PDF
    A diverse range of Lewis acidic alkyl, vinyl and aryl boranes and borenium compounds that are capable of new carbon–carbon bond formation through selective migratory group transfer have been synthesised. Utilising a series of heteroleptic boranes [PhB(C6F5)2 (1), PhCH2CH2B(C6F5)2 (2), and E-B(C6F5)2(C6F5)C=C(I)R (R=Ph 3 a, nBu 3 b)] and borenium cations [phenylquinolatoborenium cation ([QOBPh][AlCl4], 4)], it has been shown that these boron-based compounds are capable of producing novel allyl- boron and boronium compounds through complex rearrangement reactions with various propargyl esters and carbamates. These reactions yield highly functionalised, synthetically useful boron substituted organic compounds with substantial molecular complexity in a one-pot reaction

    Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer

    Get PDF
    The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (T(UM)) using 13-parameter FACS single cell index sorting. TCRαβ sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and T(UM) occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8(+) T cells. Expanded TIL clones identified by paired TCRαβ sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRβ repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1(-) TIM-3(-). To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue
    • …
    corecore